You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytri_3x.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static complex c_b2 = {0.f,0.f};
  488. /* > \brief \b CSYTRI_3X */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CSYTRI_3X + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytri_
  495. 3x.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytri_
  498. 3x.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytri_
  501. 3x.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N, NB */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 A( LDA, * ), E( * ), WORK( N+NB+1, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > CSYTRI_3X computes the inverse of a complex symmetric indefinite */
  516. /* > matrix A using the factorization computed by CSYTRF_RK or CSYTRF_BK: */
  517. /* > */
  518. /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
  519. /* > */
  520. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  521. /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
  522. /* > matrix, P**T is the transpose of P, and D is symmetric and block */
  523. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the details of the factorization are */
  533. /* > stored as an upper or lower triangular matrix. */
  534. /* > = 'U': Upper triangle of A is stored; */
  535. /* > = 'L': Lower triangle of A is stored. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX array, dimension (LDA,N) */
  547. /* > On entry, diagonal of the block diagonal matrix D and */
  548. /* > factors U or L as computed by CSYTRF_RK and CSYTRF_BK: */
  549. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  550. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  551. /* > (superdiagonal (or subdiagonal) elements of D */
  552. /* > should be provided on entry in array E), and */
  553. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  554. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  555. /* > */
  556. /* > On exit, if INFO = 0, the symmetric inverse of the original */
  557. /* > matrix. */
  558. /* > If UPLO = 'U': the upper triangular part of the inverse */
  559. /* > is formed and the part of A below the diagonal is not */
  560. /* > referenced; */
  561. /* > If UPLO = 'L': the lower triangular part of the inverse */
  562. /* > is formed and the part of A above the diagonal is not */
  563. /* > referenced. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] E */
  573. /* > \verbatim */
  574. /* > E is COMPLEX array, dimension (N) */
  575. /* > On entry, contains the superdiagonal (or subdiagonal) */
  576. /* > elements of the symmetric block diagonal matrix D */
  577. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  578. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced; */
  579. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced. */
  580. /* > */
  581. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  582. /* > 1 <= k <= N, the element E(k) is not referenced in both */
  583. /* > UPLO = 'U' or UPLO = 'L' cases. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D */
  590. /* > as determined by CSYTRF_RK or CSYTRF_BK. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] WORK */
  594. /* > \verbatim */
  595. /* > WORK is COMPLEX array, dimension (N+NB+1,NB+3). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] NB */
  599. /* > \verbatim */
  600. /* > NB is INTEGER */
  601. /* > Block size. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] INFO */
  605. /* > \verbatim */
  606. /* > INFO is INTEGER */
  607. /* > = 0: successful exit */
