You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytf2_rk.c 43 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b SSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bu
  486. nch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download SSYTF2_RK + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytf2_
  493. rk.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytf2_
  496. rk.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytf2_
  499. rk.f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE SSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, LDA, N */
  507. /* INTEGER IPIV( * ) */
  508. /* REAL A( LDA, * ), E ( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > SSYTF2_RK computes the factorization of a real symmetric matrix A */
  514. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  515. /* > */
  516. /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
  517. /* > */
  518. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  519. /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
  520. /* > matrix, P**T is the transpose of P, and D is symmetric and block */
  521. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  522. /* > */
  523. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  524. /* > For more information see Further Details section. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > Specifies whether the upper or lower triangular part of the */
  532. /* > symmetric matrix A is stored: */
  533. /* > = 'U': Upper triangular */
  534. /* > = 'L': Lower triangular */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in,out] A */
  544. /* > \verbatim */
  545. /* > A is REAL array, dimension (LDA,N) */
  546. /* > On entry, the symmetric matrix A. */
  547. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  548. /* > of A contains the upper triangular part of the matrix A, */
  549. /* > and the strictly lower triangular part of A is not */
  550. /* > referenced. */
  551. /* > */
  552. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  553. /* > of A contains the lower triangular part of the matrix A, */
  554. /* > and the strictly upper triangular part of A is not */
  555. /* > referenced. */
  556. /* > */
  557. /* > On exit, contains: */
  558. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  559. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  560. /* > (superdiagonal (or subdiagonal) elements of D */
  561. /* > are stored on exit in array E), and */
  562. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  563. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] E */
  573. /* > \verbatim */
  574. /* > E is REAL array, dimension (N) */
  575. /* > On exit, contains the superdiagonal (or subdiagonal) */
  576. /* > elements of the symmetric block diagonal matrix D */
  577. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  578. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  579. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  580. /* > */
  581. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  582. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  583. /* > UPLO = 'U' or UPLO = 'L' cases. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > IPIV describes the permutation matrix P in the factorization */
  590. /* > of matrix A as follows. The absolute value of IPIV(k) */
  591. /* > represents the index of row and column that were */
  592. /* > interchanged with the k-th row and column. The value of UPLO */
  593. /* > describes the order in which the interchanges were applied. */
  594. /* > Also, the sign of IPIV represents the block structure of */
  595. /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
  596. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  597. /* > at each factorization step. For more info see Further */
  598. /* > Details section. */
  599. /* > */
  600. /* > If UPLO = 'U', */
  601. /* > ( in factorization order, k decreases from N to 1 ): */
