You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlagtm.c 36 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matr
  484. ix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download ZLAGTM + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlagtm.
  491. f"> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlagtm.
  494. f"> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlagtm.
  497. f"> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, */
  503. /* B, LDB ) */
  504. /* CHARACTER TRANS */
  505. /* INTEGER LDB, LDX, N, NRHS */
  506. /* DOUBLE PRECISION ALPHA, BETA */
  507. /* COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), */
  508. /* $ X( LDX, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > ZLAGTM performs a matrix-vector product of the form */
  515. /* > */
  516. /* > B := alpha * A * X + beta * B */
  517. /* > */
  518. /* > where A is a tridiagonal matrix of order N, B and X are N by NRHS */
  519. /* > matrices, and alpha and beta are real scalars, each of which may be */
  520. /* > 0., 1., or -1. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] TRANS */
  525. /* > \verbatim */
  526. /* > TRANS is CHARACTER*1 */
  527. /* > Specifies the operation applied to A. */
  528. /* > = 'N': No transpose, B := alpha * A * X + beta * B */
  529. /* > = 'T': Transpose, B := alpha * A**T * X + beta * B */
  530. /* > = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The order of the matrix A. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] NRHS */
  540. /* > \verbatim */
  541. /* > NRHS is INTEGER */
  542. /* > The number of right hand sides, i.e., the number of columns */
  543. /* > of the matrices X and B. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] ALPHA */
  547. /* > \verbatim */
  548. /* > ALPHA is DOUBLE PRECISION */
  549. /* > The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
  550. /* > it is assumed to be 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] DL */
  554. /* > \verbatim */
  555. /* > DL is COMPLEX*16 array, dimension (N-1) */
  556. /* > The (n-1) sub-diagonal elements of T. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] D */
  560. /* > \verbatim */
  561. /* > D is COMPLEX*16 array, dimension (N) */
  562. /* > The diagonal elements of T. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] DU */
  566. /* > \verbatim */
  567. /* > DU is COMPLEX*16 array, dimension (N-1) */
  568. /* > The (n-1) super-diagonal elements of T. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] X */
  572. /* > \verbatim */
  573. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  574. /* > The N by NRHS matrix X. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDX */
  578. /* > \verbatim */
  579. /* > LDX is INTEGER */
  580. /* > The leading dimension of the array X. LDX >= f2cmax(N,1). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] BETA */
  584. /* > \verbatim */
  585. /* > BETA is DOUBLE PRECISION */
  586. /* > The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
  587. /* > it is assumed to be 1. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] B */
  591. /* > \verbatim */
  592. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  593. /* > On entry, the N by NRHS matrix B. */
  594. /* > On exit, B is overwritten by the matrix expression */
  595. /* > B := alpha * A * X + beta * B. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDB */
  599. /* > \verbatim */
  600. /* > LDB is INTEGER */
  601. /* > The leading dimension of the array B. LDB >= f2cmax(N,1). */
  602. /* > \endverbatim */
  603. /* Authors: */
  604. /* ======== */
  605. /* > \author Univ. of Tennessee */
  606. /* > \author Univ. of California Berkeley */
  607. /* > \author Univ. of Colorado Denver */
