You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgsvj0.c 48 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static doublereal c_b42 = 1.;
  489. /* > \brief \b DGSVJ0 pre-processor for the routine dgesvj. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DGSVJ0 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj0.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj0.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj0.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
  508. /* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  509. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
  510. /* DOUBLE PRECISION EPS, SFMIN, TOL */
  511. /* CHARACTER*1 JOBV */
  512. /* DOUBLE PRECISION A( LDA, * ), SVA( N ), D( N ), V( LDV, * ), */
  513. /* $ WORK( LWORK ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DGSVJ0 is called from DGESVJ as a pre-processor and that is its main */
  520. /* > purpose. It applies Jacobi rotations in the same way as DGESVJ does, but */
  521. /* > it does not check convergence (stopping criterion). Few tuning */
  522. /* > parameters (marked by [TP]) are available for the implementer. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBV */
  527. /* > \verbatim */
  528. /* > JOBV is CHARACTER*1 */
  529. /* > Specifies whether the output from this procedure is used */
  530. /* > to compute the matrix V: */
  531. /* > = 'V': the product of the Jacobi rotations is accumulated */
  532. /* > by postmulyiplying the N-by-N array V. */
  533. /* > (See the description of V.) */
  534. /* > = 'A': the product of the Jacobi rotations is accumulated */
  535. /* > by postmulyiplying the MV-by-N array V. */
  536. /* > (See the descriptions of MV and V.) */
  537. /* > = 'N': the Jacobi rotations are not accumulated. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the input matrix A. M >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The number of columns of the input matrix A. */
  550. /* > M >= N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] A */
  554. /* > \verbatim */
  555. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  556. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  557. /* > the input matrix. */
  558. /* > On exit, */
  559. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  560. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  561. /* > rotation threshold and the total number of sweeps are given in */
  562. /* > TOL and NSWEEP, respectively. */
  563. /* > (See the descriptions of D, TOL and NSWEEP.) */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] D */
  573. /* > \verbatim */
  574. /* > D is DOUBLE PRECISION array, dimension (N) */
  575. /* > The array D accumulates the scaling factors from the fast scaled */
  576. /* > Jacobi rotations. */
  577. /* > On entry, A*diag(D) represents the input matrix. */
  578. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  579. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  580. /* > rotation threshold and the total number of sweeps are given in */
  581. /* > TOL and NSWEEP, respectively. */
  582. /* > (See the descriptions of A, TOL and NSWEEP.) */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] SVA */
  586. /* > \verbatim */
  587. /* > SVA is DOUBLE PRECISION array, dimension (N) */
  588. /* > On entry, SVA contains the Euclidean norms of the columns of */
  589. /* > the matrix A*diag(D). */
  590. /* > On exit, SVA contains the Euclidean norms of the columns of */
  591. /* > the matrix onexit*diag(D_onexit). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] MV */
  595. /* > \verbatim */
  596. /* > MV is INTEGER */
  597. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  598. /* > sequence of Jacobi rotations. */
  599. /* > If JOBV = 'N', then MV is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] V */
  603. /* > \verbatim */
  604. /* > V is DOUBLE PRECISION array, dimension (LDV,N) */
  605. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  606. /* > sequence of Jacobi rotations. */
  607. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  608. /* > sequence of Jacobi rotations. */
  609. /* > If JOBV = 'N', then V is not referenced. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDV */
  613. /* > \verbatim */