  602. /* > a) A single positive entry IPIV(k) > 0 means: */
  603. /* > D(k,k) is a 1-by-1 diagonal block. */
  604. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  605. /* > interchanged in the matrix A(1:N,1:N); */
  606. /* > If IPIV(k) = k, no interchange occurred. */
  607. /* > */
  608. /* > b) A pair of consecutive negative entries */
  609. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  610. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  611. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  612. /* > 1) If -IPIV(k) != k, rows and columns */
  613. /* > k and -IPIV(k) were interchanged */
  614. /* > in the matrix A(1:N,1:N). */
  615. /* > If -IPIV(k) = k, no interchange occurred. */
  616. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  617. /* > k-1 and -IPIV(k-1) were interchanged */
  618. /* > in the matrix A(1:N,1:N). */
  619. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  620. /* > */
  621. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  622. /* > */
  623. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  624. /* > */
  625. /* > If UPLO = 'L', */
  626. /* > ( in factorization order, k increases from 1 to N ): */
  627. /* > a) A single positive entry IPIV(k) > 0 means: */
  628. /* > D(k,k) is a 1-by-1 diagonal block. */
  629. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  630. /* > interchanged in the matrix A(1:N,1:N). */
  631. /* > If IPIV(k) = k, no interchange occurred. */
  632. /* > */
  633. /* > b) A pair of consecutive negative entries */
  634. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  635. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  636. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  637. /* > 1) If -IPIV(k) != k, rows and columns */
  638. /* > k and -IPIV(k) were interchanged */
  639. /* > in the matrix A(1:N,1:N). */
  640. /* > If -IPIV(k) = k, no interchange occurred. */
  641. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  642. /* > k-1 and -IPIV(k-1) were interchanged */
  643. /* > in the matrix A(1:N,1:N). */
  644. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  645. /* > */
  646. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  647. /* > */
  648. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] INFO */
  652. /* > \verbatim */
  653. /* > INFO is INTEGER */
  654. /* > = 0: successful exit */
  655. /* > */
  656. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  657. /* > */
  658. /* > > 0: If INFO = k, the matrix A is singular, because: */
  659. /* > If UPLO = 'U': column k in the upper */
  660. /* > triangular part of A contains all zeros. */
  661. /* > If UPLO = 'L': column k in the lower */
  662. /* > triangular part of A contains all zeros. */
  663. /* > */
  664. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  665. /* > elements of column k of U (or subdiagonal elements of */
  666. /* > column k of L ) are all zeros. The factorization has */
  667. /* > been completed, but the block diagonal matrix D is */
  668. /* > exactly singular, and division by zero will occur if */
  669. /* > it is used to solve a system of equations. */
  670. /* > */
  671. /* > NOTE: INFO only stores the first occurrence of */
  672. /* > a singularity, any subsequent occurrence of singularity */
  673. /* > is not stored in INFO even though the factorization */
  674. /* > always completes. */
  675. /* > \endverbatim */
  676. /* Authors: */
  677. /* ======== */
  678. /* > \author Univ. of Tennessee */
  679. /* > \author Univ. of California Berkeley */
  680. /* > \author Univ. of Colorado Denver */
  681. /* > \author NAG Ltd. */
  682. /* > \date December 2016 */
  683. /* > \ingroup singleSYcomputational */
  684. /* > \par Further Details: */
  685. /* ===================== */
  686. /* > */
  687. /* > \verbatim */
  688. /* > TODO: put further details */
  689. /* > \endverbatim */
  690. /* > \par Contributors: */
  691. /* ================== */
  692. /* > */
