You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqtr.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static logical c_false = FALSE_;
  486. static integer c__2 = 2;
  487. static real c_b21 = 1.f;
  488. static real c_b25 = 0.f;
  489. static logical c_true = TRUE_;
  490. /* > \brief \b SLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
  491. of special form, in real arithmetic. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SLAQTR + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqtr.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqtr.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqtr.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
  510. /* INFO ) */
  511. /* LOGICAL LREAL, LTRAN */
  512. /* INTEGER INFO, LDT, N */
  513. /* REAL SCALE, W */
  514. /* REAL B( * ), T( LDT, * ), WORK( * ), X( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SLAQTR solves the real quasi-triangular system */
  521. /* > */
  522. /* > op(T)*p = scale*c, if LREAL = .TRUE. */
  523. /* > */
  524. /* > or the complex quasi-triangular systems */
  525. /* > */
  526. /* > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
  527. /* > */
  528. /* > in real arithmetic, where T is upper quasi-triangular. */
  529. /* > If LREAL = .FALSE., then the first diagonal block of T must be */
  530. /* > 1 by 1, B is the specially structured matrix */
  531. /* > */
  532. /* > B = [ b(1) b(2) ... b(n) ] */
  533. /* > [ w ] */
  534. /* > [ w ] */
  535. /* > [ . ] */
  536. /* > [ w ] */
  537. /* > */
  538. /* > op(A) = A or A**T, A**T denotes the transpose of */
  539. /* > matrix A. */
  540. /* > */
  541. /* > On input, X = [ c ]. On output, X = [ p ]. */
  542. /* > [ d ] [ q ] */
  543. /* > */
  544. /* > This subroutine is designed for the condition number estimation */
  545. /* > in routine STRSNA. */
  546. /* > \endverbatim */
  547. /* Arguments: */
  548. /* ========== */
  549. /* > \param[in] LTRAN */
  550. /* > \verbatim */
  551. /* > LTRAN is LOGICAL */
  552. /* > On entry, LTRAN specifies the option of conjugate transpose: */
  553. /* > = .FALSE., op(T+i*B) = T+i*B, */
  554. /* > = .TRUE., op(T+i*B) = (T+i*B)**T. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] LREAL */
  558. /* > \verbatim */
  559. /* > LREAL is LOGICAL */
  560. /* > On entry, LREAL specifies the input matrix structure: */
  561. /* > = .FALSE., the input is complex */
  562. /* > = .TRUE., the input is real */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] N */
  566. /* > \verbatim */
  567. /* > N is INTEGER */
  568. /* > On entry, N specifies the order of T+i*B. N >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] T */
  572. /* > \verbatim */
  573. /* > T is REAL array, dimension (LDT,N) */
  574. /* > On entry, T contains a matrix in Schur canonical form. */
  575. /* > If LREAL = .FALSE., then the first diagonal block of T must */
  576. /* > be 1 by 1. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDT */
  580. /* > \verbatim */
  581. /* > LDT is INTEGER */
  582. /* > The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] B */
  586. /* > \verbatim */
  587. /* > B is REAL array, dimension (N) */
  588. /* > On entry, B contains the elements to form the matrix */
  589. /* > B as described above. */
  590. /* > If LREAL = .TRUE., B is not referenced. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] W */
  594. /* > \verbatim */
  595. /* > W is REAL */
  596. /* > On entry, W is the diagonal element of the matrix B. */
  597. /* > If LREAL = .TRUE., W is not referenced. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] SCALE */
  601. /* > \verbatim */
  602. /* > SCALE is REAL */
  603. /* > On exit, SCALE is the scale factor. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] X */