  614. /* > LDV is INTEGER */
  615. /* > The leading dimension of the array V, LDV >= 1. */
  616. /* > If JOBV = 'V', LDV >= N. */
  617. /* > If JOBV = 'A', LDV >= MV. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] EPS */
  621. /* > \verbatim */
  622. /* > EPS is DOUBLE PRECISION */
  623. /* > EPS = DLAMCH('Epsilon') */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] SFMIN */
  627. /* > \verbatim */
  628. /* > SFMIN is DOUBLE PRECISION */
  629. /* > SFMIN = DLAMCH('Safe Minimum') */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] TOL */
  633. /* > \verbatim */
  634. /* > TOL is DOUBLE PRECISION */
  635. /* > TOL is the threshold for Jacobi rotations. For a pair */
  636. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  637. /* > applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] NSWEEP */
  641. /* > \verbatim */
  642. /* > NSWEEP is INTEGER */
  643. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  644. /* > performed. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > LWORK is the dimension of WORK. LWORK >= M. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit. */
  662. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date November 2017 */
  671. /* > \ingroup doubleOTHERcomputational */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > DGSVJ0 is used just to enable DGESVJ to call a simplified version of */
  676. /* > itself to work on a submatrix of the original matrix. */
  677. /* > */
  678. /* > \par Contributors: */
  679. /* ================== */
  680. /* > */
  681. /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
  682. /* > */
  683. /* > \par Bugs, Examples and Comments: */
  684. /* ================================= */
  685. /* > */
  686. /* > Please report all bugs and send interesting test examples and comments to */
  687. /* > drmac@math.hr. Thank you. */
  688. /* ===================================================================== */
  689. /* Subroutine */ void dgsvj0_(char *jobv, integer *m, integer *n, doublereal *
  690. a, integer *lda, doublereal *d__, doublereal *sva, integer *mv,
  691. doublereal *v, integer *ldv, doublereal *eps, doublereal *sfmin,
  692. doublereal *tol, integer *nsweep, doublereal *work, integer *lwork,
  693. integer *info)
  694. {
  695. /* System generated locals */
  696. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  697. i__6;
  698. doublereal d__1, d__2;
  699. /* Local variables */
  700. doublereal aapp, aapq, aaqq;
  701. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  702. integer *);
  703. integer ierr;
  704. doublereal bigtheta;
  705. integer pskipped;
  706. doublereal aapp0;
  707. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  708. doublereal temp1;
  709. integer i__, p, q;
  710. doublereal t, apoaq, aqoap;
  711. extern logical lsame_(char *, char *);
  712. doublereal theta, small;
  713. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  714. doublereal *, integer *);
  715. doublereal fastr[5];
  716. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  717. doublereal *, integer *);
  718. logical applv, rsvec;
  719. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  720. integer *, doublereal *, integer *), drotm_(integer *, doublereal
  721. *, integer *, doublereal *, integer *, doublereal *);
  722. logical rotok;
  723. doublereal rootsfmin, cs, sn;
  724. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  725. doublereal *, doublereal *, integer *, integer *, doublereal *,
  726. integer *, integer *);
  727. extern integer idamax_(integer *, doublereal *, integer *);
  728. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  729. integer ijblsk, swband, blskip;
  730. doublereal mxaapq;
  731. extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *,
  732. doublereal *, doublereal *);
  733. doublereal thsign, mxsinj;
  734. integer ir1, emptsw, notrot, iswrot, jbc;
  735. doublereal big;
  736. integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
  737. doublereal rootbig, rooteps;
  738. integer rowskip;
  739. doublereal roottol;
  740. /* -- LAPACK computational routine (version 3.8.0) -- */
  741. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  742. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  743. /* November 2017 */
