|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static logical c_false = FALSE_;
- static integer c__2 = 2;
- static real c_b21 = 1.f;
- static real c_b25 = 0.f;
- static logical c_true = TRUE_;
-
- /* > \brief \b SLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
- of special form, in real arithmetic. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAQTR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqtr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqtr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqtr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
- /* INFO ) */
-
- /* LOGICAL LREAL, LTRAN */
- /* INTEGER INFO, LDT, N */
- /* REAL SCALE, W */
- /* REAL B( * ), T( LDT, * ), WORK( * ), X( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAQTR solves the real quasi-triangular system */
- /* > */
- /* > op(T)*p = scale*c, if LREAL = .TRUE. */
- /* > */
- /* > or the complex quasi-triangular systems */
- /* > */
- /* > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
- /* > */
- /* > in real arithmetic, where T is upper quasi-triangular. */
- /* > If LREAL = .FALSE., then the first diagonal block of T must be */
- /* > 1 by 1, B is the specially structured matrix */
- /* > */
- /* > B = [ b(1) b(2) ... b(n) ] */
- /* > [ w ] */
- /* > [ w ] */
- /* > [ . ] */
- /* > [ w ] */
- /* > */
- /* > op(A) = A or A**T, A**T denotes the transpose of */
- /* > matrix A. */
- /* > */
- /* > On input, X = [ c ]. On output, X = [ p ]. */
- /* > [ d ] [ q ] */
- /* > */
- /* > This subroutine is designed for the condition number estimation */
- /* > in routine STRSNA. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] LTRAN */
- /* > \verbatim */
- /* > LTRAN is LOGICAL */
- /* > On entry, LTRAN specifies the option of conjugate transpose: */
- /* > = .FALSE., op(T+i*B) = T+i*B, */
- /* > = .TRUE., op(T+i*B) = (T+i*B)**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LREAL */
- /* > \verbatim */
- /* > LREAL is LOGICAL */
- /* > On entry, LREAL specifies the input matrix structure: */
- /* > = .FALSE., the input is complex */
- /* > = .TRUE., the input is real */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > On entry, N specifies the order of T+i*B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] T */
- /* > \verbatim */
- /* > T is REAL array, dimension (LDT,N) */
- /* > On entry, T contains a matrix in Schur canonical form. */
- /* > If LREAL = .FALSE., then the first diagonal block of T must */
- /* > be 1 by 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (N) */
- /* > On entry, B contains the elements to form the matrix */
- /* > B as described above. */
- /* > If LREAL = .TRUE., B is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] W */
- /* > \verbatim */
- /* > W is REAL */
- /* > On entry, W is the diagonal element of the matrix B. */
- /* > If LREAL = .TRUE., W is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is REAL */
- /* > On exit, SCALE is the scale factor. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X */
- /* > \verbatim */
- /* > X is REAL array, dimension (2*N) */
- /* > On entry, X contains the right hand side of the system. */
- /* > On exit, X is overwritten by the solution. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > On exit, INFO is set to */
- /* > 0: successful exit. */
- /* > 1: the some diagonal 1 by 1 block has been perturbed by */
- /* > a small number SMIN to keep nonsingularity. */
- /* > 2: the some diagonal 2 by 2 block has been perturbed by */
- /* > a small number in SLALN2 to keep nonsingularity. */
