You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dppsvx.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief <b> DPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DPPSVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dppsvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dppsvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dppsvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, */
  504. /* X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO ) */
  505. /* CHARACTER EQUED, FACT, UPLO */
  506. /* INTEGER INFO, LDB, LDX, N, NRHS */
  507. /* DOUBLE PRECISION RCOND */
  508. /* INTEGER IWORK( * ) */
  509. /* DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ), */
  510. /* $ FERR( * ), S( * ), WORK( * ), X( LDX, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
  517. /* > compute the solution to a real system of linear equations */
  518. /* > A * X = B, */
  519. /* > where A is an N-by-N symmetric positive definite matrix stored in */
  520. /* > packed format and X and B are N-by-NRHS matrices. */
  521. /* > */
  522. /* > Error bounds on the solution and a condition estimate are also */
  523. /* > provided. */
  524. /* > \endverbatim */
  525. /* > \par Description: */
  526. /* ================= */
  527. /* > */
  528. /* > \verbatim */
  529. /* > */
  530. /* > The following steps are performed: */
  531. /* > */
  532. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  533. /* > the system: */
  534. /* > diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
  535. /* > Whether or not the system will be equilibrated depends on the */
  536. /* > scaling of the matrix A, but if equilibration is used, A is */
  537. /* > overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
  538. /* > */
  539. /* > 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
  540. /* > factor the matrix A (after equilibration if FACT = 'E') as */
  541. /* > A = U**T* U, if UPLO = 'U', or */
  542. /* > A = L * L**T, if UPLO = 'L', */
  543. /* > where U is an upper triangular matrix and L is a lower triangular */
  544. /* > matrix. */
  545. /* > */
  546. /* > 3. If the leading i-by-i principal minor is not positive definite, */
  547. /* > then the routine returns with INFO = i. Otherwise, the factored */
  548. /* > form of A is used to estimate the condition number of the matrix */
  549. /* > A. If the reciprocal of the condition number is less than machine */
  550. /* > precision, INFO = N+1 is returned as a warning, but the routine */
  551. /* > still goes on to solve for X and compute error bounds as */
  552. /* > described below. */
  553. /* > */
  554. /* > 4. The system of equations is solved for X using the factored form */
  555. /* > of A. */
  556. /* > */
  557. /* > 5. Iterative refinement is applied to improve the computed solution */
  558. /* > matrix and calculate error bounds and backward error estimates */
  559. /* > for it. */
  560. /* > */
  561. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  562. /* > diag(S) so that it solves the original system before */
  563. /* > equilibration. */
  564. /* > \endverbatim */
  565. /* Arguments: */
  566. /* ========== */
  567. /* > \param[in] FACT */
  568. /* > \verbatim */
  569. /* > FACT is CHARACTER*1 */
  570. /* > Specifies whether or not the factored form of the matrix A is */
  571. /* > supplied on entry, and if not, whether the matrix A should be */
  572. /* > equilibrated before it is factored. */
  573. /* > = 'F': On entry, AFP contains the factored form of A. */
  574. /* > If EQUED = 'Y', the matrix A has been equilibrated */
  575. /* > with scaling factors given by S. AP and AFP will not */
  576. /* > be modified. */
  577. /* > = 'N': The matrix A will be copied to AFP and factored. */
  578. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  579. /* > copied to AFP and factored. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] UPLO */
  583. /* > \verbatim */
  584. /* > UPLO is CHARACTER*1 */
  585. /* > = 'U': Upper triangle of A is stored; */
  586. /* > = 'L': Lower triangle of A is stored. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] N */
  590. /* > \verbatim */
  591. /* > N is INTEGER */
  592. /* > The number of linear equations, i.e., the order of the */
  593. /* > matrix A. N >= 0. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] NRHS */
  597. /* > \verbatim */
  598. /* > NRHS is INTEGER */
  599. /* > The number of right hand sides, i.e., the number of columns */
  600. /* > of the matrices B and X. NRHS >= 0. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] AP */