  608. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  609. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  610. /* > inverse could not be computed. */
  611. /* > \endverbatim */
  612. /* Authors: */
  613. /* ======== */
  614. /* > \author Univ. of Tennessee */
  615. /* > \author Univ. of California Berkeley */
  616. /* > \author Univ. of Colorado Denver */
  617. /* > \author NAG Ltd. */
  618. /* > \date June 2017 */
  619. /* > \ingroup complexSYcomputational */
  620. /* > \par Contributors: */
  621. /* ================== */
  622. /* > \verbatim */
  623. /* > */
  624. /* > June 2017, Igor Kozachenko, */
  625. /* > Computer Science Division, */
  626. /* > University of California, Berkeley */
  627. /* > */
  628. /* > \endverbatim */
  629. /* ===================================================================== */
  630. /* Subroutine */ void csytri_3x_(char *uplo, integer *n, complex *a, integer *
  631. lda, complex *e, integer *ipiv, complex *work, integer *nb, integer *
  632. info)
  633. {
  634. /* System generated locals */
  635. integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4,
  636. i__5, i__6;
  637. complex q__1, q__2, q__3;
  638. /* Local variables */
  639. integer invd;
  640. complex akkp1;
  641. extern /* Subroutine */ void csyswapr_(char *, integer *, complex *,
  642. integer *, integer *, integer *);
  643. complex d__;
  644. integer i__, j, k;
  645. complex t;
  646. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  647. integer *, complex *, complex *, integer *, complex *, integer *,
  648. complex *, complex *, integer *);
  649. extern logical lsame_(char *, char *);
  650. extern /* Subroutine */ void ctrmm_(char *, char *, char *, char *,
  651. integer *, integer *, complex *, complex *, integer *, complex *,
  652. integer *);
  653. logical upper;
  654. complex ak, u01_i_j__;
  655. integer u11;
  656. complex u11_i_j__;
  657. integer ip;
  658. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  659. integer icount;
  660. extern /* Subroutine */ int ctrtri_(char *, char *, integer *, complex *,
  661. integer *, integer *);
  662. integer nnb, cut;
  663. complex akp1, u01_ip1_j__, u11_ip1_j__;
  664. /* -- LAPACK computational routine (version 3.7.1) -- */
  665. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  666. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  667. /* June 2017 */
  668. /* ===================================================================== */
  669. /* Test the input parameters. */
  670. /* Parameter adjustments */
  671. a_dim1 = *lda;
  672. a_offset = 1 + a_dim1 * 1;
  673. a -= a_offset;
  674. --e;
  675. --ipiv;
  676. work_dim1 = *n + *nb + 1;
  677. work_offset = 1 + work_dim1 * 1;
  678. work -= work_offset;
  679. /* Function Body */
  680. *info = 0;
  681. upper = lsame_(uplo, "U");
  682. if (! upper && ! lsame_(uplo, "L")) {
  683. *info = -1;
  684. } else if (*n < 0) {
  685. *info = -2;
  686. } else if (*lda < f2cmax(1,*n)) {
  687. *info = -4;
  688. }
  689. /* Quick return if possible */
  690. if (*info != 0) {
  691. i__1 = -(*info);
  692. xerbla_("CSYTRI_3X", &i__1, (ftnlen)9);
  693. return;
  694. }
  695. if (*n == 0) {
  696. return;
  697. }
  698. /* Workspace got Non-diag elements of D */
  699. i__1 = *n;
  700. for (k = 1; k <= i__1; ++k) {
  701. i__2 = k + work_dim1;
  702. i__3 = k;
  703. work[i__2].r = e[i__3].r, work[i__2].i = e[i__3].i;
  704. }
  705. /* Check that the diagonal matrix D is nonsingular. */
  706. if (upper) {
  707. /* Upper triangular storage: examine D from bottom to top */