- /* > NOTE: In the interests of speed, this routine does not */
- /* > check the inputs for errors. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void slaqtr_(logical *ltran, logical *lreal, integer *n, real
- *t, integer *ldt, real *b, real *w, real *scale, real *x, real *work,
- integer *info)
- {
- /* System generated locals */
- integer t_dim1, t_offset, i__1, i__2;
- real r__1, r__2, r__3, r__4, r__5, r__6;
-
- /* Local variables */
- integer ierr;
- real smin;
- extern real sdot_(integer *, real *, integer *, real *, integer *);
- real xmax, d__[4] /* was [2][2] */;
- integer i__, j, k;
- real v[4] /* was [2][2] */, z__;
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- integer jnext;
- extern real sasum_(integer *, real *, integer *);
- integer j1, j2;
- real sminw;
- integer n1, n2;
- real xnorm;
- extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
- real *, integer *), slaln2_(logical *, integer *, integer *, real
- *, real *, real *, integer *, real *, real *, real *, integer *,
- real *, real *, real *, integer *, real *, real *, integer *);
- real si, xj, scaloc, sr;
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- real bignum;
- extern integer isamax_(integer *, real *, integer *);
- extern /* Subroutine */ void sladiv_(real *, real *, real *, real *, real *
- , real *);
- logical notran;
- real smlnum, rec, eps, tjj, tmp;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Do not test the input parameters for errors */
-
- /* Parameter adjustments */
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- --b;
- --x;
- --work;
-
- /* Function Body */
- notran = ! (*ltran);
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Set constants to control overflow */
-
- eps = slamch_("P");
- smlnum = slamch_("S") / eps;
- bignum = 1.f / smlnum;
-
- xnorm = slange_("M", n, n, &t[t_offset], ldt, d__);
- if (! (*lreal)) {
- /* Computing MAX */
- r__1 = xnorm, r__2 = abs(*w), r__1 = f2cmax(r__1,r__2), r__2 = slange_(
- "M", n, &c__1, &b[1], n, d__);
- xnorm = f2cmax(r__1,r__2);
- }
- /* Computing MAX */
- r__1 = smlnum, r__2 = eps * xnorm;
- smin = f2cmax(r__1,r__2);
-
- /* Compute 1-norm of each column of strictly upper triangular */
- /* part of T to control overflow in triangular solver. */
-
- work[1] = 0.f;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- i__2 = j - 1;
- work[j] = sasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
- /* L10: */
- }
-
- if (! (*lreal)) {
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- work[i__] += (r__1 = b[i__], abs(r__1));
- /* L20: */
- }
- }
-
- n2 = *n << 1;
- n1 = *n;
- if (! (*lreal)) {
- n1 = n2;
- }
- k = isamax_(&n1, &x[1], &c__1);
- xmax = (r__1 = x[k], abs(r__1));
- *scale = 1.f;
-
- if (xmax > bignum) {
- *scale = bignum / xmax;
- sscal_(&n1, scale, &x[1], &c__1);
- xmax = bignum;
- }
-
- if (*lreal) {
-
- if (notran) {
-
- /* Solve T*p = scale*c */
-
- jnext = *n;
- for (j = *n; j >= 1; --j) {
- if (j > jnext) {
- goto L30;
- }
- j1 = j;
- j2 = j;
- jnext = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.f) {
- j1 = j - 1;
- jnext = j - 2;
- }
- }
-
- if (j1 == j2) {
-
- /* Meet 1 by 1 diagonal block */
-
- /* Scale to avoid overflow when computing */
- /* x(j) = b(j)/T(j,j) */
-
- xj = (r__1 = x[j1], abs(r__1));
- tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
- tmp = t[j1 + j1 * t_dim1];
- if (tjj < smin) {
- tmp = smin;
- tjj = smin;
- *info = 1;
- }
-
- if (xj == 0.f) {
- goto L30;
- }
-
- if (tjj < 1.f) {
- if (xj > bignum * tjj) {
- rec = 1.f / xj;
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- x[j1] /= tmp;