  604. /* > \verbatim */
  605. /* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
  606. /* > On entry, the upper or lower triangle of the symmetric matrix */
  607. /* > A, packed columnwise in a linear array, except if FACT = 'F' */
  608. /* > and EQUED = 'Y', then A must contain the equilibrated matrix */
  609. /* > diag(S)*A*diag(S). The j-th column of A is stored in the */
  610. /* > array AP as follows: */
  611. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  612. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  613. /* > See below for further details. A is not modified if */
  614. /* > FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
  615. /* > */
  616. /* > On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
  617. /* > diag(S)*A*diag(S). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] AFP */
  621. /* > \verbatim */
  622. /* > AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
  623. /* > If FACT = 'F', then AFP is an input argument and on entry */
  624. /* > contains the triangular factor U or L from the Cholesky */
  625. /* > factorization A = U**T*U or A = L*L**T, in the same storage */
  626. /* > format as A. If EQUED .ne. 'N', then AFP is the factored */
  627. /* > form of the equilibrated matrix A. */
  628. /* > */
  629. /* > If FACT = 'N', then AFP is an output argument and on exit */
  630. /* > returns the triangular factor U or L from the Cholesky */
  631. /* > factorization A = U**T * U or A = L * L**T of the original */
  632. /* > matrix A. */
  633. /* > */
  634. /* > If FACT = 'E', then AFP is an output argument and on exit */
  635. /* > returns the triangular factor U or L from the Cholesky */
  636. /* > factorization A = U**T * U or A = L * L**T of the equilibrated */
  637. /* > matrix A (see the description of AP for the form of the */
  638. /* > equilibrated matrix). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in,out] EQUED */
  642. /* > \verbatim */
  643. /* > EQUED is CHARACTER*1 */
  644. /* > Specifies the form of equilibration that was done. */
  645. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  646. /* > = 'Y': Equilibration was done, i.e., A has been replaced by */
  647. /* > diag(S) * A * diag(S). */
  648. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  649. /* > output argument. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in,out] S */
  653. /* > \verbatim */
  654. /* > S is DOUBLE PRECISION array, dimension (N) */
  655. /* > The scale factors for A; not accessed if EQUED = 'N'. S is */
  656. /* > an input argument if FACT = 'F'; otherwise, S is an output */
  657. /* > argument. If FACT = 'F' and EQUED = 'Y', each element of S */
  658. /* > must be positive. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in,out] B */
  662. /* > \verbatim */
  663. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  664. /* > On entry, the N-by-NRHS right hand side matrix B. */
  665. /* > On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
  666. /* > B is overwritten by diag(S) * B. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] LDB */
  670. /* > \verbatim */
  671. /* > LDB is INTEGER */
  672. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] X */
  676. /* > \verbatim */
  677. /* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
  678. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
  679. /* > the original system of equations. Note that if EQUED = 'Y', */
  680. /* > A and B are modified on exit, and the solution to the */
  681. /* > equilibrated system is inv(diag(S))*X. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in] LDX */
  685. /* > \verbatim */
  686. /* > LDX is INTEGER */
  687. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[out] RCOND */
  691. /* > \verbatim */
  692. /* > RCOND is DOUBLE PRECISION */
  693. /* > The estimate of the reciprocal condition number of the matrix */
  694. /* > A after equilibration (if done). If RCOND is less than the */
  695. /* > machine precision (in particular, if RCOND = 0), the matrix */
  696. /* > is singular to working precision. This condition is */
  697. /* > indicated by a return code of INFO > 0. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[out] FERR */
  701. /* > \verbatim */
  702. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  703. /* > The estimated forward error bound for each solution vector */
  704. /* > X(j) (the j-th column of the solution matrix X). */
  705. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  706. /* > is an estimated upper bound for the magnitude of the largest */