  607. /* > \verbatim */
  608. /* > X is REAL array, dimension (2*N) */
  609. /* > On entry, X contains the right hand side of the system. */
  610. /* > On exit, X is overwritten by the solution. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] WORK */
  614. /* > \verbatim */
  615. /* > WORK is REAL array, dimension (N) */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] INFO */
  619. /* > \verbatim */
  620. /* > INFO is INTEGER */
  621. /* > On exit, INFO is set to */
  622. /* > 0: successful exit. */
  623. /* > 1: the some diagonal 1 by 1 block has been perturbed by */
  624. /* > a small number SMIN to keep nonsingularity. */
  625. /* > 2: the some diagonal 2 by 2 block has been perturbed by */
  626. /* > a small number in SLALN2 to keep nonsingularity. */
  627. /* > NOTE: In the interests of speed, this routine does not */
  628. /* > check the inputs for errors. */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date December 2016 */
  637. /* > \ingroup realOTHERauxiliary */
  638. /* ===================================================================== */
  639. /* Subroutine */ void slaqtr_(logical *ltran, logical *lreal, integer *n, real
  640. *t, integer *ldt, real *b, real *w, real *scale, real *x, real *work,
  641. integer *info)
  642. {
  643. /* System generated locals */
  644. integer t_dim1, t_offset, i__1, i__2;
  645. real r__1, r__2, r__3, r__4, r__5, r__6;
  646. /* Local variables */
  647. integer ierr;
  648. real smin;
  649. extern real sdot_(integer *, real *, integer *, real *, integer *);
  650. real xmax, d__[4] /* was [2][2] */;
  651. integer i__, j, k;
  652. real v[4] /* was [2][2] */, z__;
  653. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  654. integer jnext;
  655. extern real sasum_(integer *, real *, integer *);
  656. integer j1, j2;
  657. real sminw;
  658. integer n1, n2;
  659. real xnorm;
  660. extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
  661. real *, integer *), slaln2_(logical *, integer *, integer *, real
  662. *, real *, real *, integer *, real *, real *, real *, integer *,
  663. real *, real *, real *, integer *, real *, real *, integer *);
  664. real si, xj, scaloc, sr;
  665. extern real slamch_(char *), slange_(char *, integer *, integer *,
  666. real *, integer *, real *);
  667. real bignum;
  668. extern integer isamax_(integer *, real *, integer *);
  669. extern /* Subroutine */ void sladiv_(real *, real *, real *, real *, real *
  670. , real *);
  671. logical notran;
  672. real smlnum, rec, eps, tjj, tmp;
  673. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  674. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  675. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  676. /* December 2016 */
  677. /* ===================================================================== */
  678. /* Do not test the input parameters for errors */
  679. /* Parameter adjustments */
  680. t_dim1 = *ldt;
  681. t_offset = 1 + t_dim1 * 1;
  682. t -= t_offset;
  683. --b;
  684. --x;
  685. --work;
  686. /* Function Body */
  687. notran = ! (*ltran);
  688. *info = 0;
  689. /* Quick return if possible */
  690. if (*n == 0) {
  691. return;
  692. }
  693. /* Set constants to control overflow */
  694. eps = slamch_("P");
  695. smlnum = slamch_("S") / eps;
  696. bignum = 1.f / smlnum;
  697. xnorm = slange_("M", n, n, &t[t_offset], ldt, d__);
  698. if (! (*lreal)) {
  699. /* Computing MAX */
  700. r__1 = xnorm, r__2 = abs(*w), r__1 = f2cmax(r__1,r__2), r__2 = slange_(
  701. "M", n, &c__1, &b[1], n, d__);
  702. xnorm = f2cmax(r__1,r__2);
  703. }
  704. /* Computing MAX */
  705. r__1 = smlnum, r__2 = eps * xnorm;
  706. smin = f2cmax(r__1,r__2);
  707. /* Compute 1-norm of each column of strictly upper triangular */