  693. /* > \verbatim */
  694. /* > */
  695. /* > December 2016, Igor Kozachenko, */
  696. /* > Computer Science Division, */
  697. /* > University of California, Berkeley */
  698. /* > */
  699. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  700. /* > School of Mathematics, */
  701. /* > University of Manchester */
  702. /* > */
  703. /* > 01-01-96 - Based on modifications by */
  704. /* > J. Lewis, Boeing Computer Services Company */
  705. /* > A. Petitet, Computer Science Dept., */
  706. /* > Univ. of Tenn., Knoxville abd , USA */
  707. /* > \endverbatim */
  708. /* ===================================================================== */
  709. /* Subroutine */ void ssytf2_rk_(char *uplo, integer *n, real *a, integer *
  710. lda, real *e, integer *ipiv, integer *info)
  711. {
  712. /* System generated locals */
  713. integer a_dim1, a_offset, i__1, i__2;
  714. real r__1;
  715. /* Local variables */
  716. logical done;
  717. integer imax, jmax;
  718. extern /* Subroutine */ void ssyr_(char *, integer *, real *, real *,
  719. integer *, real *, integer *);
  720. integer i__, j, k, p;
  721. real t, alpha;
  722. extern logical lsame_(char *, char *);
  723. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  724. real sfmin;
  725. integer itemp, kstep;
  726. real stemp;
  727. logical upper;
  728. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  729. integer *);
  730. real d11, d12, d21, d22;
  731. integer ii, kk, kp;
  732. real absakk, wk;
  733. extern real slamch_(char *);
  734. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  735. extern integer isamax_(integer *, real *, integer *);
  736. real colmax, rowmax, wkm1, wkp1;
  737. /* -- LAPACK computational routine (version 3.7.0) -- */
  738. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  739. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  740. /* December 2016 */
  741. /* ===================================================================== */
  742. /* Test the input parameters. */
  743. /* Parameter adjustments */
  744. a_dim1 = *lda;
  745. a_offset = 1 + a_dim1 * 1;
  746. a -= a_offset;
  747. --e;
  748. --ipiv;
  749. /* Function Body */
  750. *info = 0;
  751. upper = lsame_(uplo, "U");
  752. if (! upper && ! lsame_(uplo, "L")) {
  753. *info = -1;
  754. } else if (*n < 0) {
  755. *info = -2;
  756. } else if (*lda < f2cmax(1,*n)) {
  757. *info = -4;
  758. }
  759. if (*info != 0) {
  760. i__1 = -(*info);
  761. xerbla_("SSYTF2_RK", &i__1, (ftnlen)9);
  762. return;
  763. }
  764. /* Initialize ALPHA for use in choosing pivot block size. */
  765. alpha = (sqrt(17.f) + 1.f) / 8.f;
  766. /* Compute machine safe minimum */
  767. sfmin = slamch_("S");
  768. if (upper) {
  769. /* Factorize A as U*D*U**T using the upper triangle of A */
  770. /* Initialize the first entry of array E, where superdiagonal */
  771. /* elements of D are stored */
  772. e[1] = 0.f;
  773. /* K is the main loop index, decreasing from N to 1 in steps of */
  774. /* 1 or 2 */
  775. k = *n;
  776. L10:
  777. /* If K < 1, exit from loop */
  778. if (k < 1) {
  779. goto L34;
  780. }
  781. kstep = 1;
  782. p = k;
  783. /* Determine rows and columns to be interchanged and whether */
  784. /* a 1-by-1 or 2-by-2 pivot block will be used */
  785. absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
  786. /* IMAX is the row-index of the largest off-diagonal element in */
  787. /* column K, and COLMAX is its absolute value. */
  788. /* Determine both COLMAX and IMAX. */
  789. if (k > 1) {
  790. i__1 = k - 1;
  791. imax = isamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  792. colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
  793. } else {
  794. colmax = 0.f;
  795. }
  796. if (f2cmax(absakk,colmax) == 0.f) {
  797. /* Column K is zero or underflow: set INFO and continue */
  798. if (*info == 0) {
  799. *info = k;
  800. }
  801. kp = k;
  802. /* Set E( K ) to zero */