  744. /* ===================================================================== */
  745. /* Test the input parameters. */
  746. /* Parameter adjustments */
  747. --sva;
  748. --d__;
  749. a_dim1 = *lda;
  750. a_offset = 1 + a_dim1 * 1;
  751. a -= a_offset;
  752. v_dim1 = *ldv;
  753. v_offset = 1 + v_dim1 * 1;
  754. v -= v_offset;
  755. --work;
  756. /* Function Body */
  757. applv = lsame_(jobv, "A");
  758. rsvec = lsame_(jobv, "V");
  759. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  760. *info = -1;
  761. } else if (*m < 0) {
  762. *info = -2;
  763. } else if (*n < 0 || *n > *m) {
  764. *info = -3;
  765. } else if (*lda < *m) {
  766. *info = -5;
  767. } else if ((rsvec || applv) && *mv < 0) {
  768. *info = -8;
  769. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  770. *info = -10;
  771. } else if (*tol <= *eps) {
  772. *info = -13;
  773. } else if (*nsweep < 0) {
  774. *info = -14;
  775. } else if (*lwork < *m) {
  776. *info = -16;
  777. } else {
  778. *info = 0;
  779. }
  780. /* #:( */
  781. if (*info != 0) {
  782. i__1 = -(*info);
  783. xerbla_("DGSVJ0", &i__1, (ftnlen)6);
  784. return;
  785. }
  786. if (rsvec) {
  787. mvl = *n;
  788. } else if (applv) {
  789. mvl = *mv;
  790. }
  791. rsvec = rsvec || applv;
  792. rooteps = sqrt(*eps);
  793. rootsfmin = sqrt(*sfmin);
  794. small = *sfmin / *eps;
  795. big = 1. / *sfmin;
  796. rootbig = 1. / rootsfmin;
  797. bigtheta = 1. / rooteps;
  798. roottol = sqrt(*tol);
  799. /* -#- Row-cyclic Jacobi SVD algorithm with column pivoting -#- */
  800. emptsw = *n * (*n - 1) / 2;
  801. notrot = 0;
  802. fastr[0] = 0.;
  803. /* -#- Row-cyclic pivot strategy with de Rijk's pivoting -#- */
  804. swband = 0;
  805. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  806. /* if SGESVJ is used as a computational routine in the preconditioned */
  807. /* Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure */
  808. /* ...... */
  809. kbl = f2cmin(8,*n);
  810. /* [TP] KBL is a tuning parameter that defines the tile size in the */
  811. /* tiling of the p-q loops of pivot pairs. In general, an optimal */
  812. /* value of KBL depends on the matrix dimensions and on the */
  813. /* parameters of the computer's memory. */
  814. nbl = *n / kbl;
  815. if (nbl * kbl != *n) {
  816. ++nbl;
  817. }
  818. /* Computing 2nd power */
  819. i__1 = kbl;
  820. blskip = i__1 * i__1 + 1;
  821. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  822. rowskip = f2cmin(5,kbl);
  823. /* [TP] ROWSKIP is a tuning parameter. */
  824. lkahead = 1;
  825. /* [TP] LKAHEAD is a tuning parameter. */
  826. swband = 0;
  827. pskipped = 0;
  828. i__1 = *nsweep;
  829. for (i__ = 1; i__ <= i__1; ++i__) {
  830. mxaapq = 0.;
  831. mxsinj = 0.;
  832. iswrot = 0;
  833. notrot = 0;
  834. pskipped = 0;
  835. i__2 = nbl;
  836. for (ibr = 1; ibr <= i__2; ++ibr) {
  837. igl = (ibr - 1) * kbl + 1;
  838. /* Computing MIN */
  839. i__4 = lkahead, i__5 = nbl - ibr;
  840. i__3 = f2cmin(i__4,i__5);
  841. for (ir1 = 0; ir1 <= i__3; ++ir1) {
  842. igl += ir1 * kbl;
  843. /* Computing MIN */
  844. i__5 = igl + kbl - 1, i__6 = *n - 1;
  845. i__4 = f2cmin(i__5,i__6);
  846. for (p = igl; p <= i__4; ++p) {
  847. i__5 = *n - p + 1;
  848. q = idamax_(&i__5, &sva[p], &c__1) + p - 1;
  849. if (p != q) {
  850. dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 +
  851. 1], &c__1);
  852. if (rsvec) {
  853. dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  854. v_dim1 + 1], &c__1);
  855. }
  856. temp1 = sva[p];
  857. sva[p] = sva[q];
  858. sva[q] = temp1;
  859. temp1 = d__[p];
  860. d__[p] = d__[q];
  861. d__[q] = temp1;
  862. }
  863. if (ir1 == 0) {
  864. /* Column norms are periodically updated by explicit */
  865. /* norm computation. */
  866. /* Caveat: */
  867. /* Some BLAS implementations compute DNRM2(M,A(1,p),1) */
  868. /* as DSQRT(DDOT(M,A(1,p),1,A(1,p),1)), which may result in */
  869. /* overflow for ||A(:,p)||_2 > DSQRT(overflow_threshold), and */
  870. /* undeflow for ||A(:,p)||_2 < DSQRT(underflow_threshold). */
  871. /* Hence, DNRM2 cannot be trusted, not even in the case when */
  872. /* the true norm is far from the under(over)flow boundaries. */
  873. /* If properly implemented DNRM2 is available, the IF-THEN-ELSE */