  707. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  708. /* > largest element in X(j). The estimate is as reliable as */
  709. /* > the estimate for RCOND, and is almost always a slight */
  710. /* > overestimate of the true error. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] BERR */
  714. /* > \verbatim */
  715. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  716. /* > The componentwise relative backward error of each solution */
  717. /* > vector X(j) (i.e., the smallest relative change in */
  718. /* > any element of A or B that makes X(j) an exact solution). */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] WORK */
  722. /* > \verbatim */
  723. /* > WORK is DOUBLE PRECISION array, dimension (3*N) */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[out] IWORK */
  727. /* > \verbatim */
  728. /* > IWORK is INTEGER array, dimension (N) */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[out] INFO */
  732. /* > \verbatim */
  733. /* > INFO is INTEGER */
  734. /* > = 0: successful exit */
  735. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  736. /* > > 0: if INFO = i, and i is */
  737. /* > <= N: the leading minor of order i of A is */
  738. /* > not positive definite, so the factorization */
  739. /* > could not be completed, and the solution has not */
  740. /* > been computed. RCOND = 0 is returned. */
  741. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  742. /* > precision, meaning that the matrix is singular */
  743. /* > to working precision. Nevertheless, the */
  744. /* > solution and error bounds are computed because */
  745. /* > there are a number of situations where the */
  746. /* > computed solution can be more accurate than the */
  747. /* > value of RCOND would suggest. */
  748. /* > \endverbatim */
  749. /* Authors: */
  750. /* ======== */
  751. /* > \author Univ. of Tennessee */
  752. /* > \author Univ. of California Berkeley */
  753. /* > \author Univ. of Colorado Denver */
  754. /* > \author NAG Ltd. */
  755. /* > \date April 2012 */
  756. /* > \ingroup doubleOTHERsolve */
  757. /* > \par Further Details: */
  758. /* ===================== */
  759. /* > */
  760. /* > \verbatim */
  761. /* > */
  762. /* > The packed storage scheme is illustrated by the following example */
  763. /* > when N = 4, UPLO = 'U': */
  764. /* > */
  765. /* > Two-dimensional storage of the symmetric matrix A: */
  766. /* > */
  767. /* > a11 a12 a13 a14 */
  768. /* > a22 a23 a24 */
  769. /* > a33 a34 (aij = conjg(aji)) */
  770. /* > a44 */
  771. /* > */
  772. /* > Packed storage of the upper triangle of A: */
  773. /* > */
  774. /* > AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
  775. /* > \endverbatim */
  776. /* > */
  777. /* ===================================================================== */
  778. /* Subroutine */ void dppsvx_(char *fact, char *uplo, integer *n, integer *
  779. nrhs, doublereal *ap, doublereal *afp, char *equed, doublereal *s,
  780. doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
  781. rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
  782. iwork, integer *info)
  783. {
  784. /* System generated locals */
  785. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
  786. doublereal d__1, d__2;
  787. /* Local variables */
  788. doublereal amax, smin, smax;
  789. integer i__, j;
  790. extern logical lsame_(char *, char *);
  791. doublereal scond, anorm;
  792. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  793. doublereal *, integer *);
  794. logical equil, rcequ;
  795. extern doublereal dlamch_(char *);
  796. logical nofact;
  797. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  798. doublereal *, integer *, doublereal *, integer *);
  799. extern int xerbla_(char *, integer *, ftnlen);
  800. doublereal bignum;
  801. extern doublereal dlansp_(char *, char *, integer *, doublereal *,
  802. doublereal *);
  803. extern /* Subroutine */ void dppcon_(char *, integer *, doublereal *,
  804. doublereal *, doublereal *, doublereal *, integer *, integer *), dlaqsp_(char *, integer *, doublereal *, doublereal *,
  805. doublereal *, doublereal *, char *);
  806. integer infequ;
  807. extern /* Subroutine */ void dppequ_(char *, integer *, doublereal *,
  808. doublereal *, doublereal *, doublereal *, integer *),
  809. dpprfs_(char *, integer *, integer *, doublereal *, doublereal *,
  810. doublereal *, integer *, doublereal *, integer *, doublereal *,
  811. doublereal *, doublereal *, integer *, integer *),
  812. dpptrf_(char *, integer *, doublereal *, integer *);
  813. doublereal smlnum;