  803. if (k > 1) {
  804. e[k] = 0.f;
  805. }
  806. } else {
  807. /* Test for interchange */
  808. /* Equivalent to testing for (used to handle NaN and Inf) */
  809. /* ABSAKK.GE.ALPHA*COLMAX */
  810. if (! (absakk < alpha * colmax)) {
  811. /* no interchange, */
  812. /* use 1-by-1 pivot block */
  813. kp = k;
  814. } else {
  815. done = FALSE_;
  816. /* Loop until pivot found */
  817. L12:
  818. /* Begin pivot search loop body */
  819. /* JMAX is the column-index of the largest off-diagonal */
  820. /* element in row IMAX, and ROWMAX is its absolute value. */
  821. /* Determine both ROWMAX and JMAX. */
  822. if (imax != k) {
  823. i__1 = k - imax;
  824. jmax = imax + isamax_(&i__1, &a[imax + (imax + 1) *
  825. a_dim1], lda);
  826. rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
  827. } else {
  828. rowmax = 0.f;
  829. }
  830. if (imax > 1) {
  831. i__1 = imax - 1;
  832. itemp = isamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  833. stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
  834. if (stemp > rowmax) {
  835. rowmax = stemp;
  836. jmax = itemp;
  837. }
  838. }
  839. /* Equivalent to testing for (used to handle NaN and Inf) */
  840. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  841. if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha *
  842. rowmax)) {
  843. /* interchange rows and columns K and IMAX, */
  844. /* use 1-by-1 pivot block */
  845. kp = imax;
  846. done = TRUE_;
  847. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  848. /* used to handle NaN and Inf */
  849. } else if (p == jmax || rowmax <= colmax) {
  850. /* interchange rows and columns K+1 and IMAX, */
  851. /* use 2-by-2 pivot block */
  852. kp = imax;
  853. kstep = 2;
  854. done = TRUE_;
  855. } else {
  856. /* Pivot NOT found, set variables and repeat */
  857. p = imax;
  858. colmax = rowmax;
  859. imax = jmax;
  860. }
  861. /* End pivot search loop body */
  862. if (! done) {
  863. goto L12;
  864. }
  865. }
  866. /* Swap TWO rows and TWO columns */
  867. /* First swap */
  868. if (kstep == 2 && p != k) {
  869. /* Interchange rows and column K and P in the leading */
  870. /* submatrix A(1:k,1:k) if we have a 2-by-2 pivot */
  871. if (p > 1) {
  872. i__1 = p - 1;
  873. sswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  874. 1], &c__1);
  875. }
  876. if (p < k - 1) {
  877. i__1 = k - p - 1;
  878. sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p +
  879. 1) * a_dim1], lda);
  880. }
  881. t = a[k + k * a_dim1];
  882. a[k + k * a_dim1] = a[p + p * a_dim1];
  883. a[p + p * a_dim1] = t;
  884. /* Convert upper triangle of A into U form by applying */
  885. /* the interchanges in columns k+1:N. */
  886. if (k < *n) {
  887. i__1 = *n - k;
  888. sswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  889. 1) * a_dim1], lda);
  890. }
  891. }
  892. /* Second swap */
  893. kk = k - kstep + 1;
  894. if (kp != kk) {
  895. /* Interchange rows and columns KK and KP in the leading */
  896. /* submatrix A(1:k,1:k) */
  897. if (kp > 1) {
  898. i__1 = kp - 1;
  899. sswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  900. + 1], &c__1);
  901. }
  902. if (kk > 1 && kp < kk - 1) {
  903. i__1 = kk - kp - 1;
  904. sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (
  905. kp + 1) * a_dim1], lda);
  906. }
  907. t = a[kk + kk * a_dim1];
  908. a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
  909. a[kp + kp * a_dim1] = t;
  910. if (kstep == 2) {
  911. t = a[k - 1 + k * a_dim1];
  912. a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
  913. a[kp + k * a_dim1] = t;
  914. }
  915. /* Convert upper triangle of A into U form by applying */
  916. /* the interchanges in columns k+1:N. */
  917. if (k < *n) {
  918. i__1 = *n - k;
  919. sswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  920. + 1) * a_dim1], lda);
  921. }
  922. }
  923. /* Update the leading submatrix */
  924. if (kstep == 1) {