  708. for (*info = *n; *info >= 1; --(*info)) {
  709. i__1 = *info + *info * a_dim1;
  710. if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
  711. return;
  712. }
  713. }
  714. } else {
  715. /* Lower triangular storage: examine D from top to bottom. */
  716. i__1 = *n;
  717. for (*info = 1; *info <= i__1; ++(*info)) {
  718. i__2 = *info + *info * a_dim1;
  719. if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
  720. return;
  721. }
  722. }
  723. }
  724. *info = 0;
  725. /* Splitting Workspace */
  726. /* U01 is a block ( N, NB+1 ) */
  727. /* The first element of U01 is in WORK( 1, 1 ) */
  728. /* U11 is a block ( NB+1, NB+1 ) */
  729. /* The first element of U11 is in WORK( N+1, 1 ) */
  730. u11 = *n;
  731. /* INVD is a block ( N, 2 ) */
  732. /* The first element of INVD is in WORK( 1, INVD ) */
  733. invd = *nb + 2;
  734. if (upper) {
  735. /* Begin Upper */
  736. /* invA = P * inv(U**T) * inv(D) * inv(U) * P**T. */
  737. ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
  738. /* inv(D) and inv(D) * inv(U) */
  739. k = 1;
  740. while(k <= *n) {
  741. if (ipiv[k] > 0) {
  742. /* 1 x 1 diagonal NNB */
  743. i__1 = k + invd * work_dim1;
  744. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  745. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  746. i__1 = k + (invd + 1) * work_dim1;
  747. work[i__1].r = 0.f, work[i__1].i = 0.f;
  748. } else {
  749. /* 2 x 2 diagonal NNB */
  750. i__1 = k + 1 + work_dim1;
  751. t.r = work[i__1].r, t.i = work[i__1].i;
  752. c_div(&q__1, &a[k + k * a_dim1], &t);
  753. ak.r = q__1.r, ak.i = q__1.i;
  754. c_div(&q__1, &a[k + 1 + (k + 1) * a_dim1], &t);
  755. akp1.r = q__1.r, akp1.i = q__1.i;
  756. c_div(&q__1, &work[k + 1 + work_dim1], &t);
  757. akkp1.r = q__1.r, akkp1.i = q__1.i;
  758. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r *
  759. akp1.i + ak.i * akp1.r;
  760. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  761. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i +
  762. t.i * q__2.r;
  763. d__.r = q__1.r, d__.i = q__1.i;
  764. i__1 = k + invd * work_dim1;
  765. c_div(&q__1, &akp1, &d__);
  766. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  767. i__1 = k + 1 + (invd + 1) * work_dim1;
  768. c_div(&q__1, &ak, &d__);
  769. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  770. i__1 = k + (invd + 1) * work_dim1;
  771. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  772. c_div(&q__1, &q__2, &d__);
  773. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  774. i__1 = k + 1 + invd * work_dim1;
  775. i__2 = k + (invd + 1) * work_dim1;
  776. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  777. ++k;
  778. }
  779. ++k;
  780. }
  781. /* inv(U**T) = (inv(U))**T */
  782. /* inv(U**T) * inv(D) * inv(U) */
  783. cut = *n;
  784. while(cut > 0) {
  785. nnb = *nb;
  786. if (cut <= nnb) {
  787. nnb = cut;
  788. } else {
  789. icount = 0;
  790. /* count negative elements, */
  791. i__1 = cut;
  792. for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) {
  793. if (ipiv[i__] < 0) {
  794. ++icount;
  795. }
  796. }
  797. /* need a even number for a clear cut */
  798. if (icount % 2 == 1) {
  799. ++nnb;
  800. }
  801. }
  802. cut -= nnb;
  803. /* U01 Block */
  804. i__1 = cut;
  805. for (i__ = 1; i__ <= i__1; ++i__) {
  806. i__2 = nnb;
  807. for (j = 1; j <= i__2; ++j) {
  808. i__3 = i__ + j * work_dim1;
  809. i__4 = i__ + (cut + j) * a_dim1;
  810. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  811. }
  812. }
  813. /* U11 Block */
  814. i__1 = nnb;
  815. for (i__ = 1; i__ <= i__1; ++i__) {