  608. /* > \author NAG Ltd. */
  609. /* > \date December 2016 */
  610. /* > \ingroup complex16OTHERauxiliary */
  611. /* ===================================================================== */
  612. /* Subroutine */ void zlagtm_(char *trans, integer *n, integer *nrhs,
  613. doublereal *alpha, doublecomplex *dl, doublecomplex *d__,
  614. doublecomplex *du, doublecomplex *x, integer *ldx, doublereal *beta,
  615. doublecomplex *b, integer *ldb)
  616. {
  617. /* System generated locals */
  618. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5,
  619. i__6, i__7, i__8, i__9, i__10;
  620. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9;
  621. /* Local variables */
  622. integer i__, j;
  623. extern logical lsame_(char *, char *);
  624. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  625. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  626. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  627. /* December 2016 */
  628. /* ===================================================================== */
  629. /* Parameter adjustments */
  630. --dl;
  631. --d__;
  632. --du;
  633. x_dim1 = *ldx;
  634. x_offset = 1 + x_dim1 * 1;
  635. x -= x_offset;
  636. b_dim1 = *ldb;
  637. b_offset = 1 + b_dim1 * 1;
  638. b -= b_offset;
  639. /* Function Body */
  640. if (*n == 0) {
  641. return;
  642. }
  643. /* Multiply B by BETA if BETA.NE.1. */
  644. if (*beta == 0.) {
  645. i__1 = *nrhs;
  646. for (j = 1; j <= i__1; ++j) {
  647. i__2 = *n;
  648. for (i__ = 1; i__ <= i__2; ++i__) {
  649. i__3 = i__ + j * b_dim1;
  650. b[i__3].r = 0., b[i__3].i = 0.;
  651. /* L10: */
  652. }
  653. /* L20: */
  654. }
  655. } else if (*beta == -1.) {
  656. i__1 = *nrhs;
  657. for (j = 1; j <= i__1; ++j) {
  658. i__2 = *n;
  659. for (i__ = 1; i__ <= i__2; ++i__) {
  660. i__3 = i__ + j * b_dim1;
  661. i__4 = i__ + j * b_dim1;
  662. z__1.r = -b[i__4].r, z__1.i = -b[i__4].i;
  663. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  664. /* L30: */
  665. }
  666. /* L40: */
  667. }
  668. }
  669. if (*alpha == 1.) {
  670. if (lsame_(trans, "N")) {
  671. /* Compute B := B + A*X */
  672. i__1 = *nrhs;
  673. for (j = 1; j <= i__1; ++j) {
  674. if (*n == 1) {
  675. i__2 = j * b_dim1 + 1;
  676. i__3 = j * b_dim1 + 1;
  677. i__4 = j * x_dim1 + 1;
  678. z__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  679. z__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  680. .r;
  681. z__1.r = b[i__3].r + z__2.r, z__1.i = b[i__3].i + z__2.i;
  682. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  683. } else {
  684. i__2 = j * b_dim1 + 1;
  685. i__3 = j * b_dim1 + 1;
  686. i__4 = j * x_dim1 + 1;
  687. z__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  688. z__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  689. .r;
  690. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  691. i__5 = j * x_dim1 + 2;
  692. z__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i,
  693. z__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
  694. .r;
  695. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  696. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  697. i__2 = *n + j * b_dim1;
  698. i__3 = *n + j * b_dim1;
  699. i__4 = *n - 1;
  700. i__5 = *n - 1 + j * x_dim1;
  701. z__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i,
  702. z__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
  703. i__5].r;
  704. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  705. i__6 = *n;
  706. i__7 = *n + j * x_dim1;
  707. z__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  708. .i, z__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  709. .i * x[i__7].r;
  710. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  711. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  712. i__2 = *n - 1;