  925. /* 1-by-1 pivot block D(k): column k now holds */
  926. /* W(k) = U(k)*D(k) */
  927. /* where U(k) is the k-th column of U */
  928. if (k > 1) {
  929. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  930. /* store U(k) in column k */
  931. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  932. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  933. /* A := A - U(k)*D(k)*U(k)**T */
  934. /* = A - W(k)*1/D(k)*W(k)**T */
  935. d11 = 1.f / a[k + k * a_dim1];
  936. i__1 = k - 1;
  937. r__1 = -d11;
  938. ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  939. a[a_offset], lda);
  940. /* Store U(k) in column k */
  941. i__1 = k - 1;
  942. sscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  943. } else {
  944. /* Store L(k) in column K */
  945. d11 = a[k + k * a_dim1];
  946. i__1 = k - 1;
  947. for (ii = 1; ii <= i__1; ++ii) {
  948. a[ii + k * a_dim1] /= d11;
  949. /* L16: */
  950. }
  951. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  952. /* A := A - U(k)*D(k)*U(k)**T */
  953. /* = A - W(k)*(1/D(k))*W(k)**T */
  954. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  955. i__1 = k - 1;
  956. r__1 = -d11;
  957. ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  958. a[a_offset], lda);
  959. }
  960. /* Store the superdiagonal element of D in array E */
  961. e[k] = 0.f;
  962. }
  963. } else {
  964. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  965. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  966. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  967. /* of U */
  968. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  969. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  970. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  971. /* and store L(k) and L(k+1) in columns k and k+1 */
  972. if (k > 2) {
  973. d12 = a[k - 1 + k * a_dim1];
  974. d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
  975. d11 = a[k + k * a_dim1] / d12;
  976. t = 1.f / (d11 * d22 - 1.f);
  977. for (j = k - 2; j >= 1; --j) {
  978. wkm1 = t * (d11 * a[j + (k - 1) * a_dim1] - a[j + k *
  979. a_dim1]);
  980. wk = t * (d22 * a[j + k * a_dim1] - a[j + (k - 1) *
  981. a_dim1]);
  982. for (i__ = j; i__ >= 1; --i__) {
  983. a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
  984. + k * a_dim1] / d12 * wk - a[i__ + (k - 1)
  985. * a_dim1] / d12 * wkm1;
  986. /* L20: */
  987. }
  988. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  989. a[j + k * a_dim1] = wk / d12;
  990. a[j + (k - 1) * a_dim1] = wkm1 / d12;
  991. /* L30: */
  992. }
  993. }
  994. /* Copy superdiagonal elements of D(K) to E(K) and */
  995. /* ZERO out superdiagonal entry of A */
  996. e[k] = a[k - 1 + k * a_dim1];
  997. e[k - 1] = 0.f;
  998. a[k - 1 + k * a_dim1] = 0.f;
  999. }
  1000. /* End column K is nonsingular */
  1001. }
  1002. /* Store details of the interchanges in IPIV */
  1003. if (kstep == 1) {
  1004. ipiv[k] = kp;
  1005. } else {
  1006. ipiv[k] = -p;
  1007. ipiv[k - 1] = -kp;
  1008. }
  1009. /* Decrease K and return to the start of the main loop */
  1010. k -= kstep;
  1011. goto L10;
  1012. L34:
  1013. ;
  1014. } else {
  1015. /* Factorize A as L*D*L**T using the lower triangle of A */
  1016. /* Initialize the unused last entry of the subdiagonal array E. */
  1017. e[*n] = 0.f;
  1018. /* K is the main loop index, increasing from 1 to N in steps of */
  1019. /* 1 or 2 */
  1020. k = 1;
  1021. L40:
  1022. /* If K > N, exit from loop */
  1023. if (k > *n) {
  1024. goto L64;
  1025. }
  1026. kstep = 1;
  1027. p = k;
  1028. /* Determine rows and columns to be interchanged and whether */
  1029. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1030. absakk = (r__1 = a[k + k * a_dim1], abs(r__1));
  1031. /* IMAX is the row-index of the largest off-diagonal element in */
  1032. /* column K, and COLMAX is its absolute value. */
  1033. /* Determine both COLMAX and IMAX. */
  1034. if (k < *n) {
  1035. i__1 = *n - k;