  814. extern /* Subroutine */ void dpptrs_(char *, integer *, integer *,
  815. doublereal *, doublereal *, integer *, integer *);
  816. /* -- LAPACK driver routine (version 3.7.1) -- */
  817. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  818. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  819. /* April 2012 */
  820. /* ===================================================================== */
  821. /* Parameter adjustments */
  822. --ap;
  823. --afp;
  824. --s;
  825. b_dim1 = *ldb;
  826. b_offset = 1 + b_dim1 * 1;
  827. b -= b_offset;
  828. x_dim1 = *ldx;
  829. x_offset = 1 + x_dim1 * 1;
  830. x -= x_offset;
  831. --ferr;
  832. --berr;
  833. --work;
  834. --iwork;
  835. /* Function Body */
  836. *info = 0;
  837. nofact = lsame_(fact, "N");
  838. equil = lsame_(fact, "E");
  839. if (nofact || equil) {
  840. *(unsigned char *)equed = 'N';
  841. rcequ = FALSE_;
  842. } else {
  843. rcequ = lsame_(equed, "Y");
  844. smlnum = dlamch_("Safe minimum");
  845. bignum = 1. / smlnum;
  846. }
  847. /* Test the input parameters. */
  848. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  849. *info = -1;
  850. } else if (! lsame_(uplo, "U") && ! lsame_(uplo,
  851. "L")) {
  852. *info = -2;
  853. } else if (*n < 0) {
  854. *info = -3;
  855. } else if (*nrhs < 0) {
  856. *info = -4;
  857. } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
  858. equed, "N"))) {
  859. *info = -7;
  860. } else {
  861. if (rcequ) {
  862. smin = bignum;
  863. smax = 0.;
  864. i__1 = *n;
  865. for (j = 1; j <= i__1; ++j) {
  866. /* Computing MIN */
  867. d__1 = smin, d__2 = s[j];
  868. smin = f2cmin(d__1,d__2);
  869. /* Computing MAX */
  870. d__1 = smax, d__2 = s[j];
  871. smax = f2cmax(d__1,d__2);
  872. /* L10: */
  873. }
  874. if (smin <= 0.) {
  875. *info = -8;
  876. } else if (*n > 0) {
  877. scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
  878. } else {
  879. scond = 1.;
  880. }
  881. }
  882. if (*info == 0) {
  883. if (*ldb < f2cmax(1,*n)) {
  884. *info = -10;
  885. } else if (*ldx < f2cmax(1,*n)) {
  886. *info = -12;
  887. }
  888. }
  889. }
  890. if (*info != 0) {
  891. i__1 = -(*info);
  892. xerbla_("DPPSVX", &i__1, (ftnlen)6);
  893. return;
  894. }
  895. if (equil) {
  896. /* Compute row and column scalings to equilibrate the matrix A. */
  897. dppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
  898. if (infequ == 0) {
  899. /* Equilibrate the matrix. */
  900. dlaqsp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
  901. rcequ = lsame_(equed, "Y");
  902. }
  903. }
  904. /* Scale the right-hand side. */
  905. if (rcequ) {
  906. i__1 = *nrhs;
  907. for (j = 1; j <= i__1; ++j) {
  908. i__2 = *n;
  909. for (i__ = 1; i__ <= i__2; ++i__) {
  910. b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
  911. /* L20: */
  912. }
  913. /* L30: */
  914. }
  915. }
  916. if (nofact || equil) {
  917. /* Compute the Cholesky factorization A = U**T * U or A = L * L**T. */
  918. i__1 = *n * (*n + 1) / 2;
  919. dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
  920. dpptrf_(uplo, n, &afp[1], info);
  921. /* Return if INFO is non-zero. */
  922. if (*info > 0) {
  923. *rcond = 0.;
  924. return;
  925. }
  926. }
  927. /* Compute the norm of the matrix A. */
  928. anorm = dlansp_("I", uplo, n, &ap[1], &work[1]);
  929. /* Compute the reciprocal of the condition number of A. */
  930. dppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &iwork[1], info);
  931. /* Compute the solution matrix X. */
  932. dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  933. dpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);
  934. /* Use iterative refinement to improve the computed solution and */
  935. /* compute error bounds and backward error estimates for it. */
  936. dpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset],
  937. ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);
  938. /* Transform the solution matrix X to a solution of the original */
  939. /* system. */
  940. if (rcequ) {
  941. i__1 = *nrhs;
  942. for (j = 1; j <= i__1; ++j) {
  943. i__2 = *n;
  944. for (i__ = 1; i__ <= i__2; ++i__) {
  945. x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
  946. /* L40: */
  947. }
  948. /* L50: */
  949. }
  950. i__1 = *nrhs;
  951. for (j = 1; j <= i__1; ++j) {
  952. ferr[j] /= scond;
  953. /* L60: */
  954. }
  955. }
  956. /* Set INFO = N+1 if the matrix is singular to working precision. */
  957. if (*rcond < dlamch_("Epsilon")) {
  958. *info = *n + 1;
  959. }
  960. return;
  961. /* End of DPPSVX */
  962. } /* dppsvx_ */