  713. for (i__ = 2; i__ <= i__2; ++i__) {
  714. i__3 = i__ + j * b_dim1;
  715. i__4 = i__ + j * b_dim1;
  716. i__5 = i__ - 1;
  717. i__6 = i__ - 1 + j * x_dim1;
  718. z__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
  719. .i, z__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
  720. .i * x[i__6].r;
  721. z__3.r = b[i__4].r + z__4.r, z__3.i = b[i__4].i +
  722. z__4.i;
  723. i__7 = i__;
  724. i__8 = i__ + j * x_dim1;
  725. z__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  726. i__8].i, z__5.i = d__[i__7].r * x[i__8].i +
  727. d__[i__7].i * x[i__8].r;
  728. z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i;
  729. i__9 = i__;
  730. i__10 = i__ + 1 + j * x_dim1;
  731. z__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
  732. i__10].i, z__6.i = du[i__9].r * x[i__10].i +
  733. du[i__9].i * x[i__10].r;
  734. z__1.r = z__2.r + z__6.r, z__1.i = z__2.i + z__6.i;
  735. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  736. /* L50: */
  737. }
  738. }
  739. /* L60: */
  740. }
  741. } else if (lsame_(trans, "T")) {
  742. /* Compute B := B + A**T * X */
  743. i__1 = *nrhs;
  744. for (j = 1; j <= i__1; ++j) {
  745. if (*n == 1) {
  746. i__2 = j * b_dim1 + 1;
  747. i__3 = j * b_dim1 + 1;
  748. i__4 = j * x_dim1 + 1;
  749. z__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  750. z__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  751. .r;
  752. z__1.r = b[i__3].r + z__2.r, z__1.i = b[i__3].i + z__2.i;
  753. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  754. } else {
  755. i__2 = j * b_dim1 + 1;
  756. i__3 = j * b_dim1 + 1;
  757. i__4 = j * x_dim1 + 1;
  758. z__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  759. z__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  760. .r;
  761. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  762. i__5 = j * x_dim1 + 2;
  763. z__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i,
  764. z__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
  765. .r;
  766. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  767. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  768. i__2 = *n + j * b_dim1;
  769. i__3 = *n + j * b_dim1;
  770. i__4 = *n - 1;
  771. i__5 = *n - 1 + j * x_dim1;
  772. z__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i,
  773. z__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
  774. i__5].r;
  775. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  776. i__6 = *n;
  777. i__7 = *n + j * x_dim1;
  778. z__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  779. .i, z__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  780. .i * x[i__7].r;
  781. z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
  782. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  783. i__2 = *n - 1;
  784. for (i__ = 2; i__ <= i__2; ++i__) {
  785. i__3 = i__ + j * b_dim1;
  786. i__4 = i__ + j * b_dim1;
  787. i__5 = i__ - 1;
  788. i__6 = i__ - 1 + j * x_dim1;
  789. z__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
  790. .i, z__4.i = du[i__5].r * x[i__6].i + du[i__5]
  791. .i * x[i__6].r;
  792. z__3.r = b[i__4].r + z__4.r, z__3.i = b[i__4].i +
  793. z__4.i;
  794. i__7 = i__;
  795. i__8 = i__ + j * x_dim1;
  796. z__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  797. i__8].i, z__5.i = d__[i__7].r * x[i__8].i +
  798. d__[i__7].i * x[i__8].r;
  799. z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i;
  800. i__9 = i__;
  801. i__10 = i__ + 1 + j * x_dim1;
  802. z__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
  803. i__10].i, z__6.i = dl[i__9].r * x[i__10].i +
  804. dl[i__9].i * x[i__10].r;
  805. z__1.r = z__2.r + z__6.r, z__1.i = z__2.i + z__6.i;