  874. /* below should read "AAPP = DNRM2( M, A(1,p), 1 ) * D(p)". */
  875. if (sva[p] < rootbig && sva[p] > rootsfmin) {
  876. sva[p] = dnrm2_(m, &a[p * a_dim1 + 1], &c__1) *
  877. d__[p];
  878. } else {
  879. temp1 = 0.;
  880. aapp = 1.;
  881. dlassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
  882. aapp);
  883. sva[p] = temp1 * sqrt(aapp) * d__[p];
  884. }
  885. aapp = sva[p];
  886. } else {
  887. aapp = sva[p];
  888. }
  889. if (aapp > 0.) {
  890. pskipped = 0;
  891. /* Computing MIN */
  892. i__6 = igl + kbl - 1;
  893. i__5 = f2cmin(i__6,*n);
  894. for (q = p + 1; q <= i__5; ++q) {
  895. aaqq = sva[q];
  896. if (aaqq > 0.) {
  897. aapp0 = aapp;
  898. if (aaqq >= 1.) {
  899. rotok = small * aapp <= aaqq;
  900. if (aapp < big / aaqq) {
  901. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  902. c__1, &a[q * a_dim1 + 1], &
  903. c__1) * d__[p] * d__[q] /
  904. aaqq / aapp;
  905. } else {
  906. dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
  907. work[1], &c__1);
  908. dlascl_("G", &c__0, &c__0, &aapp, &
  909. d__[p], m, &c__1, &work[1],
  910. lda, &ierr);
  911. aapq = ddot_(m, &work[1], &c__1, &a[q
  912. * a_dim1 + 1], &c__1) * d__[q]
  913. / aaqq;
  914. }
  915. } else {
  916. rotok = aapp <= aaqq / small;
  917. if (aapp > small / aaqq) {
  918. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  919. c__1, &a[q * a_dim1 + 1], &
  920. c__1) * d__[p] * d__[q] /
  921. aaqq / aapp;
  922. } else {
  923. dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
  924. work[1], &c__1);
  925. dlascl_("G", &c__0, &c__0, &aaqq, &
  926. d__[q], m, &c__1, &work[1],
  927. lda, &ierr);
  928. aapq = ddot_(m, &work[1], &c__1, &a[p
  929. * a_dim1 + 1], &c__1) * d__[p]
  930. / aapp;
  931. }
  932. }
  933. /* Computing MAX */
  934. d__1 = mxaapq, d__2 = abs(aapq);
  935. mxaapq = f2cmax(d__1,d__2);
  936. /* TO rotate or NOT to rotate, THAT is the question ... */
  937. if (abs(aapq) > *tol) {
  938. /* ROTATED = ROTATED + ONE */
  939. if (ir1 == 0) {
  940. notrot = 0;
  941. pskipped = 0;
  942. ++iswrot;
  943. }
  944. if (rotok) {
  945. aqoap = aaqq / aapp;
  946. apoaq = aapp / aaqq;
  947. theta = (d__1 = aqoap - apoaq, abs(
  948. d__1)) * -.5 / aapq;
  949. if (abs(theta) > bigtheta) {
  950. t = .5 / theta;
  951. fastr[2] = t * d__[p] / d__[q];
  952. fastr[3] = -t * d__[q] / d__[p];
  953. drotm_(m, &a[p * a_dim1 + 1], &
  954. c__1, &a[q * a_dim1 + 1],
  955. &c__1, fastr);
  956. if (rsvec) {
  957. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  958. v_dim1 + 1], &c__1, fastr);
  959. }
  960. /* Computing MAX */
  961. d__1 = 0., d__2 = t * apoaq *
  962. aapq + 1.;
  963. sva[q] = aaqq * sqrt((f2cmax(d__1,
  964. d__2)));
  965. /* Computing MAX */
  966. d__1 = 0., d__2 = 1. - t * aqoap *
  967. aapq;
  968. aapp *= sqrt((f2cmax(d__1,d__2)));
  969. /* Computing MAX */
  970. d__1 = mxsinj, d__2 = abs(t);
  971. mxsinj = f2cmax(d__1,d__2);
  972. } else {
  973. thsign = -d_sign(&c_b42, &aapq);
  974. t = 1. / (theta + thsign * sqrt(
  975. theta * theta + 1.));
  976. cs = sqrt(1. / (t * t + 1.));
  977. sn = t * cs;
  978. /* Computing MAX */
  979. d__1 = mxsinj, d__2 = abs(sn);
  980. mxsinj = f2cmax(d__1,d__2);
  981. /* Computing MAX */
  982. d__1 = 0., d__2 = t * apoaq *
  983. aapq + 1.;
  984. sva[q] = aaqq * sqrt((f2cmax(d__1,
  985. d__2)));
  986. /* Computing MAX */
  987. d__1 = 0., d__2 = 1. - t * aqoap *
  988. aapq;
  989. aapp *= sqrt((f2cmax(d__1,d__2)));
  990. apoaq = d__[p] / d__[q];
  991. aqoap = d__[q] / d__[p];
  992. if (d__[p] >= 1.) {
  993. if (d__[q] >= 1.) {
  994. fastr[2] = t * apoaq;
  995. fastr[3] = -t * aqoap;
  996. d__[p] *= cs;
  997. d__[q] *= cs;
  998. drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  999. a_dim1 + 1], &c__1, fastr);
  1000. if (rsvec) {
  1001. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  1002. q * v_dim1 + 1], &c__1, fastr);
  1003. }
  1004. } else {
  1005. d__1 = -t * aqoap;
  1006. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1007. p * a_dim1 + 1], &c__1);
  1008. d__1 = cs * sn * apoaq;
  1009. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1010. q * a_dim1 + 1], &c__1);
  1011. d__[p] *= cs;
  1012. d__[q] /= cs;
  1013. if (rsvec) {