  1036. imax = k + isamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1037. colmax = (r__1 = a[imax + k * a_dim1], abs(r__1));
  1038. } else {
  1039. colmax = 0.f;
  1040. }
  1041. if (f2cmax(absakk,colmax) == 0.f) {
  1042. /* Column K is zero or underflow: set INFO and continue */
  1043. if (*info == 0) {
  1044. *info = k;
  1045. }
  1046. kp = k;
  1047. /* Set E( K ) to zero */
  1048. if (k < *n) {
  1049. e[k] = 0.f;
  1050. }
  1051. } else {
  1052. /* Test for interchange */
  1053. /* Equivalent to testing for (used to handle NaN and Inf) */
  1054. /* ABSAKK.GE.ALPHA*COLMAX */
  1055. if (! (absakk < alpha * colmax)) {
  1056. /* no interchange, use 1-by-1 pivot block */
  1057. kp = k;
  1058. } else {
  1059. done = FALSE_;
  1060. /* Loop until pivot found */
  1061. L42:
  1062. /* Begin pivot search loop body */
  1063. /* JMAX is the column-index of the largest off-diagonal */
  1064. /* element in row IMAX, and ROWMAX is its absolute value. */
  1065. /* Determine both ROWMAX and JMAX. */
  1066. if (imax != k) {
  1067. i__1 = imax - k;
  1068. jmax = k - 1 + isamax_(&i__1, &a[imax + k * a_dim1], lda);
  1069. rowmax = (r__1 = a[imax + jmax * a_dim1], abs(r__1));
  1070. } else {
  1071. rowmax = 0.f;
  1072. }
  1073. if (imax < *n) {
  1074. i__1 = *n - imax;
  1075. itemp = imax + isamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1076. , &c__1);
  1077. stemp = (r__1 = a[itemp + imax * a_dim1], abs(r__1));
  1078. if (stemp > rowmax) {
  1079. rowmax = stemp;
  1080. jmax = itemp;
  1081. }
  1082. }
  1083. /* Equivalent to testing for (used to handle NaN and Inf) */
  1084. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  1085. if (! ((r__1 = a[imax + imax * a_dim1], abs(r__1)) < alpha *
  1086. rowmax)) {
  1087. /* interchange rows and columns K and IMAX, */
  1088. /* use 1-by-1 pivot block */
  1089. kp = imax;
  1090. done = TRUE_;
  1091. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  1092. /* used to handle NaN and Inf */
  1093. } else if (p == jmax || rowmax <= colmax) {
  1094. /* interchange rows and columns K+1 and IMAX, */
  1095. /* use 2-by-2 pivot block */
  1096. kp = imax;
  1097. kstep = 2;
  1098. done = TRUE_;
  1099. } else {
  1100. /* Pivot NOT found, set variables and repeat */
  1101. p = imax;
  1102. colmax = rowmax;
  1103. imax = jmax;
  1104. }
  1105. /* End pivot search loop body */
  1106. if (! done) {
  1107. goto L42;
  1108. }
  1109. }
  1110. /* Swap TWO rows and TWO columns */
  1111. /* First swap */
  1112. if (kstep == 2 && p != k) {
  1113. /* Interchange rows and column K and P in the trailing */
  1114. /* submatrix A(k:n,k:n) if we have a 2-by-2 pivot */
  1115. if (p < *n) {
  1116. i__1 = *n - p;
  1117. sswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1118. * a_dim1], &c__1);
  1119. }
  1120. if (p > k + 1) {
  1121. i__1 = p - k - 1;
  1122. sswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k +
  1123. 1) * a_dim1], lda);
  1124. }
  1125. t = a[k + k * a_dim1];
  1126. a[k + k * a_dim1] = a[p + p * a_dim1];
  1127. a[p + p * a_dim1] = t;
  1128. /* Convert lower triangle of A into L form by applying */
  1129. /* the interchanges in columns 1:k-1. */
  1130. if (k > 1) {
  1131. i__1 = k - 1;
  1132. sswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1133. }
  1134. }
  1135. /* Second swap */
  1136. kk = k + kstep - 1;
  1137. if (kp != kk) {
  1138. /* Interchange rows and columns KK and KP in the trailing */
  1139. /* submatrix A(k:n,k:n) */
  1140. if (kp < *n) {
  1141. i__1 = *n - kp;
  1142. sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1143. + kp * a_dim1], &c__1);
  1144. }
  1145. if (kk < *n && kp > kk + 1) {
  1146. i__1 = kp - kk - 1;
  1147. sswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (
  1148. kk + 1) * a_dim1], lda);
  1149. }
  1150. t = a[kk + kk * a_dim1];
  1151. a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
  1152. a[kp + kp * a_dim1] = t;