  806. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  807. /* L70: */
  808. }
  809. }
  810. /* L80: */
  811. }
  812. } else if (lsame_(trans, "C")) {
  813. /* Compute B := B + A**H * X */
  814. i__1 = *nrhs;
  815. for (j = 1; j <= i__1; ++j) {
  816. if (*n == 1) {
  817. i__2 = j * b_dim1 + 1;
  818. i__3 = j * b_dim1 + 1;
  819. d_cnjg(&z__3, &d__[1]);
  820. i__4 = j * x_dim1 + 1;
  821. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
  822. z__3.r * x[i__4].i + z__3.i * x[i__4].r;
  823. z__1.r = b[i__3].r + z__2.r, z__1.i = b[i__3].i + z__2.i;
  824. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  825. } else {
  826. i__2 = j * b_dim1 + 1;
  827. i__3 = j * b_dim1 + 1;
  828. d_cnjg(&z__4, &d__[1]);
  829. i__4 = j * x_dim1 + 1;
  830. z__3.r = z__4.r * x[i__4].r - z__4.i * x[i__4].i, z__3.i =
  831. z__4.r * x[i__4].i + z__4.i * x[i__4].r;
  832. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  833. d_cnjg(&z__6, &dl[1]);
  834. i__5 = j * x_dim1 + 2;
  835. z__5.r = z__6.r * x[i__5].r - z__6.i * x[i__5].i, z__5.i =
  836. z__6.r * x[i__5].i + z__6.i * x[i__5].r;
  837. z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
  838. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  839. i__2 = *n + j * b_dim1;
  840. i__3 = *n + j * b_dim1;
  841. d_cnjg(&z__4, &du[*n - 1]);
  842. i__4 = *n - 1 + j * x_dim1;
  843. z__3.r = z__4.r * x[i__4].r - z__4.i * x[i__4].i, z__3.i =
  844. z__4.r * x[i__4].i + z__4.i * x[i__4].r;
  845. z__2.r = b[i__3].r + z__3.r, z__2.i = b[i__3].i + z__3.i;
  846. d_cnjg(&z__6, &d__[*n]);
  847. i__5 = *n + j * x_dim1;
  848. z__5.r = z__6.r * x[i__5].r - z__6.i * x[i__5].i, z__5.i =
  849. z__6.r * x[i__5].i + z__6.i * x[i__5].r;
  850. z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
  851. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  852. i__2 = *n - 1;
  853. for (i__ = 2; i__ <= i__2; ++i__) {
  854. i__3 = i__ + j * b_dim1;
  855. i__4 = i__ + j * b_dim1;
  856. d_cnjg(&z__5, &du[i__ - 1]);
  857. i__5 = i__ - 1 + j * x_dim1;
  858. z__4.r = z__5.r * x[i__5].r - z__5.i * x[i__5].i,
  859. z__4.i = z__5.r * x[i__5].i + z__5.i * x[i__5]
  860. .r;
  861. z__3.r = b[i__4].r + z__4.r, z__3.i = b[i__4].i +
  862. z__4.i;
  863. d_cnjg(&z__7, &d__[i__]);
  864. i__6 = i__ + j * x_dim1;
  865. z__6.r = z__7.r * x[i__6].r - z__7.i * x[i__6].i,
  866. z__6.i = z__7.r * x[i__6].i + z__7.i * x[i__6]
  867. .r;
  868. z__2.r = z__3.r + z__6.r, z__2.i = z__3.i + z__6.i;
  869. d_cnjg(&z__9, &dl[i__]);
  870. i__7 = i__ + 1 + j * x_dim1;
  871. z__8.r = z__9.r * x[i__7].r - z__9.i * x[i__7].i,
  872. z__8.i = z__9.r * x[i__7].i + z__9.i * x[i__7]
  873. .r;
  874. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  875. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  876. /* L90: */
  877. }
  878. }
  879. /* L100: */
  880. }
  881. }
  882. } else if (*alpha == -1.) {
  883. if (lsame_(trans, "N")) {
  884. /* Compute B := B - A*X */
  885. i__1 = *nrhs;
  886. for (j = 1; j <= i__1; ++j) {
  887. if (*n == 1) {
  888. i__2 = j * b_dim1 + 1;
  889. i__3 = j * b_dim1 + 1;
  890. i__4 = j * x_dim1 + 1;
  891. z__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  892. z__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  893. .r;
  894. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
  895. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  896. } else {
  897. i__2 = j * b_dim1 + 1;
  898. i__3 = j * b_dim1 + 1;
  899. i__4 = j * x_dim1 + 1;
  900. z__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  901. z__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  902. .r;
  903. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  904. i__5 = j * x_dim1 + 2;
  905. z__4.r = du[1].r * x[i__5].r - du[1].i * x[i__5].i,