  1014. d__1 = -t * aqoap;
  1015. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1016. c__1, &v[p * v_dim1 + 1], &c__1);
  1017. d__1 = cs * sn * apoaq;
  1018. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1019. c__1, &v[q * v_dim1 + 1], &c__1);
  1020. }
  1021. }
  1022. } else {
  1023. if (d__[q] >= 1.) {
  1024. d__1 = t * apoaq;
  1025. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1026. q * a_dim1 + 1], &c__1);
  1027. d__1 = -cs * sn * aqoap;
  1028. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1029. p * a_dim1 + 1], &c__1);
  1030. d__[p] /= cs;
  1031. d__[q] *= cs;
  1032. if (rsvec) {
  1033. d__1 = t * apoaq;
  1034. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1035. c__1, &v[q * v_dim1 + 1], &c__1);
  1036. d__1 = -cs * sn * aqoap;
  1037. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1038. c__1, &v[p * v_dim1 + 1], &c__1);
  1039. }
  1040. } else {
  1041. if (d__[p] >= d__[q]) {
  1042. d__1 = -t * aqoap;
  1043. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1044. &a[p * a_dim1 + 1], &c__1);
  1045. d__1 = cs * sn * apoaq;
  1046. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1047. &a[q * a_dim1 + 1], &c__1);
  1048. d__[p] *= cs;
  1049. d__[q] /= cs;
  1050. if (rsvec) {
  1051. d__1 = -t * aqoap;
  1052. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1053. &c__1, &v[p * v_dim1 + 1], &
  1054. c__1);
  1055. d__1 = cs * sn * apoaq;
  1056. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1057. &c__1, &v[q * v_dim1 + 1], &
  1058. c__1);
  1059. }
  1060. } else {
  1061. d__1 = t * apoaq;
  1062. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1063. &a[q * a_dim1 + 1], &c__1);
  1064. d__1 = -cs * sn * aqoap;
  1065. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1066. &a[p * a_dim1 + 1], &c__1);
  1067. d__[p] /= cs;
  1068. d__[q] *= cs;
  1069. if (rsvec) {
  1070. d__1 = t * apoaq;
  1071. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1072. &c__1, &v[q * v_dim1 + 1], &
  1073. c__1);
  1074. d__1 = -cs * sn * aqoap;
  1075. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1076. &c__1, &v[p * v_dim1 + 1], &
  1077. c__1);
  1078. }
  1079. }
  1080. }
  1081. }
  1082. }
  1083. } else {
  1084. dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1085. work[1], &c__1);
  1086. dlascl_("G", &c__0, &c__0, &aapp, &
  1087. c_b42, m, &c__1, &work[1],
  1088. lda, &ierr);
  1089. dlascl_("G", &c__0, &c__0, &aaqq, &
  1090. c_b42, m, &c__1, &a[q *
  1091. a_dim1 + 1], lda, &ierr);
  1092. temp1 = -aapq * d__[p] / d__[q];
  1093. daxpy_(m, &temp1, &work[1], &c__1, &a[
  1094. q * a_dim1 + 1], &c__1);
  1095. dlascl_("G", &c__0, &c__0, &c_b42, &
  1096. aaqq, m, &c__1, &a[q * a_dim1
  1097. + 1], lda, &ierr);
  1098. /* Computing MAX */
  1099. d__1 = 0., d__2 = 1. - aapq * aapq;
  1100. sva[q] = aaqq * sqrt((f2cmax(d__1,d__2)))
  1101. ;
  1102. mxsinj = f2cmax(mxsinj,*sfmin);
  1103. }
  1104. /* END IF ROTOK THEN ... ELSE */
  1105. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1106. /* recompute SVA(q), SVA(p). */
  1107. /* Computing 2nd power */
  1108. d__1 = sva[q] / aaqq;
  1109. if (d__1 * d__1 <= rooteps) {
  1110. if (aaqq < rootbig && aaqq >
  1111. rootsfmin) {
  1112. sva[q] = dnrm2_(m, &a[q * a_dim1
  1113. + 1], &c__1) * d__[q];
  1114. } else {
  1115. t = 0.;
  1116. aaqq = 1.;
  1117. dlassq_(m, &a[q * a_dim1 + 1], &
  1118. c__1, &t, &aaqq);
  1119. sva[q] = t * sqrt(aaqq) * d__[q];
  1120. }
  1121. }
  1122. if (aapp / aapp0 <= rooteps) {
  1123. if (aapp < rootbig && aapp >
  1124. rootsfmin) {
  1125. aapp = dnrm2_(m, &a[p * a_dim1 +
  1126. 1], &c__1) * d__[p];
  1127. } else {
  1128. t = 0.;
  1129. aapp = 1.;
  1130. dlassq_(m, &a[p * a_dim1 + 1], &
  1131. c__1, &t, &aapp);
  1132. aapp = t * sqrt(aapp) * d__[p];
  1133. }
  1134. sva[p] = aapp;
  1135. }
  1136. } else {
  1137. /* A(:,p) and A(:,q) already numerically orthogonal */
  1138. if (ir1 == 0) {
  1139. ++notrot;
  1140. }
  1141. ++pskipped;
  1142. }
  1143. } else {
  1144. /* A(:,q) is zero column */
  1145. if (ir1 == 0) {
  1146. ++notrot;
  1147. }
  1148. ++pskipped;
  1149. }
  1150. if (i__ <= swband && pskipped > rowskip) {
  1151. if (ir1 == 0) {
  1152. aapp = -aapp;
  1153. }
  1154. notrot = 0;
  1155. goto L2103;