- xj = (r__1 = x[j1], abs(r__1));
-
- /* Scale x if necessary to avoid overflow when adding a */
- /* multiple of column j1 of T. */
-
- if (xj > 1.f) {
- rec = 1.f / xj;
- if (work[j1] > (bignum - xmax) * rec) {
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- }
- if (j1 > 1) {
- i__1 = j1 - 1;
- r__1 = -x[j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
- i__1 = j1 - 1;
- k = isamax_(&i__1, &x[1], &c__1);
- xmax = (r__1 = x[k], abs(r__1));
- }
-
- } else {
-
- /* Meet 2 by 2 diagonal block */
-
- /* Call 2 by 2 linear system solve, to take */
- /* care of possible overflow by scaling factor. */
-
- d__[0] = x[j1];
- d__[1] = x[j2];
- slaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
- * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
- c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 2;
- }
-
- if (scaloc != 1.f) {
- sscal_(n, &scaloc, &x[1], &c__1);
- *scale *= scaloc;
- }
- x[j1] = v[0];
- x[j2] = v[1];
-
- /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
- /* to avoid overflow in updating right-hand side. */
-
- /* Computing MAX */
- r__1 = abs(v[0]), r__2 = abs(v[1]);
- xj = f2cmax(r__1,r__2);
- if (xj > 1.f) {
- rec = 1.f / xj;
- /* Computing MAX */
- r__1 = work[j1], r__2 = work[j2];
- if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- }
-
- /* Update right-hand side */
-
- if (j1 > 1) {
- i__1 = j1 - 1;
- r__1 = -x[j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
- i__1 = j1 - 1;
- r__1 = -x[j2];
- saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
- i__1 = j1 - 1;
- k = isamax_(&i__1, &x[1], &c__1);
- xmax = (r__1 = x[k], abs(r__1));
- }
-
- }
-
- L30:
- ;
- }
-
- } else {
-
- /* Solve T**T*p = scale*c */
-
- jnext = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (j < jnext) {
- goto L40;
- }
- j1 = j;
- j2 = j;
- jnext = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.f) {
- j2 = j + 1;
- jnext = j + 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1 by 1 diagonal block */
-
- /* Scale if necessary to avoid overflow in forming the */
- /* right-hand side element by inner product. */
-
- xj = (r__1 = x[j1], abs(r__1));
- if (xmax > 1.f) {
- rec = 1.f / xmax;
- if (work[j1] > (bignum - xj) * rec) {
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- i__2 = j1 - 1;
- x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
- c__1);
-
- xj = (r__1 = x[j1], abs(r__1));
- tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
- tmp = t[j1 + j1 * t_dim1];
- if (tjj < smin) {
- tmp = smin;
- tjj = smin;
- *info = 1;
- }
-
- if (tjj < 1.f) {
- if (xj > bignum * tjj) {
- rec = 1.f / xj;
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- x[j1] /= tmp;
- /* Computing MAX */
- r__2 = xmax, r__3 = (r__1 = x[j1], abs(r__1));
- xmax = f2cmax(r__2,r__3);
-
- } else {
-
- /* 2 by 2 diagonal block */
-
- /* Scale if necessary to avoid overflow in forming the */
- /* right-hand side elements by inner product. */
-
- /* Computing MAX */
- r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
- abs(r__2));
- xj = f2cmax(r__3,r__4);
- if (xmax > 1.f) {
- rec = 1.f / xmax;
- /* Computing MAX */
- r__1 = work[j2], r__2 = work[j1];
- if (f2cmax(r__1,r__2) > (bignum - xj) * rec) {
- sscal_(n, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- i__2 = j1 - 1;
- d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
- &x[1], &c__1);
- i__2 = j1 - 1;
- d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
- &x[1], &c__1);
-
- slaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
- t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
- &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 2;