  906. z__4.i = du[1].r * x[i__5].i + du[1].i * x[i__5]
  907. .r;
  908. z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
  909. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  910. i__2 = *n + j * b_dim1;
  911. i__3 = *n + j * b_dim1;
  912. i__4 = *n - 1;
  913. i__5 = *n - 1 + j * x_dim1;
  914. z__3.r = dl[i__4].r * x[i__5].r - dl[i__4].i * x[i__5].i,
  915. z__3.i = dl[i__4].r * x[i__5].i + dl[i__4].i * x[
  916. i__5].r;
  917. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  918. i__6 = *n;
  919. i__7 = *n + j * x_dim1;
  920. z__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  921. .i, z__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  922. .i * x[i__7].r;
  923. z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
  924. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  925. i__2 = *n - 1;
  926. for (i__ = 2; i__ <= i__2; ++i__) {
  927. i__3 = i__ + j * b_dim1;
  928. i__4 = i__ + j * b_dim1;
  929. i__5 = i__ - 1;
  930. i__6 = i__ - 1 + j * x_dim1;
  931. z__4.r = dl[i__5].r * x[i__6].r - dl[i__5].i * x[i__6]
  932. .i, z__4.i = dl[i__5].r * x[i__6].i + dl[i__5]
  933. .i * x[i__6].r;
  934. z__3.r = b[i__4].r - z__4.r, z__3.i = b[i__4].i -
  935. z__4.i;
  936. i__7 = i__;
  937. i__8 = i__ + j * x_dim1;
  938. z__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  939. i__8].i, z__5.i = d__[i__7].r * x[i__8].i +
  940. d__[i__7].i * x[i__8].r;
  941. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  942. i__9 = i__;
  943. i__10 = i__ + 1 + j * x_dim1;
  944. z__6.r = du[i__9].r * x[i__10].r - du[i__9].i * x[
  945. i__10].i, z__6.i = du[i__9].r * x[i__10].i +
  946. du[i__9].i * x[i__10].r;
  947. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i - z__6.i;
  948. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  949. /* L110: */
  950. }
  951. }
  952. /* L120: */
  953. }
  954. } else if (lsame_(trans, "T")) {
  955. /* Compute B := B - A**T *X */
  956. i__1 = *nrhs;
  957. for (j = 1; j <= i__1; ++j) {
  958. if (*n == 1) {
  959. i__2 = j * b_dim1 + 1;
  960. i__3 = j * b_dim1 + 1;
  961. i__4 = j * x_dim1 + 1;
  962. z__2.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  963. z__2.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  964. .r;
  965. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
  966. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  967. } else {
  968. i__2 = j * b_dim1 + 1;
  969. i__3 = j * b_dim1 + 1;
  970. i__4 = j * x_dim1 + 1;
  971. z__3.r = d__[1].r * x[i__4].r - d__[1].i * x[i__4].i,
  972. z__3.i = d__[1].r * x[i__4].i + d__[1].i * x[i__4]
  973. .r;
  974. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  975. i__5 = j * x_dim1 + 2;
  976. z__4.r = dl[1].r * x[i__5].r - dl[1].i * x[i__5].i,
  977. z__4.i = dl[1].r * x[i__5].i + dl[1].i * x[i__5]
  978. .r;
  979. z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
  980. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  981. i__2 = *n + j * b_dim1;
  982. i__3 = *n + j * b_dim1;
  983. i__4 = *n - 1;
  984. i__5 = *n - 1 + j * x_dim1;
  985. z__3.r = du[i__4].r * x[i__5].r - du[i__4].i * x[i__5].i,
  986. z__3.i = du[i__4].r * x[i__5].i + du[i__4].i * x[
  987. i__5].r;
  988. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  989. i__6 = *n;
  990. i__7 = *n + j * x_dim1;
  991. z__4.r = d__[i__6].r * x[i__7].r - d__[i__6].i * x[i__7]
  992. .i, z__4.i = d__[i__6].r * x[i__7].i + d__[i__6]
  993. .i * x[i__7].r;
  994. z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
  995. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  996. i__2 = *n - 1;
  997. for (i__ = 2; i__ <= i__2; ++i__) {
  998. i__3 = i__ + j * b_dim1;
  999. i__4 = i__ + j * b_dim1;
  1000. i__5 = i__ - 1;
  1001. i__6 = i__ - 1 + j * x_dim1;