  1156. }
  1157. /* L2002: */
  1158. }
  1159. /* END q-LOOP */
  1160. L2103:
  1161. /* bailed out of q-loop */
  1162. sva[p] = aapp;
  1163. } else {
  1164. sva[p] = aapp;
  1165. if (ir1 == 0 && aapp == 0.) {
  1166. /* Computing MIN */
  1167. i__5 = igl + kbl - 1;
  1168. notrot = notrot + f2cmin(i__5,*n) - p;
  1169. }
  1170. }
  1171. /* L2001: */
  1172. }
  1173. /* end of the p-loop */
  1174. /* end of doing the block ( ibr, ibr ) */
  1175. /* L1002: */
  1176. }
  1177. /* end of ir1-loop */
  1178. /* ........................................................ */
  1179. /* ... go to the off diagonal blocks */
  1180. igl = (ibr - 1) * kbl + 1;
  1181. i__3 = nbl;
  1182. for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
  1183. jgl = (jbc - 1) * kbl + 1;
  1184. /* doing the block at ( ibr, jbc ) */
  1185. ijblsk = 0;
  1186. /* Computing MIN */
  1187. i__5 = igl + kbl - 1;
  1188. i__4 = f2cmin(i__5,*n);
  1189. for (p = igl; p <= i__4; ++p) {
  1190. aapp = sva[p];
  1191. if (aapp > 0.) {
  1192. pskipped = 0;
  1193. /* Computing MIN */
  1194. i__6 = jgl + kbl - 1;
  1195. i__5 = f2cmin(i__6,*n);
  1196. for (q = jgl; q <= i__5; ++q) {
  1197. aaqq = sva[q];
  1198. if (aaqq > 0.) {
  1199. aapp0 = aapp;
  1200. /* -#- M x 2 Jacobi SVD -#- */
  1201. /* -#- Safe Gram matrix computation -#- */
  1202. if (aaqq >= 1.) {
  1203. if (aapp >= aaqq) {
  1204. rotok = small * aapp <= aaqq;
  1205. } else {
  1206. rotok = small * aaqq <= aapp;
  1207. }
  1208. if (aapp < big / aaqq) {
  1209. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  1210. c__1, &a[q * a_dim1 + 1], &
  1211. c__1) * d__[p] * d__[q] /
  1212. aaqq / aapp;
  1213. } else {
  1214. dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1215. work[1], &c__1);
  1216. dlascl_("G", &c__0, &c__0, &aapp, &
  1217. d__[p], m, &c__1, &work[1],
  1218. lda, &ierr);
  1219. aapq = ddot_(m, &work[1], &c__1, &a[q
  1220. * a_dim1 + 1], &c__1) * d__[q]
  1221. / aaqq;
  1222. }
  1223. } else {
  1224. if (aapp >= aaqq) {
  1225. rotok = aapp <= aaqq / small;
  1226. } else {
  1227. rotok = aaqq <= aapp / small;
  1228. }
  1229. if (aapp > small / aaqq) {
  1230. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  1231. c__1, &a[q * a_dim1 + 1], &
  1232. c__1) * d__[p] * d__[q] /
  1233. aaqq / aapp;
  1234. } else {
  1235. dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
  1236. work[1], &c__1);
  1237. dlascl_("G", &c__0, &c__0, &aaqq, &
  1238. d__[q], m, &c__1, &work[1],
  1239. lda, &ierr);
  1240. aapq = ddot_(m, &work[1], &c__1, &a[p
  1241. * a_dim1 + 1], &c__1) * d__[p]
  1242. / aapp;
  1243. }
  1244. }
  1245. /* Computing MAX */
  1246. d__1 = mxaapq, d__2 = abs(aapq);
  1247. mxaapq = f2cmax(d__1,d__2);
  1248. /* TO rotate or NOT to rotate, THAT is the question ... */
  1249. if (abs(aapq) > *tol) {
  1250. notrot = 0;
  1251. /* ROTATED = ROTATED + 1 */
  1252. pskipped = 0;
  1253. ++iswrot;
  1254. if (rotok) {
  1255. aqoap = aaqq / aapp;
  1256. apoaq = aapp / aaqq;
  1257. theta = (d__1 = aqoap - apoaq, abs(
  1258. d__1)) * -.5 / aapq;
  1259. if (aaqq > aapp0) {
  1260. theta = -theta;
  1261. }
  1262. if (abs(theta) > bigtheta) {
  1263. t = .5 / theta;
  1264. fastr[2] = t * d__[p] / d__[q];
  1265. fastr[3] = -t * d__[q] / d__[p];
  1266. drotm_(m, &a[p * a_dim1 + 1], &
  1267. c__1, &a[q * a_dim1 + 1],
  1268. &c__1, fastr);
  1269. if (rsvec) {
  1270. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1271. v_dim1 + 1], &c__1, fastr);
  1272. }
  1273. /* Computing MAX */
  1274. d__1 = 0., d__2 = t * apoaq *
  1275. aapq + 1.;
  1276. sva[q] = aaqq * sqrt((f2cmax(d__1,
  1277. d__2)));
  1278. /* Computing MAX */
  1279. d__1 = 0., d__2 = 1. - t * aqoap *
  1280. aapq;
  1281. aapp *= sqrt((f2cmax(d__1,d__2)));
  1282. /* Computing MAX */
  1283. d__1 = mxsinj, d__2 = abs(t);
  1284. mxsinj = f2cmax(d__1,d__2);
  1285. } else {
  1286. thsign = -d_sign(&c_b42, &aapq);
  1287. if (aaqq > aapp0) {
  1288. thsign = -thsign;
  1289. }
  1290. t = 1. / (theta + thsign * sqrt(
  1291. theta * theta + 1.));
  1292. cs = sqrt(1. / (t * t + 1.));
  1293. sn = t * cs;
  1294. /* Computing MAX */
  1295. d__1 = mxsinj, d__2 = abs(sn);
  1296. mxsinj = f2cmax(d__1,d__2);
  1297. /* Computing MAX */