- }
-
- if (scaloc != 1.f) {
- sscal_(n, &scaloc, &x[1], &c__1);
- *scale *= scaloc;
- }
- x[j1] = v[0];
- x[j2] = v[1];
- /* Computing MAX */
- r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
- abs(r__2)), r__3 = f2cmax(r__3,r__4);
- xmax = f2cmax(r__3,xmax);
-
- }
- L40:
- ;
- }
- }
-
- } else {
-
- /* Computing MAX */
- r__1 = eps * abs(*w);
- sminw = f2cmax(r__1,smin);
- if (notran) {
-
- /* Solve (T + iB)*(p+iq) = c+id */
-
- jnext = *n;
- for (j = *n; j >= 1; --j) {
- if (j > jnext) {
- goto L70;
- }
- j1 = j;
- j2 = j;
- jnext = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.f) {
- j1 = j - 1;
- jnext = j - 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1 by 1 diagonal block */
-
- /* Scale if necessary to avoid overflow in division */
-
- z__ = *w;
- if (j1 == 1) {
- z__ = b[1];
- }
- xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
- r__2));
- tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
- tmp = t[j1 + j1 * t_dim1];
- if (tjj < sminw) {
- tmp = sminw;
- tjj = sminw;
- *info = 1;
- }
-
- if (xj == 0.f) {
- goto L70;
- }
-
- if (tjj < 1.f) {
- if (xj > bignum * tjj) {
- rec = 1.f / xj;
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- sladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
- x[j1] = sr;
- x[*n + j1] = si;
- xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
- r__2));
-
- /* Scale x if necessary to avoid overflow when adding a */
- /* multiple of column j1 of T. */
-
- if (xj > 1.f) {
- rec = 1.f / xj;
- if (work[j1] > (bignum - xmax) * rec) {
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- }
-
- if (j1 > 1) {
- i__1 = j1 - 1;
- r__1 = -x[j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
- i__1 = j1 - 1;
- r__1 = -x[*n + j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
- n + 1], &c__1);
-
- x[1] += b[j1] * x[*n + j1];
- x[*n + 1] -= b[j1] * x[j1];
-
- xmax = 0.f;
- i__1 = j1 - 1;
- for (k = 1; k <= i__1; ++k) {
- /* Computing MAX */
- r__3 = xmax, r__4 = (r__1 = x[k], abs(r__1)) + (
- r__2 = x[k + *n], abs(r__2));
- xmax = f2cmax(r__3,r__4);
- /* L50: */
- }
- }
-
- } else {
-
- /* Meet 2 by 2 diagonal block */
-
- d__[0] = x[j1];
- d__[1] = x[j2];
- d__[2] = x[*n + j1];
- d__[3] = x[*n + j2];
- r__1 = -(*w);
- slaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
- j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
- c_b25, &r__1, v, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 2;
- }
-
- if (scaloc != 1.f) {
- i__1 = *n << 1;
- sscal_(&i__1, &scaloc, &x[1], &c__1);
- *scale = scaloc * *scale;
- }
- x[j1] = v[0];
- x[j2] = v[1];
- x[*n + j1] = v[2];
- x[*n + j2] = v[3];
-
- /* Scale X(J1), .... to avoid overflow in */
- /* updating right hand side. */
-
- /* Computing MAX */
- r__1 = abs(v[0]) + abs(v[2]), r__2 = abs(v[1]) + abs(v[3])
- ;
- xj = f2cmax(r__1,r__2);
- if (xj > 1.f) {
- rec = 1.f / xj;
- /* Computing MAX */
- r__1 = work[j1], r__2 = work[j2];
- if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- }
- }
-
- /* Update the right-hand side. */
-
- if (j1 > 1) {
- i__1 = j1 - 1;
- r__1 = -x[j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
- i__1 = j1 - 1;
- r__1 = -x[j2];
- saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
- , &c__1);
-
- i__1 = j1 - 1;
- r__1 = -x[*n + j1];
- saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
- n + 1], &c__1);
- i__1 = j1 - 1;
- r__1 = -x[*n + j2];
- saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
- n + 1], &c__1);
-
- x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
- x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
-
- xmax = 0.f;