  1002. z__4.r = du[i__5].r * x[i__6].r - du[i__5].i * x[i__6]
  1003. .i, z__4.i = du[i__5].r * x[i__6].i + du[i__5]
  1004. .i * x[i__6].r;
  1005. z__3.r = b[i__4].r - z__4.r, z__3.i = b[i__4].i -
  1006. z__4.i;
  1007. i__7 = i__;
  1008. i__8 = i__ + j * x_dim1;
  1009. z__5.r = d__[i__7].r * x[i__8].r - d__[i__7].i * x[
  1010. i__8].i, z__5.i = d__[i__7].r * x[i__8].i +
  1011. d__[i__7].i * x[i__8].r;
  1012. z__2.r = z__3.r - z__5.r, z__2.i = z__3.i - z__5.i;
  1013. i__9 = i__;
  1014. i__10 = i__ + 1 + j * x_dim1;
  1015. z__6.r = dl[i__9].r * x[i__10].r - dl[i__9].i * x[
  1016. i__10].i, z__6.i = dl[i__9].r * x[i__10].i +
  1017. dl[i__9].i * x[i__10].r;
  1018. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i - z__6.i;
  1019. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1020. /* L130: */
  1021. }
  1022. }
  1023. /* L140: */
  1024. }
  1025. } else if (lsame_(trans, "C")) {
  1026. /* Compute B := B - A**H *X */
  1027. i__1 = *nrhs;
  1028. for (j = 1; j <= i__1; ++j) {
  1029. if (*n == 1) {
  1030. i__2 = j * b_dim1 + 1;
  1031. i__3 = j * b_dim1 + 1;
  1032. d_cnjg(&z__3, &d__[1]);
  1033. i__4 = j * x_dim1 + 1;
  1034. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
  1035. z__3.r * x[i__4].i + z__3.i * x[i__4].r;
  1036. z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
  1037. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1038. } else {
  1039. i__2 = j * b_dim1 + 1;
  1040. i__3 = j * b_dim1 + 1;
  1041. d_cnjg(&z__4, &d__[1]);
  1042. i__4 = j * x_dim1 + 1;
  1043. z__3.r = z__4.r * x[i__4].r - z__4.i * x[i__4].i, z__3.i =
  1044. z__4.r * x[i__4].i + z__4.i * x[i__4].r;
  1045. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  1046. d_cnjg(&z__6, &dl[1]);
  1047. i__5 = j * x_dim1 + 2;
  1048. z__5.r = z__6.r * x[i__5].r - z__6.i * x[i__5].i, z__5.i =
  1049. z__6.r * x[i__5].i + z__6.i * x[i__5].r;
  1050. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i - z__5.i;
  1051. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1052. i__2 = *n + j * b_dim1;
  1053. i__3 = *n + j * b_dim1;
  1054. d_cnjg(&z__4, &du[*n - 1]);
  1055. i__4 = *n - 1 + j * x_dim1;
  1056. z__3.r = z__4.r * x[i__4].r - z__4.i * x[i__4].i, z__3.i =
  1057. z__4.r * x[i__4].i + z__4.i * x[i__4].r;
  1058. z__2.r = b[i__3].r - z__3.r, z__2.i = b[i__3].i - z__3.i;
  1059. d_cnjg(&z__6, &d__[*n]);
  1060. i__5 = *n + j * x_dim1;
  1061. z__5.r = z__6.r * x[i__5].r - z__6.i * x[i__5].i, z__5.i =
  1062. z__6.r * x[i__5].i + z__6.i * x[i__5].r;
  1063. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i - z__5.i;
  1064. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1065. i__2 = *n - 1;
  1066. for (i__ = 2; i__ <= i__2; ++i__) {
  1067. i__3 = i__ + j * b_dim1;
  1068. i__4 = i__ + j * b_dim1;
  1069. d_cnjg(&z__5, &du[i__ - 1]);
  1070. i__5 = i__ - 1 + j * x_dim1;
  1071. z__4.r = z__5.r * x[i__5].r - z__5.i * x[i__5].i,
  1072. z__4.i = z__5.r * x[i__5].i + z__5.i * x[i__5]
  1073. .r;
  1074. z__3.r = b[i__4].r - z__4.r, z__3.i = b[i__4].i -
  1075. z__4.i;
  1076. d_cnjg(&z__7, &d__[i__]);
  1077. i__6 = i__ + j * x_dim1;
  1078. z__6.r = z__7.r * x[i__6].r - z__7.i * x[i__6].i,
  1079. z__6.i = z__7.r * x[i__6].i + z__7.i * x[i__6]
  1080. .r;
  1081. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1082. d_cnjg(&z__9, &dl[i__]);
  1083. i__7 = i__ + 1 + j * x_dim1;
  1084. z__8.r = z__9.r * x[i__7].r - z__9.i * x[i__7].i,
  1085. z__8.i = z__9.r * x[i__7].i + z__9.i * x[i__7]
  1086. .r;
  1087. z__1.r = z__2.r - z__8.r, z__1.i = z__2.i - z__8.i;
  1088. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1089. /* L150: */
  1090. }
  1091. }
  1092. /* L160: */
  1093. }
  1094. }
  1095. }
  1096. return;
  1097. /* End of ZLAGTM */
  1098. } /* zlagtm_ */