  708. /* part of T to control overflow in triangular solver. */
  709. work[1] = 0.f;
  710. i__1 = *n;
  711. for (j = 2; j <= i__1; ++j) {
  712. i__2 = j - 1;
  713. work[j] = sasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
  714. /* L10: */
  715. }
  716. if (! (*lreal)) {
  717. i__1 = *n;
  718. for (i__ = 2; i__ <= i__1; ++i__) {
  719. work[i__] += (r__1 = b[i__], abs(r__1));
  720. /* L20: */
  721. }
  722. }
  723. n2 = *n << 1;
  724. n1 = *n;
  725. if (! (*lreal)) {
  726. n1 = n2;
  727. }
  728. k = isamax_(&n1, &x[1], &c__1);
  729. xmax = (r__1 = x[k], abs(r__1));
  730. *scale = 1.f;
  731. if (xmax > bignum) {
  732. *scale = bignum / xmax;
  733. sscal_(&n1, scale, &x[1], &c__1);
  734. xmax = bignum;
  735. }
  736. if (*lreal) {
  737. if (notran) {
  738. /* Solve T*p = scale*c */
  739. jnext = *n;
  740. for (j = *n; j >= 1; --j) {
  741. if (j > jnext) {
  742. goto L30;
  743. }
  744. j1 = j;
  745. j2 = j;
  746. jnext = j - 1;
  747. if (j > 1) {
  748. if (t[j + (j - 1) * t_dim1] != 0.f) {
  749. j1 = j - 1;
  750. jnext = j - 2;
  751. }
  752. }
  753. if (j1 == j2) {
  754. /* Meet 1 by 1 diagonal block */
  755. /* Scale to avoid overflow when computing */
  756. /* x(j) = b(j)/T(j,j) */
  757. xj = (r__1 = x[j1], abs(r__1));
  758. tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
  759. tmp = t[j1 + j1 * t_dim1];
  760. if (tjj < smin) {
  761. tmp = smin;
  762. tjj = smin;
  763. *info = 1;
  764. }
  765. if (xj == 0.f) {
  766. goto L30;
  767. }
  768. if (tjj < 1.f) {
  769. if (xj > bignum * tjj) {
  770. rec = 1.f / xj;
  771. sscal_(n, &rec, &x[1], &c__1);
  772. *scale *= rec;
  773. xmax *= rec;
  774. }
  775. }
  776. x[j1] /= tmp;
  777. xj = (r__1 = x[j1], abs(r__1));
  778. /* Scale x if necessary to avoid overflow when adding a */
  779. /* multiple of column j1 of T. */
  780. if (xj > 1.f) {
  781. rec = 1.f / xj;
  782. if (work[j1] > (bignum - xmax) * rec) {
  783. sscal_(n, &rec, &x[1], &c__1);
  784. *scale *= rec;
  785. }
  786. }
  787. if (j1 > 1) {
  788. i__1 = j1 - 1;
  789. r__1 = -x[j1];
  790. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  791. , &c__1);
  792. i__1 = j1 - 1;
  793. k = isamax_(&i__1, &x[1], &c__1);
  794. xmax = (r__1 = x[k], abs(r__1));
  795. }
  796. } else {
  797. /* Meet 2 by 2 diagonal block */
  798. /* Call 2 by 2 linear system solve, to take */
  799. /* care of possible overflow by scaling factor. */
  800. d__[0] = x[j1];
  801. d__[1] = x[j2];
  802. slaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
  803. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  804. c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  805. if (ierr != 0) {
  806. *info = 2;
  807. }
  808. if (scaloc != 1.f) {
  809. sscal_(n, &scaloc, &x[1], &c__1);
  810. *scale *= scaloc;
  811. }
  812. x[j1] = v[0];
  813. x[j2] = v[1];
  814. /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
  815. /* to avoid overflow in updating right-hand side. */
  816. /* Computing MAX */
  817. r__1 = abs(v[0]), r__2 = abs(v[1]);
  818. xj = f2cmax(r__1,r__2);
  819. if (xj > 1.f) {
  820. rec = 1.f / xj;
  821. /* Computing MAX */
  822. r__1 = work[j1], r__2 = work[j2];
  823. if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
  824. sscal_(n, &rec, &x[1], &c__1);
  825. *scale *= rec;
  826. }
  827. }
  828. /* Update right-hand side */
  829. if (j1 > 1) {
  830. i__1 = j1 - 1;
  831. r__1 = -x[j1];
  832. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  833. , &c__1);
  834. i__1 = j1 - 1;
  835. r__1 = -x[j2];
  836. saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  837. , &c__1);
  838. i__1 = j1 - 1;
  839. k = isamax_(&i__1, &x[1], &c__1);
  840. xmax = (r__1 = x[k], abs(r__1));
  841. }
  842. }
  843. L30:
  844. ;