  816. i__2 = u11 + i__ + i__ * work_dim1;
  817. work[i__2].r = 1.f, work[i__2].i = 0.f;
  818. i__2 = i__ - 1;
  819. for (j = 1; j <= i__2; ++j) {
  820. i__3 = u11 + i__ + j * work_dim1;
  821. work[i__3].r = 0.f, work[i__3].i = 0.f;
  822. }
  823. i__2 = nnb;
  824. for (j = i__ + 1; j <= i__2; ++j) {
  825. i__3 = u11 + i__ + j * work_dim1;
  826. i__4 = cut + i__ + (cut + j) * a_dim1;
  827. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  828. }
  829. }
  830. /* invD * U01 */
  831. i__ = 1;
  832. while(i__ <= cut) {
  833. if (ipiv[i__] > 0) {
  834. i__1 = nnb;
  835. for (j = 1; j <= i__1; ++j) {
  836. i__2 = i__ + j * work_dim1;
  837. i__3 = i__ + invd * work_dim1;
  838. i__4 = i__ + j * work_dim1;
  839. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  840. work[i__4].i, q__1.i = work[i__3].r * work[
  841. i__4].i + work[i__3].i * work[i__4].r;
  842. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  843. }
  844. } else {
  845. i__1 = nnb;
  846. for (j = 1; j <= i__1; ++j) {
  847. i__2 = i__ + j * work_dim1;
  848. u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
  849. .i;
  850. i__2 = i__ + 1 + j * work_dim1;
  851. u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
  852. i__2].i;
  853. i__2 = i__ + j * work_dim1;
  854. i__3 = i__ + invd * work_dim1;
  855. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  856. u01_i_j__.i, q__2.i = work[i__3].r *
  857. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  858. i__4 = i__ + (invd + 1) * work_dim1;
  859. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  860. u01_ip1_j__.i, q__3.i = work[i__4].r *
  861. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  862. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  863. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  864. i__2 = i__ + 1 + j * work_dim1;
  865. i__3 = i__ + 1 + invd * work_dim1;
  866. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  867. u01_i_j__.i, q__2.i = work[i__3].r *
  868. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  869. i__4 = i__ + 1 + (invd + 1) * work_dim1;
  870. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  871. u01_ip1_j__.i, q__3.i = work[i__4].r *
  872. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  873. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  874. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  875. }
  876. ++i__;
  877. }
  878. ++i__;
  879. }
  880. /* invD1 * U11 */
  881. i__ = 1;
  882. while(i__ <= nnb) {
  883. if (ipiv[cut + i__] > 0) {
  884. i__1 = nnb;
  885. for (j = i__; j <= i__1; ++j) {
  886. i__2 = u11 + i__ + j * work_dim1;
  887. i__3 = cut + i__ + invd * work_dim1;
  888. i__4 = u11 + i__ + j * work_dim1;
  889. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  890. work[i__4].i, q__1.i = work[i__3].r * work[
  891. i__4].i + work[i__3].i * work[i__4].r;
  892. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  893. }
  894. } else {
  895. i__1 = nnb;
  896. for (j = i__; j <= i__1; ++j) {
  897. i__2 = u11 + i__ + j * work_dim1;
  898. u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
  899. .i;
  900. i__2 = u11 + i__ + 1 + j * work_dim1;
  901. u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
  902. i__2].i;
  903. i__2 = u11 + i__ + j * work_dim1;
  904. i__3 = cut + i__ + invd * work_dim1;
  905. i__4 = u11 + i__ + j * work_dim1;
  906. q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
  907. work[i__4].i, q__2.i = work[i__3].r * work[
  908. i__4].i + work[i__3].i * work[i__4].r;
  909. i__5 = cut + i__ + (invd + 1) * work_dim1;