  1153. if (kstep == 2) {
  1154. t = a[k + 1 + k * a_dim1];
  1155. a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
  1156. a[kp + k * a_dim1] = t;
  1157. }
  1158. /* Convert lower triangle of A into L form by applying */
  1159. /* the interchanges in columns 1:k-1. */
  1160. if (k > 1) {
  1161. i__1 = k - 1;
  1162. sswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1163. }
  1164. }
  1165. /* Update the trailing submatrix */
  1166. if (kstep == 1) {
  1167. /* 1-by-1 pivot block D(k): column k now holds */
  1168. /* W(k) = L(k)*D(k) */
  1169. /* where L(k) is the k-th column of L */
  1170. if (k < *n) {
  1171. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1172. /* store L(k) in column k */
  1173. if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
  1174. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1175. /* A := A - L(k)*D(k)*L(k)**T */
  1176. /* = A - W(k)*(1/D(k))*W(k)**T */
  1177. d11 = 1.f / a[k + k * a_dim1];
  1178. i__1 = *n - k;
  1179. r__1 = -d11;
  1180. ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1181. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1182. /* Store L(k) in column k */
  1183. i__1 = *n - k;
  1184. sscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1185. } else {
  1186. /* Store L(k) in column k */
  1187. d11 = a[k + k * a_dim1];
  1188. i__1 = *n;
  1189. for (ii = k + 1; ii <= i__1; ++ii) {
  1190. a[ii + k * a_dim1] /= d11;
  1191. /* L46: */
  1192. }
  1193. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1194. /* A := A - L(k)*D(k)*L(k)**T */
  1195. /* = A - W(k)*(1/D(k))*W(k)**T */
  1196. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1197. i__1 = *n - k;
  1198. r__1 = -d11;
  1199. ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1200. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1201. }
  1202. /* Store the subdiagonal element of D in array E */
  1203. e[k] = 0.f;
  1204. }
  1205. } else {
  1206. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1207. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1208. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1209. /* of L */
  1210. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1211. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1212. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1213. /* and store L(k) and L(k+1) in columns k and k+1 */
  1214. if (k < *n - 1) {
  1215. d21 = a[k + 1 + k * a_dim1];
  1216. d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
  1217. d22 = a[k + k * a_dim1] / d21;
  1218. t = 1.f / (d11 * d22 - 1.f);
  1219. i__1 = *n;
  1220. for (j = k + 2; j <= i__1; ++j) {
  1221. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1222. wk = t * (d11 * a[j + k * a_dim1] - a[j + (k + 1) *
  1223. a_dim1]);
  1224. wkp1 = t * (d22 * a[j + (k + 1) * a_dim1] - a[j + k *
  1225. a_dim1]);
  1226. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1227. i__2 = *n;
  1228. for (i__ = j; i__ <= i__2; ++i__) {
  1229. a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__
  1230. + k * a_dim1] / d21 * wk - a[i__ + (k + 1)
  1231. * a_dim1] / d21 * wkp1;
  1232. /* L50: */
  1233. }
  1234. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1235. a[j + k * a_dim1] = wk / d21;
  1236. a[j + (k + 1) * a_dim1] = wkp1 / d21;
  1237. /* L60: */
  1238. }
  1239. }
  1240. /* Copy subdiagonal elements of D(K) to E(K) and */
  1241. /* ZERO out subdiagonal entry of A */
  1242. e[k] = a[k + 1 + k * a_dim1];
  1243. e[k + 1] = 0.f;
  1244. a[k + 1 + k * a_dim1] = 0.f;
  1245. }
  1246. /* End column K is nonsingular */
  1247. }
  1248. /* Store details of the interchanges in IPIV */
  1249. if (kstep == 1) {
  1250. ipiv[k] = kp;
  1251. } else {
  1252. ipiv[k] = -p;
  1253. ipiv[k + 1] = -kp;
  1254. }
  1255. /* Increase K and return to the start of the main loop */
  1256. k += kstep;
  1257. goto L40;
  1258. L64:
  1259. ;
  1260. }
  1261. return;
  1262. /* End of SSYTF2_RK */
  1263. } /* ssytf2_rk__ */