  845. }
  846. } else {
  847. /* Solve T**T*p = scale*c */
  848. jnext = 1;
  849. i__1 = *n;
  850. for (j = 1; j <= i__1; ++j) {
  851. if (j < jnext) {
  852. goto L40;
  853. }
  854. j1 = j;
  855. j2 = j;
  856. jnext = j + 1;
  857. if (j < *n) {
  858. if (t[j + 1 + j * t_dim1] != 0.f) {
  859. j2 = j + 1;
  860. jnext = j + 2;
  861. }
  862. }
  863. if (j1 == j2) {
  864. /* 1 by 1 diagonal block */
  865. /* Scale if necessary to avoid overflow in forming the */
  866. /* right-hand side element by inner product. */
  867. xj = (r__1 = x[j1], abs(r__1));
  868. if (xmax > 1.f) {
  869. rec = 1.f / xmax;
  870. if (work[j1] > (bignum - xj) * rec) {
  871. sscal_(n, &rec, &x[1], &c__1);
  872. *scale *= rec;
  873. xmax *= rec;
  874. }
  875. }
  876. i__2 = j1 - 1;
  877. x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  878. c__1);
  879. xj = (r__1 = x[j1], abs(r__1));
  880. tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1));
  881. tmp = t[j1 + j1 * t_dim1];
  882. if (tjj < smin) {
  883. tmp = smin;
  884. tjj = smin;
  885. *info = 1;
  886. }
  887. if (tjj < 1.f) {
  888. if (xj > bignum * tjj) {
  889. rec = 1.f / xj;
  890. sscal_(n, &rec, &x[1], &c__1);
  891. *scale *= rec;
  892. xmax *= rec;
  893. }
  894. }
  895. x[j1] /= tmp;
  896. /* Computing MAX */
  897. r__2 = xmax, r__3 = (r__1 = x[j1], abs(r__1));
  898. xmax = f2cmax(r__2,r__3);
  899. } else {
  900. /* 2 by 2 diagonal block */
  901. /* Scale if necessary to avoid overflow in forming the */
  902. /* right-hand side elements by inner product. */
  903. /* Computing MAX */
  904. r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
  905. abs(r__2));
  906. xj = f2cmax(r__3,r__4);
  907. if (xmax > 1.f) {
  908. rec = 1.f / xmax;
  909. /* Computing MAX */
  910. r__1 = work[j2], r__2 = work[j1];
  911. if (f2cmax(r__1,r__2) > (bignum - xj) * rec) {
  912. sscal_(n, &rec, &x[1], &c__1);
  913. *scale *= rec;
  914. xmax *= rec;
  915. }
  916. }
  917. i__2 = j1 - 1;
  918. d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  919. &x[1], &c__1);
  920. i__2 = j1 - 1;
  921. d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  922. &x[1], &c__1);
  923. slaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
  924. t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
  925. &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  926. if (ierr != 0) {
  927. *info = 2;
  928. }
  929. if (scaloc != 1.f) {
  930. sscal_(n, &scaloc, &x[1], &c__1);
  931. *scale *= scaloc;
  932. }
  933. x[j1] = v[0];
  934. x[j2] = v[1];
  935. /* Computing MAX */
  936. r__3 = (r__1 = x[j1], abs(r__1)), r__4 = (r__2 = x[j2],
  937. abs(r__2)), r__3 = f2cmax(r__3,r__4);
  938. xmax = f2cmax(r__3,xmax);
  939. }
  940. L40:
  941. ;
  942. }
  943. }
  944. } else {
  945. /* Computing MAX */
  946. r__1 = eps * abs(*w);
  947. sminw = f2cmax(r__1,smin);
  948. if (notran) {
  949. /* Solve (T + iB)*(p+iq) = c+id */
  950. jnext = *n;
  951. for (j = *n; j >= 1; --j) {
  952. if (j > jnext) {
  953. goto L70;
  954. }
  955. j1 = j;
  956. j2 = j;
  957. jnext = j - 1;
  958. if (j > 1) {
  959. if (t[j + (j - 1) * t_dim1] != 0.f) {
  960. j1 = j - 1;
  961. jnext = j - 2;
  962. }
  963. }
  964. if (j1 == j2) {
  965. /* 1 by 1 diagonal block */
  966. /* Scale if necessary to avoid overflow in division */
  967. z__ = *w;
  968. if (j1 == 1) {
  969. z__ = b[1];
  970. }
  971. xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
  972. r__2));
  973. tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
  974. tmp = t[j1 + j1 * t_dim1];
  975. if (tjj < sminw) {
  976. tmp = sminw;
  977. tjj = sminw;
  978. *info = 1;
  979. }
  980. if (xj == 0.f) {
  981. goto L70;
  982. }
  983. if (tjj < 1.f) {
  984. if (xj > bignum * tjj) {