  910. i__6 = u11 + i__ + 1 + j * work_dim1;
  911. q__3.r = work[i__5].r * work[i__6].r - work[i__5].i *
  912. work[i__6].i, q__3.i = work[i__5].r * work[
  913. i__6].i + work[i__5].i * work[i__6].r;
  914. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  915. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  916. i__2 = u11 + i__ + 1 + j * work_dim1;
  917. i__3 = cut + i__ + 1 + invd * work_dim1;
  918. q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
  919. u11_i_j__.i, q__2.i = work[i__3].r *
  920. u11_i_j__.i + work[i__3].i * u11_i_j__.r;
  921. i__4 = cut + i__ + 1 + (invd + 1) * work_dim1;
  922. q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
  923. u11_ip1_j__.i, q__3.i = work[i__4].r *
  924. u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
  925. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  926. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  927. }
  928. ++i__;
  929. }
  930. ++i__;
  931. }
  932. /* U11**T * invD1 * U11 -> U11 */
  933. i__1 = *n + *nb + 1;
  934. ctrmm_("L", "U", "T", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut +
  935. 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  936. i__1 = nnb;
  937. for (i__ = 1; i__ <= i__1; ++i__) {
  938. i__2 = nnb;
  939. for (j = i__; j <= i__2; ++j) {
  940. i__3 = cut + i__ + (cut + j) * a_dim1;
  941. i__4 = u11 + i__ + j * work_dim1;
  942. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  943. }
  944. }
  945. /* U01**T * invD * U01 -> A( CUT+I, CUT+J ) */
  946. i__1 = *n + *nb + 1;
  947. i__2 = *n + *nb + 1;
  948. cgemm_("T", "N", &nnb, &nnb, &cut, &c_b1, &a[(cut + 1) * a_dim1 +
  949. 1], lda, &work[work_offset], &i__1, &c_b2, &work[u11 + 1
  950. + work_dim1], &i__2);
  951. /* U11 = U11**T * invD1 * U11 + U01**T * invD * U01 */
  952. i__1 = nnb;
  953. for (i__ = 1; i__ <= i__1; ++i__) {
  954. i__2 = nnb;
  955. for (j = i__; j <= i__2; ++j) {
  956. i__3 = cut + i__ + (cut + j) * a_dim1;
  957. i__4 = cut + i__ + (cut + j) * a_dim1;
  958. i__5 = u11 + i__ + j * work_dim1;
  959. q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i +
  960. work[i__5].i;
  961. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  962. }
  963. }
  964. /* U01 = U00**T * invD0 * U01 */
  965. i__1 = *n + *nb + 1;
  966. ctrmm_("L", uplo, "T", "U", &cut, &nnb, &c_b1, &a[a_offset], lda,
  967. &work[work_offset], &i__1);
  968. /* Update U01 */
  969. i__1 = cut;
  970. for (i__ = 1; i__ <= i__1; ++i__) {
  971. i__2 = nnb;
  972. for (j = 1; j <= i__2; ++j) {
  973. i__3 = i__ + (cut + j) * a_dim1;
  974. i__4 = i__ + j * work_dim1;
  975. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  976. }
  977. }
  978. /* Next Block */
  979. }
  980. /* Apply PERMUTATIONS P and P**T: */
  981. /* P * inv(U**T) * inv(D) * inv(U) * P**T. */
  982. /* Interchange rows and columns I and IPIV(I) in reverse order */
  983. /* from the formation order of IPIV vector for Upper case. */
  984. /* ( We can use a loop over IPIV with increment 1, */
  985. /* since the ABS value of IPIV(I) represents the row (column) */
  986. /* index of the interchange with row (column) i in both 1x1 */
  987. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  988. /* for 1x1 and 2x2 pivot cases ) */
  989. i__1 = *n;
  990. for (i__ = 1; i__ <= i__1; ++i__) {
  991. ip = (i__2 = ipiv[i__], abs(i__2));
  992. if (ip != i__) {
  993. if (i__ < ip) {
  994. csyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  995. }
  996. if (i__ > ip) {
  997. csyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  998. }
  999. }
  1000. }