- i__1 = j1 - 1;
- for (k = 1; k <= i__1; ++k) {
- /* Computing MAX */
- r__3 = (r__1 = x[k], abs(r__1)) + (r__2 = x[k + *
- n], abs(r__2));
- xmax = f2cmax(r__3,xmax);
- /* L60: */
- }
- }
-
- }
- L70:
- ;
- }
-
- } else {
-
- /* Solve (T + iB)**T*(p+iq) = c+id */
-
- jnext = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (j < jnext) {
- goto L80;
- }
- j1 = j;
- j2 = j;
- jnext = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.f) {
- j2 = j + 1;
- jnext = j + 2;
- }
- }
-
- if (j1 == j2) {
-
- /* 1 by 1 diagonal block */
-
- /* Scale if necessary to avoid overflow in forming the */
- /* right-hand side element by inner product. */
-
- xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
- r__2));
- if (xmax > 1.f) {
- rec = 1.f / xmax;
- if (work[j1] > (bignum - xj) * rec) {
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- i__2 = j1 - 1;
- x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
- c__1);
- i__2 = j1 - 1;
- x[*n + j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
- *n + 1], &c__1);
- if (j1 > 1) {
- x[j1] -= b[j1] * x[*n + 1];
- x[*n + j1] += b[j1] * x[1];
- }
- xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
- r__2));
-
- z__ = *w;
- if (j1 == 1) {
- z__ = b[1];
- }
-
- /* Scale if necessary to avoid overflow in */
- /* complex division */
-
- tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
- tmp = t[j1 + j1 * t_dim1];
- if (tjj < sminw) {
- tmp = sminw;
- tjj = sminw;
- *info = 1;
- }
-
- if (tjj < 1.f) {
- if (xj > bignum * tjj) {
- rec = 1.f / xj;
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
- r__1 = -z__;
- sladiv_(&x[j1], &x[*n + j1], &tmp, &r__1, &sr, &si);
- x[j1] = sr;
- x[j1 + *n] = si;
- /* Computing MAX */
- r__3 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n],
- abs(r__2));
- xmax = f2cmax(r__3,xmax);
-
- } else {
-
- /* 2 by 2 diagonal block */
-
- /* Scale if necessary to avoid overflow in forming the */
- /* right-hand side element by inner product. */
-
- /* Computing MAX */
- r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
- abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
- r__4 = x[*n + j2], abs(r__4));
- xj = f2cmax(r__5,r__6);
- if (xmax > 1.f) {
- rec = 1.f / xmax;
- /* Computing MAX */
- r__1 = work[j1], r__2 = work[j2];
- if (f2cmax(r__1,r__2) > (bignum - xj) / xmax) {
- sscal_(&n2, &rec, &x[1], &c__1);
- *scale *= rec;
- xmax *= rec;
- }
- }
-
- i__2 = j1 - 1;
- d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
- &x[1], &c__1);
- i__2 = j1 - 1;
- d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
- &x[1], &c__1);
- i__2 = j1 - 1;
- d__[2] = x[*n + j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &
- c__1, &x[*n + 1], &c__1);
- i__2 = j1 - 1;
- d__[3] = x[*n + j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &
- c__1, &x[*n + 1], &c__1);
- d__[0] -= b[j1] * x[*n + 1];
- d__[1] -= b[j2] * x[*n + 1];
- d__[2] += b[j1] * x[1];
- d__[3] += b[j2] * x[1];
-
- slaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
- * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
- c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 2;
- }
-
- if (scaloc != 1.f) {
- sscal_(&n2, &scaloc, &x[1], &c__1);
- *scale = scaloc * *scale;
- }
- x[j1] = v[0];
- x[j2] = v[1];
- x[*n + j1] = v[2];
- x[*n + j2] = v[3];
- /* Computing MAX */
- r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
- abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
- r__4 = x[*n + j2], abs(r__4)), r__5 = f2cmax(r__5,
- r__6);
- xmax = f2cmax(r__5,xmax);
-
- }
-
- L80:
- ;
- }
-
- }
-
- }
-
- return;
-
- /* End of SLAQTR */
-
- } /* slaqtr_ */
-
|