  985. rec = 1.f / xj;
  986. sscal_(&n2, &rec, &x[1], &c__1);
  987. *scale *= rec;
  988. xmax *= rec;
  989. }
  990. }
  991. sladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
  992. x[j1] = sr;
  993. x[*n + j1] = si;
  994. xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1], abs(
  995. r__2));
  996. /* Scale x if necessary to avoid overflow when adding a */
  997. /* multiple of column j1 of T. */
  998. if (xj > 1.f) {
  999. rec = 1.f / xj;
  1000. if (work[j1] > (bignum - xmax) * rec) {
  1001. sscal_(&n2, &rec, &x[1], &c__1);
  1002. *scale *= rec;
  1003. }
  1004. }
  1005. if (j1 > 1) {
  1006. i__1 = j1 - 1;
  1007. r__1 = -x[j1];
  1008. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1009. , &c__1);
  1010. i__1 = j1 - 1;
  1011. r__1 = -x[*n + j1];
  1012. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1013. n + 1], &c__1);
  1014. x[1] += b[j1] * x[*n + j1];
  1015. x[*n + 1] -= b[j1] * x[j1];
  1016. xmax = 0.f;
  1017. i__1 = j1 - 1;
  1018. for (k = 1; k <= i__1; ++k) {
  1019. /* Computing MAX */
  1020. r__3 = xmax, r__4 = (r__1 = x[k], abs(r__1)) + (
  1021. r__2 = x[k + *n], abs(r__2));
  1022. xmax = f2cmax(r__3,r__4);
  1023. /* L50: */
  1024. }
  1025. }
  1026. } else {
  1027. /* Meet 2 by 2 diagonal block */
  1028. d__[0] = x[j1];
  1029. d__[1] = x[j2];
  1030. d__[2] = x[*n + j1];
  1031. d__[3] = x[*n + j2];
  1032. r__1 = -(*w);
  1033. slaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
  1034. j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1035. c_b25, &r__1, v, &c__2, &scaloc, &xnorm, &ierr);
  1036. if (ierr != 0) {
  1037. *info = 2;
  1038. }
  1039. if (scaloc != 1.f) {
  1040. i__1 = *n << 1;
  1041. sscal_(&i__1, &scaloc, &x[1], &c__1);
  1042. *scale = scaloc * *scale;
  1043. }
  1044. x[j1] = v[0];
  1045. x[j2] = v[1];
  1046. x[*n + j1] = v[2];
  1047. x[*n + j2] = v[3];
  1048. /* Scale X(J1), .... to avoid overflow in */
  1049. /* updating right hand side. */
  1050. /* Computing MAX */
  1051. r__1 = abs(v[0]) + abs(v[2]), r__2 = abs(v[1]) + abs(v[3])
  1052. ;
  1053. xj = f2cmax(r__1,r__2);
  1054. if (xj > 1.f) {
  1055. rec = 1.f / xj;
  1056. /* Computing MAX */
  1057. r__1 = work[j1], r__2 = work[j2];
  1058. if (f2cmax(r__1,r__2) > (bignum - xmax) * rec) {
  1059. sscal_(&n2, &rec, &x[1], &c__1);
  1060. *scale *= rec;
  1061. }
  1062. }
  1063. /* Update the right-hand side. */
  1064. if (j1 > 1) {
  1065. i__1 = j1 - 1;
  1066. r__1 = -x[j1];
  1067. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1068. , &c__1);
  1069. i__1 = j1 - 1;
  1070. r__1 = -x[j2];
  1071. saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  1072. , &c__1);
  1073. i__1 = j1 - 1;
  1074. r__1 = -x[*n + j1];
  1075. saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1076. n + 1], &c__1);
  1077. i__1 = j1 - 1;
  1078. r__1 = -x[*n + j2];
  1079. saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
  1080. n + 1], &c__1);
  1081. x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
  1082. x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
  1083. xmax = 0.f;
  1084. i__1 = j1 - 1;
  1085. for (k = 1; k <= i__1; ++k) {
  1086. /* Computing MAX */
  1087. r__3 = (r__1 = x[k], abs(r__1)) + (r__2 = x[k + *
  1088. n], abs(r__2));
  1089. xmax = f2cmax(r__3,xmax);
  1090. /* L60: */
  1091. }
  1092. }
  1093. }
  1094. L70:
  1095. ;
  1096. }
  1097. } else {
  1098. /* Solve (T + iB)**T*(p+iq) = c+id */
  1099. jnext = 1;
  1100. i__1 = *n;
  1101. for (j = 1; j <= i__1; ++j) {
  1102. if (j < jnext) {
  1103. goto L80;
  1104. }
  1105. j1 = j;
  1106. j2 = j;
  1107. jnext = j + 1;
  1108. if (j < *n) {
  1109. if (t[j + 1 + j * t_dim1] != 0.f) {
  1110. j2 = j + 1;
  1111. jnext = j + 2;
  1112. }
  1113. }
  1114. if (j1 == j2) {
  1115. /* 1 by 1 diagonal block */