  1001. } else {
  1002. /* Begin Lower */
  1003. /* inv A = P * inv(L**T) * inv(D) * inv(L) * P**T. */
  1004. ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
  1005. /* inv(D) and inv(D) * inv(L) */
  1006. k = *n;
  1007. while(k >= 1) {
  1008. if (ipiv[k] > 0) {
  1009. /* 1 x 1 diagonal NNB */
  1010. i__1 = k + invd * work_dim1;
  1011. c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
  1012. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1013. i__1 = k + (invd + 1) * work_dim1;
  1014. work[i__1].r = 0.f, work[i__1].i = 0.f;
  1015. } else {
  1016. /* 2 x 2 diagonal NNB */
  1017. i__1 = k - 1 + work_dim1;
  1018. t.r = work[i__1].r, t.i = work[i__1].i;
  1019. c_div(&q__1, &a[k - 1 + (k - 1) * a_dim1], &t);
  1020. ak.r = q__1.r, ak.i = q__1.i;
  1021. c_div(&q__1, &a[k + k * a_dim1], &t);
  1022. akp1.r = q__1.r, akp1.i = q__1.i;
  1023. c_div(&q__1, &work[k - 1 + work_dim1], &t);
  1024. akkp1.r = q__1.r, akkp1.i = q__1.i;
  1025. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r *
  1026. akp1.i + ak.i * akp1.r;
  1027. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  1028. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i +
  1029. t.i * q__2.r;
  1030. d__.r = q__1.r, d__.i = q__1.i;
  1031. i__1 = k - 1 + invd * work_dim1;
  1032. c_div(&q__1, &akp1, &d__);
  1033. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1034. i__1 = k + invd * work_dim1;
  1035. c_div(&q__1, &ak, &d__);
  1036. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1037. i__1 = k + (invd + 1) * work_dim1;
  1038. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  1039. c_div(&q__1, &q__2, &d__);
  1040. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1041. i__1 = k - 1 + (invd + 1) * work_dim1;
  1042. i__2 = k + (invd + 1) * work_dim1;
  1043. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1044. --k;
  1045. }
  1046. --k;
  1047. }
  1048. /* inv(L**T) = (inv(L))**T */
  1049. /* inv(L**T) * inv(D) * inv(L) */
  1050. cut = 0;
  1051. while(cut < *n) {
  1052. nnb = *nb;
  1053. if (cut + nnb > *n) {
  1054. nnb = *n - cut;
  1055. } else {
  1056. icount = 0;
  1057. /* count negative elements, */
  1058. i__1 = cut + nnb;
  1059. for (i__ = cut + 1; i__ <= i__1; ++i__) {
  1060. if (ipiv[i__] < 0) {
  1061. ++icount;
  1062. }
  1063. }
  1064. /* need a even number for a clear cut */
  1065. if (icount % 2 == 1) {
  1066. ++nnb;
  1067. }
  1068. }
  1069. /* L21 Block */
  1070. i__1 = *n - cut - nnb;
  1071. for (i__ = 1; i__ <= i__1; ++i__) {
  1072. i__2 = nnb;
  1073. for (j = 1; j <= i__2; ++j) {
  1074. i__3 = i__ + j * work_dim1;
  1075. i__4 = cut + nnb + i__ + (cut + j) * a_dim1;
  1076. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  1077. }
  1078. }
  1079. /* L11 Block */
  1080. i__1 = nnb;
  1081. for (i__ = 1; i__ <= i__1; ++i__) {
  1082. i__2 = u11 + i__ + i__ * work_dim1;
  1083. work[i__2].r = 1.f, work[i__2].i = 0.f;
  1084. i__2 = nnb;
  1085. for (j = i__ + 1; j <= i__2; ++j) {
  1086. i__3 = u11 + i__ + j * work_dim1;
  1087. work[i__3].r = 0.f, work[i__3].i = 0.f;
  1088. }
  1089. i__2 = i__ - 1;
  1090. for (j = 1; j <= i__2; ++j) {
  1091. i__3 = u11 + i__ + j * work_dim1;
  1092. i__4 = cut + i__ + (cut + j) * a_dim1;
  1093. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  1094. }
  1095. }
  1096. /* invD*L21 */
  1097. i__ = *n - cut - nnb;
  1098. while(i__ >= 1) {
  1099. if (ipiv[cut + nnb + i__] > 0) {
  1100. i__1 = nnb;
  1101. for (j = 1; j <= i__1; ++j) {
  1102. i__2 = i__ + j * work_dim1;
  1103. i__3 = cut + nnb + i__ + invd * work_dim1;