  1298. d__1 = 0., d__2 = t * apoaq *
  1299. aapq + 1.;
  1300. sva[q] = aaqq * sqrt((f2cmax(d__1,
  1301. d__2)));
  1302. /* Computing MAX */
  1303. d__1 = 0., d__2 = 1. - t * aqoap *
  1304. aapq;
  1305. aapp *= sqrt((f2cmax(d__1,d__2)));
  1306. apoaq = d__[p] / d__[q];
  1307. aqoap = d__[q] / d__[p];
  1308. if (d__[p] >= 1.) {
  1309. if (d__[q] >= 1.) {
  1310. fastr[2] = t * apoaq;
  1311. fastr[3] = -t * aqoap;
  1312. d__[p] *= cs;
  1313. d__[q] *= cs;
  1314. drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  1315. a_dim1 + 1], &c__1, fastr);
  1316. if (rsvec) {
  1317. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  1318. q * v_dim1 + 1], &c__1, fastr);
  1319. }
  1320. } else {
  1321. d__1 = -t * aqoap;
  1322. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1323. p * a_dim1 + 1], &c__1);
  1324. d__1 = cs * sn * apoaq;
  1325. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1326. q * a_dim1 + 1], &c__1);
  1327. if (rsvec) {
  1328. d__1 = -t * aqoap;
  1329. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1330. c__1, &v[p * v_dim1 + 1], &c__1);
  1331. d__1 = cs * sn * apoaq;
  1332. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1333. c__1, &v[q * v_dim1 + 1], &c__1);
  1334. }
  1335. d__[p] *= cs;
  1336. d__[q] /= cs;
  1337. }
  1338. } else {
  1339. if (d__[q] >= 1.) {
  1340. d__1 = t * apoaq;
  1341. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1342. q * a_dim1 + 1], &c__1);
  1343. d__1 = -cs * sn * aqoap;
  1344. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1345. p * a_dim1 + 1], &c__1);
  1346. if (rsvec) {
  1347. d__1 = t * apoaq;
  1348. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1349. c__1, &v[q * v_dim1 + 1], &c__1);
  1350. d__1 = -cs * sn * aqoap;
  1351. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1352. c__1, &v[p * v_dim1 + 1], &c__1);
  1353. }
  1354. d__[p] /= cs;
  1355. d__[q] *= cs;
  1356. } else {
  1357. if (d__[p] >= d__[q]) {
  1358. d__1 = -t * aqoap;
  1359. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1360. &a[p * a_dim1 + 1], &c__1);
  1361. d__1 = cs * sn * apoaq;
  1362. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1363. &a[q * a_dim1 + 1], &c__1);
  1364. d__[p] *= cs;
  1365. d__[q] /= cs;
  1366. if (rsvec) {
  1367. d__1 = -t * aqoap;
  1368. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1369. &c__1, &v[p * v_dim1 + 1], &
  1370. c__1);
  1371. d__1 = cs * sn * apoaq;
  1372. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1373. &c__1, &v[q * v_dim1 + 1], &
  1374. c__1);
  1375. }
  1376. } else {
  1377. d__1 = t * apoaq;
  1378. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1379. &a[q * a_dim1 + 1], &c__1);
  1380. d__1 = -cs * sn * aqoap;
  1381. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1382. &a[p * a_dim1 + 1], &c__1);
  1383. d__[p] /= cs;
  1384. d__[q] *= cs;
  1385. if (rsvec) {
  1386. d__1 = t * apoaq;
  1387. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1388. &c__1, &v[q * v_dim1 + 1], &
  1389. c__1);
  1390. d__1 = -cs * sn * aqoap;
  1391. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1392. &c__1, &v[p * v_dim1 + 1], &
  1393. c__1);
  1394. }
  1395. }
  1396. }
  1397. }
  1398. }
  1399. } else {
  1400. if (aapp > aaqq) {
  1401. dcopy_(m, &a[p * a_dim1 + 1], &
  1402. c__1, &work[1], &c__1);
  1403. dlascl_("G", &c__0, &c__0, &aapp,
  1404. &c_b42, m, &c__1, &work[1]
  1405. , lda, &ierr);
  1406. dlascl_("G", &c__0, &c__0, &aaqq,
  1407. &c_b42, m, &c__1, &a[q *
  1408. a_dim1 + 1], lda, &ierr);
  1409. temp1 = -aapq * d__[p] / d__[q];
  1410. daxpy_(m, &temp1, &work[1], &c__1,
  1411. &a[q * a_dim1 + 1], &
  1412. c__1);
  1413. dlascl_("G", &c__0, &c__0, &c_b42,
  1414. &aaqq, m, &c__1, &a[q *
  1415. a_dim1 + 1], lda, &ierr);
  1416. /* Computing MAX */
  1417. d__1 = 0., d__2 = 1. - aapq *
  1418. aapq;
  1419. sva[q] = aaqq * sqrt((f2cmax(d__1,
  1420. d__2)));
  1421. mxsinj = f2cmax(mxsinj,*sfmin);
  1422. } else {
  1423. dcopy_(m, &a[q * a_dim1 + 1], &
  1424. c__1, &work[1], &c__1);
  1425. dlascl_("G", &c__0, &c__0, &aaqq,
  1426. &c_b42, m, &c__1, &work[1]
  1427. , lda, &ierr);
  1428. dlascl_("G", &c__0, &c__0, &aapp,
  1429. &c_b42, m, &c__1, &a[p *
  1430. a_dim1 + 1], lda, &ierr);
  1431. temp1 = -aapq * d__[q] / d__[p];