  1116. /* Scale if necessary to avoid overflow in forming the */
  1117. /* right-hand side element by inner product. */
  1118. xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
  1119. r__2));
  1120. if (xmax > 1.f) {
  1121. rec = 1.f / xmax;
  1122. if (work[j1] > (bignum - xj) * rec) {
  1123. sscal_(&n2, &rec, &x[1], &c__1);
  1124. *scale *= rec;
  1125. xmax *= rec;
  1126. }
  1127. }
  1128. i__2 = j1 - 1;
  1129. x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  1130. c__1);
  1131. i__2 = j1 - 1;
  1132. x[*n + j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
  1133. *n + 1], &c__1);
  1134. if (j1 > 1) {
  1135. x[j1] -= b[j1] * x[*n + 1];
  1136. x[*n + j1] += b[j1] * x[1];
  1137. }
  1138. xj = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n], abs(
  1139. r__2));
  1140. z__ = *w;
  1141. if (j1 == 1) {
  1142. z__ = b[1];
  1143. }
  1144. /* Scale if necessary to avoid overflow in */
  1145. /* complex division */
  1146. tjj = (r__1 = t[j1 + j1 * t_dim1], abs(r__1)) + abs(z__);
  1147. tmp = t[j1 + j1 * t_dim1];
  1148. if (tjj < sminw) {
  1149. tmp = sminw;
  1150. tjj = sminw;
  1151. *info = 1;
  1152. }
  1153. if (tjj < 1.f) {
  1154. if (xj > bignum * tjj) {
  1155. rec = 1.f / xj;
  1156. sscal_(&n2, &rec, &x[1], &c__1);
  1157. *scale *= rec;
  1158. xmax *= rec;
  1159. }
  1160. }
  1161. r__1 = -z__;
  1162. sladiv_(&x[j1], &x[*n + j1], &tmp, &r__1, &sr, &si);
  1163. x[j1] = sr;
  1164. x[j1 + *n] = si;
  1165. /* Computing MAX */
  1166. r__3 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[j1 + *n],
  1167. abs(r__2));
  1168. xmax = f2cmax(r__3,xmax);
  1169. } else {
  1170. /* 2 by 2 diagonal block */
  1171. /* Scale if necessary to avoid overflow in forming the */
  1172. /* right-hand side element by inner product. */
  1173. /* Computing MAX */
  1174. r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
  1175. abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
  1176. r__4 = x[*n + j2], abs(r__4));
  1177. xj = f2cmax(r__5,r__6);
  1178. if (xmax > 1.f) {
  1179. rec = 1.f / xmax;
  1180. /* Computing MAX */
  1181. r__1 = work[j1], r__2 = work[j2];
  1182. if (f2cmax(r__1,r__2) > (bignum - xj) / xmax) {
  1183. sscal_(&n2, &rec, &x[1], &c__1);
  1184. *scale *= rec;
  1185. xmax *= rec;
  1186. }
  1187. }
  1188. i__2 = j1 - 1;
  1189. d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  1190. &x[1], &c__1);
  1191. i__2 = j1 - 1;
  1192. d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  1193. &x[1], &c__1);
  1194. i__2 = j1 - 1;
  1195. d__[2] = x[*n + j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &
  1196. c__1, &x[*n + 1], &c__1);
  1197. i__2 = j1 - 1;
  1198. d__[3] = x[*n + j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &
  1199. c__1, &x[*n + 1], &c__1);
  1200. d__[0] -= b[j1] * x[*n + 1];
  1201. d__[1] -= b[j2] * x[*n + 1];
  1202. d__[2] += b[j1] * x[1];
  1203. d__[3] += b[j2] * x[1];
  1204. slaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
  1205. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1206. c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
  1207. if (ierr != 0) {
  1208. *info = 2;
  1209. }
  1210. if (scaloc != 1.f) {
  1211. sscal_(&n2, &scaloc, &x[1], &c__1);
  1212. *scale = scaloc * *scale;
  1213. }
  1214. x[j1] = v[0];
  1215. x[j2] = v[1];
  1216. x[*n + j1] = v[2];
  1217. x[*n + j2] = v[3];
  1218. /* Computing MAX */
  1219. r__5 = (r__1 = x[j1], abs(r__1)) + (r__2 = x[*n + j1],
  1220. abs(r__2)), r__6 = (r__3 = x[j2], abs(r__3)) + (
  1221. r__4 = x[*n + j2], abs(r__4)), r__5 = f2cmax(r__5,
  1222. r__6);
  1223. xmax = f2cmax(r__5,xmax);
  1224. }
  1225. L80:
  1226. ;
  1227. }
  1228. }
  1229. }
  1230. return;
  1231. /* End of SLAQTR */
  1232. } /* slaqtr_ */