  1104. i__4 = i__ + j * work_dim1;
  1105. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1106. work[i__4].i, q__1.i = work[i__3].r * work[
  1107. i__4].i + work[i__3].i * work[i__4].r;
  1108. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1109. }
  1110. } else {
  1111. i__1 = nnb;
  1112. for (j = 1; j <= i__1; ++j) {
  1113. i__2 = i__ + j * work_dim1;
  1114. u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
  1115. .i;
  1116. i__2 = i__ - 1 + j * work_dim1;
  1117. u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
  1118. i__2].i;
  1119. i__2 = i__ + j * work_dim1;
  1120. i__3 = cut + nnb + i__ + invd * work_dim1;
  1121. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  1122. u01_i_j__.i, q__2.i = work[i__3].r *
  1123. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  1124. i__4 = cut + nnb + i__ + (invd + 1) * work_dim1;
  1125. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  1126. u01_ip1_j__.i, q__3.i = work[i__4].r *
  1127. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  1128. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1129. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1130. i__2 = i__ - 1 + j * work_dim1;
  1131. i__3 = cut + nnb + i__ - 1 + (invd + 1) * work_dim1;
  1132. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  1133. u01_i_j__.i, q__2.i = work[i__3].r *
  1134. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  1135. i__4 = cut + nnb + i__ - 1 + invd * work_dim1;
  1136. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  1137. u01_ip1_j__.i, q__3.i = work[i__4].r *
  1138. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  1139. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1140. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1141. }
  1142. --i__;
  1143. }
  1144. --i__;
  1145. }
  1146. /* invD1*L11 */
  1147. i__ = nnb;
  1148. while(i__ >= 1) {
  1149. if (ipiv[cut + i__] > 0) {
  1150. i__1 = nnb;
  1151. for (j = 1; j <= i__1; ++j) {
  1152. i__2 = u11 + i__ + j * work_dim1;
  1153. i__3 = cut + i__ + invd * work_dim1;
  1154. i__4 = u11 + i__ + j * work_dim1;
  1155. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1156. work[i__4].i, q__1.i = work[i__3].r * work[
  1157. i__4].i + work[i__3].i * work[i__4].r;
  1158. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1159. }
  1160. } else {
  1161. i__1 = nnb;
  1162. for (j = 1; j <= i__1; ++j) {
  1163. i__2 = u11 + i__ + j * work_dim1;
  1164. u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
  1165. .i;
  1166. i__2 = u11 + i__ - 1 + j * work_dim1;
  1167. u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
  1168. i__2].i;
  1169. i__2 = u11 + i__ + j * work_dim1;
  1170. i__3 = cut + i__ + invd * work_dim1;
  1171. i__4 = u11 + i__ + j * work_dim1;
  1172. q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1173. work[i__4].i, q__2.i = work[i__3].r * work[
  1174. i__4].i + work[i__3].i * work[i__4].r;
  1175. i__5 = cut + i__ + (invd + 1) * work_dim1;
  1176. q__3.r = work[i__5].r * u11_ip1_j__.r - work[i__5].i *
  1177. u11_ip1_j__.i, q__3.i = work[i__5].r *
  1178. u11_ip1_j__.i + work[i__5].i * u11_ip1_j__.r;
  1179. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1180. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1181. i__2 = u11 + i__ - 1 + j * work_dim1;
  1182. i__3 = cut + i__ - 1 + (invd + 1) * work_dim1;
  1183. q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
  1184. u11_i_j__.i, q__2.i = work[i__3].r *
  1185. u11_i_j__.i + work[i__3].i * u11_i_j__.r;
  1186. i__4 = cut + i__ - 1 + invd * work_dim1;
  1187. q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