  1432. daxpy_(m, &temp1, &work[1], &c__1,
  1433. &a[p * a_dim1 + 1], &
  1434. c__1);
  1435. dlascl_("G", &c__0, &c__0, &c_b42,
  1436. &aapp, m, &c__1, &a[p *
  1437. a_dim1 + 1], lda, &ierr);
  1438. /* Computing MAX */
  1439. d__1 = 0., d__2 = 1. - aapq *
  1440. aapq;
  1441. sva[p] = aapp * sqrt((f2cmax(d__1,
  1442. d__2)));
  1443. mxsinj = f2cmax(mxsinj,*sfmin);
  1444. }
  1445. }
  1446. /* END IF ROTOK THEN ... ELSE */
  1447. /* In the case of cancellation in updating SVA(q) */
  1448. /* Computing 2nd power */
  1449. d__1 = sva[q] / aaqq;
  1450. if (d__1 * d__1 <= rooteps) {
  1451. if (aaqq < rootbig && aaqq >
  1452. rootsfmin) {
  1453. sva[q] = dnrm2_(m, &a[q * a_dim1
  1454. + 1], &c__1) * d__[q];
  1455. } else {
  1456. t = 0.;
  1457. aaqq = 1.;
  1458. dlassq_(m, &a[q * a_dim1 + 1], &
  1459. c__1, &t, &aaqq);
  1460. sva[q] = t * sqrt(aaqq) * d__[q];
  1461. }
  1462. }
  1463. /* Computing 2nd power */
  1464. d__1 = aapp / aapp0;
  1465. if (d__1 * d__1 <= rooteps) {
  1466. if (aapp < rootbig && aapp >
  1467. rootsfmin) {
  1468. aapp = dnrm2_(m, &a[p * a_dim1 +
  1469. 1], &c__1) * d__[p];
  1470. } else {
  1471. t = 0.;
  1472. aapp = 1.;
  1473. dlassq_(m, &a[p * a_dim1 + 1], &
  1474. c__1, &t, &aapp);
  1475. aapp = t * sqrt(aapp) * d__[p];
  1476. }
  1477. sva[p] = aapp;
  1478. }
  1479. /* end of OK rotation */
  1480. } else {
  1481. ++notrot;
  1482. ++pskipped;
  1483. ++ijblsk;
  1484. }
  1485. } else {
  1486. ++notrot;
  1487. ++pskipped;
  1488. ++ijblsk;
  1489. }
  1490. if (i__ <= swband && ijblsk >= blskip) {
  1491. sva[p] = aapp;
  1492. notrot = 0;
  1493. goto L2011;
  1494. }
  1495. if (i__ <= swband && pskipped > rowskip) {
  1496. aapp = -aapp;
  1497. notrot = 0;
  1498. goto L2203;
  1499. }
  1500. /* L2200: */
  1501. }
  1502. /* end of the q-loop */
  1503. L2203:
  1504. sva[p] = aapp;
  1505. } else {
  1506. if (aapp == 0.) {
  1507. /* Computing MIN */
  1508. i__5 = jgl + kbl - 1;
  1509. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1510. }
  1511. if (aapp < 0.) {
  1512. notrot = 0;
  1513. }
  1514. }
  1515. /* L2100: */
  1516. }
  1517. /* end of the p-loop */
  1518. /* L2010: */
  1519. }
  1520. /* end of the jbc-loop */
  1521. L2011:
  1522. /* 2011 bailed out of the jbc-loop */
  1523. /* Computing MIN */
  1524. i__4 = igl + kbl - 1;
  1525. i__3 = f2cmin(i__4,*n);
  1526. for (p = igl; p <= i__3; ++p) {
  1527. sva[p] = (d__1 = sva[p], abs(d__1));
  1528. /* L2012: */
  1529. }
  1530. /* L2000: */
  1531. }
  1532. /* 2000 :: end of the ibr-loop */
  1533. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1534. sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
  1535. } else {
  1536. t = 0.;
  1537. aapp = 1.;
  1538. dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1539. sva[*n] = t * sqrt(aapp) * d__[*n];
  1540. }
  1541. /* Additional steering devices */
  1542. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1543. swband = i__;
  1544. }
  1545. if (i__ > swband + 1 && mxaapq < (doublereal) (*n) * *tol && (
  1546. doublereal) (*n) * mxaapq * mxsinj < *tol) {
  1547. goto L1994;
  1548. }
  1549. if (notrot >= emptsw) {
  1550. goto L1994;
  1551. }
  1552. /* L1993: */
  1553. }
  1554. /* end i=1:NSWEEP loop */
  1555. /* #:) Reaching this point means that the procedure has completed the given */
  1556. /* number of iterations. */
  1557. *info = *nsweep - 1;
  1558. goto L1995;
  1559. L1994:
  1560. /* #:) Reaching this point means that during the i-th sweep all pivots were */
  1561. /* below the given tolerance, causing early exit. */
  1562. *info = 0;
  1563. /* #:) INFO = 0 confirms successful iterations. */
  1564. L1995:
  1565. /* Sort the vector D. */
  1566. i__1 = *n - 1;
  1567. for (p = 1; p <= i__1; ++p) {
  1568. i__2 = *n - p + 1;
  1569. q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
  1570. if (p != q) {
  1571. temp1 = sva[p];
  1572. sva[p] = sva[q];
  1573. sva[q] = temp1;
  1574. temp1 = d__[p];
  1575. d__[p] = d__[q];
  1576. d__[q] = temp1;
  1577. dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1578. if (rsvec) {
  1579. dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1580. c__1);
  1581. }
  1582. }
  1583. /* L5991: */
  1584. }
  1585. return;
  1586. } /* dgsvj0_ */