  1188. u11_ip1_j__.i, q__3.i = work[i__4].r *
  1189. u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
  1190. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1191. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1192. }
  1193. --i__;
  1194. }
  1195. --i__;
  1196. }
  1197. /* L11**T * invD1 * L11 -> L11 */
  1198. i__1 = *n + *nb + 1;
  1199. ctrmm_("L", uplo, "T", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut
  1200. + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  1201. i__1 = nnb;
  1202. for (i__ = 1; i__ <= i__1; ++i__) {
  1203. i__2 = i__;
  1204. for (j = 1; j <= i__2; ++j) {
  1205. i__3 = cut + i__ + (cut + j) * a_dim1;
  1206. i__4 = u11 + i__ + j * work_dim1;
  1207. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1208. }
  1209. }
  1210. if (cut + nnb < *n) {
  1211. /* L21**T * invD2*L21 -> A( CUT+I, CUT+J ) */
  1212. i__1 = *n - nnb - cut;
  1213. i__2 = *n + *nb + 1;
  1214. i__3 = *n + *nb + 1;
  1215. cgemm_("T", "N", &nnb, &nnb, &i__1, &c_b1, &a[cut + nnb + 1 +
  1216. (cut + 1) * a_dim1], lda, &work[work_offset], &i__2, &
  1217. c_b2, &work[u11 + 1 + work_dim1], &i__3);
  1218. /* L11 = L11**T * invD1 * L11 + U01**T * invD * U01 */
  1219. i__1 = nnb;
  1220. for (i__ = 1; i__ <= i__1; ++i__) {
  1221. i__2 = i__;
  1222. for (j = 1; j <= i__2; ++j) {
  1223. i__3 = cut + i__ + (cut + j) * a_dim1;
  1224. i__4 = cut + i__ + (cut + j) * a_dim1;
  1225. i__5 = u11 + i__ + j * work_dim1;
  1226. q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i
  1227. + work[i__5].i;
  1228. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1229. }
  1230. }
  1231. /* L01 = L22**T * invD2 * L21 */
  1232. i__1 = *n - nnb - cut;
  1233. i__2 = *n + *nb + 1;
  1234. ctrmm_("L", uplo, "T", "U", &i__1, &nnb, &c_b1, &a[cut + nnb
  1235. + 1 + (cut + nnb + 1) * a_dim1], lda, &work[
  1236. work_offset], &i__2);
  1237. /* Update L21 */
  1238. i__1 = *n - cut - nnb;
  1239. for (i__ = 1; i__ <= i__1; ++i__) {
  1240. i__2 = nnb;
  1241. for (j = 1; j <= i__2; ++j) {
  1242. i__3 = cut + nnb + i__ + (cut + j) * a_dim1;
  1243. i__4 = i__ + j * work_dim1;
  1244. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1245. }
  1246. }
  1247. } else {
  1248. /* L11 = L11**T * invD1 * L11 */
  1249. i__1 = nnb;
  1250. for (i__ = 1; i__ <= i__1; ++i__) {
  1251. i__2 = i__;
  1252. for (j = 1; j <= i__2; ++j) {
  1253. i__3 = cut + i__ + (cut + j) * a_dim1;
  1254. i__4 = u11 + i__ + j * work_dim1;
  1255. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1256. }
  1257. }
  1258. }
  1259. /* Next Block */
  1260. cut += nnb;
  1261. }
  1262. /* Apply PERMUTATIONS P and P**T: */
  1263. /* P * inv(L**T) * inv(D) * inv(L) * P**T. */
  1264. /* Interchange rows and columns I and IPIV(I) in reverse order */
  1265. /* from the formation order of IPIV vector for Lower case. */
  1266. /* ( We can use a loop over IPIV with increment -1, */
  1267. /* since the ABS value of IPIV(I) represents the row (column) */
  1268. /* index of the interchange with row (column) i in both 1x1 */
  1269. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  1270. /* for 1x1 and 2x2 pivot cases ) */
  1271. for (i__ = *n; i__ >= 1; --i__) {
  1272. ip = (i__1 = ipiv[i__], abs(i__1));
  1273. if (ip != i__) {
  1274. if (i__ < ip) {
  1275. csyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  1276. }
  1277. if (i__ > ip) {
  1278. csyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  1279. }
  1280. }
  1281. }
  1282. }
  1283. return;
  1284. /* End of CSYTRI_3X */
  1285. } /* csytri_3x__ */