You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetri_3x.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static complex c_b2 = {0.f,0.f};
  488. /* > \brief \b CHETRI_3X */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CHETRI_3X + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_
  495. 3x.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_
  498. 3x.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_
  501. 3x.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N, NB */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > CHETRI_3X computes the inverse of a complex Hermitian indefinite */
  516. /* > matrix A using the factorization computed by CHETRF_RK or CHETRF_BK: */
  517. /* > */
  518. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  519. /* > */
  520. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  521. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  522. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  523. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the details of the factorization are */
  533. /* > stored as an upper or lower triangular matrix. */
  534. /* > = 'U': Upper triangle of A is stored; */
  535. /* > = 'L': Lower triangle of A is stored. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX array, dimension (LDA,N) */
  547. /* > On entry, diagonal of the block diagonal matrix D and */
  548. /* > factors U or L as computed by CHETRF_RK and CHETRF_BK: */
  549. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  550. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  551. /* > (superdiagonal (or subdiagonal) elements of D */
  552. /* > should be provided on entry in array E), and */
  553. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  554. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  555. /* > */
  556. /* > On exit, if INFO = 0, the Hermitian inverse of the original */
  557. /* > matrix. */
  558. /* > If UPLO = 'U': the upper triangular part of the inverse */
  559. /* > is formed and the part of A below the diagonal is not */
  560. /* > referenced; */
  561. /* > If UPLO = 'L': the lower triangular part of the inverse */
  562. /* > is formed and the part of A above the diagonal is not */
  563. /* > referenced. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] E */
  573. /* > \verbatim */
  574. /* > E is COMPLEX array, dimension (N) */
  575. /* > On entry, contains the superdiagonal (or subdiagonal) */
  576. /* > elements of the Hermitian block diagonal matrix D */
  577. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  578. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced; */
  579. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced. */
  580. /* > */
  581. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  582. /* > 1 <= k <= N, the element E(k) is not referenced in both */
  583. /* > UPLO = 'U' or UPLO = 'L' cases. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D */
  590. /* > as determined by CHETRF_RK or CHETRF_BK. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] WORK */
  594. /* > \verbatim */
  595. /* > WORK is COMPLEX array, dimension (N+NB+1,NB+3). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] NB */
  599. /* > \verbatim */
  600. /* > NB is INTEGER */
  601. /* > Block size. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] INFO */
  605. /* > \verbatim */
  606. /* > INFO is INTEGER */
  607. /* > = 0: successful exit */
  608. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  609. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  610. /* > inverse could not be computed. */
  611. /* > \endverbatim */
  612. /* Authors: */
  613. /* ======== */
  614. /* > \author Univ. of Tennessee */
  615. /* > \author Univ. of California Berkeley */
  616. /* > \author Univ. of Colorado Denver */
  617. /* > \author NAG Ltd. */
  618. /* > \date June 2017 */
  619. /* > \ingroup complexHEcomputational */
  620. /* > \par Contributors: */
  621. /* ================== */
  622. /* > \verbatim */
  623. /* > */
  624. /* > June 2017, Igor Kozachenko, */
  625. /* > Computer Science Division, */
  626. /* > University of California, Berkeley */
  627. /* > */
  628. /* > \endverbatim */
  629. /* ===================================================================== */
  630. /* Subroutine */ void chetri_3x_(char *uplo, integer *n, complex *a, integer *
  631. lda, complex *e, integer *ipiv, complex *work, integer *nb, integer *
  632. info)
  633. {
  634. /* System generated locals */
  635. integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4,
  636. i__5, i__6;
  637. real r__1;
  638. complex q__1, q__2, q__3;
  639. /* Local variables */
  640. integer invd;
  641. extern /* Subroutine */ void cheswapr_(char *, integer *, complex *,
  642. integer *, integer *, integer *);
  643. complex akkp1, d__;
  644. integer i__, j, k;
  645. real t;
  646. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  647. integer *, complex *, complex *, integer *, complex *, integer *,
  648. complex *, complex *, integer *);
  649. extern logical lsame_(char *, char *);
  650. extern /* Subroutine */ void ctrmm_(char *, char *, char *, char *,
  651. integer *, integer *, complex *, complex *, integer *, complex *,
  652. integer *);
  653. logical upper;
  654. real ak;
  655. complex u01_i_j__;
  656. integer u11;
  657. complex u11_i_j__;
  658. integer ip;
  659. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  660. integer icount;
  661. extern /* Subroutine */ int ctrtri_(char *, char *, integer *, complex *,
  662. integer *, integer *);
  663. integer nnb, cut;
  664. real akp1;
  665. complex u01_ip1_j__, u11_ip1_j__;
  666. /* -- LAPACK computational routine (version 3.7.1) -- */
  667. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  668. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  669. /* June 2017 */
  670. /* ===================================================================== */
  671. /* Test the input parameters. */
  672. /* Parameter adjustments */
  673. a_dim1 = *lda;
  674. a_offset = 1 + a_dim1 * 1;
  675. a -= a_offset;
  676. --e;
  677. --ipiv;
  678. work_dim1 = *n + *nb + 1;
  679. work_offset = 1 + work_dim1 * 1;
  680. work -= work_offset;
  681. /* Function Body */
  682. *info = 0;
  683. upper = lsame_(uplo, "U");
  684. if (! upper && ! lsame_(uplo, "L")) {
  685. *info = -1;
  686. } else if (*n < 0) {
  687. *info = -2;
  688. } else if (*lda < f2cmax(1,*n)) {
  689. *info = -4;
  690. }
  691. /* Quick return if possible */
  692. if (*info != 0) {
  693. i__1 = -(*info);
  694. xerbla_("CHETRI_3X", &i__1, (ftnlen)9);
  695. return;
  696. }
  697. if (*n == 0) {
  698. return;
  699. }
  700. /* Workspace got Non-diag elements of D */
  701. i__1 = *n;
  702. for (k = 1; k <= i__1; ++k) {
  703. i__2 = k + work_dim1;
  704. i__3 = k;
  705. work[i__2].r = e[i__3].r, work[i__2].i = e[i__3].i;
  706. }
  707. /* Check that the diagonal matrix D is nonsingular. */
  708. if (upper) {
  709. /* Upper triangular storage: examine D from bottom to top */
  710. for (*info = *n; *info >= 1; --(*info)) {
  711. i__1 = *info + *info * a_dim1;
  712. if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
  713. return;
  714. }
  715. }
  716. } else {
  717. /* Lower triangular storage: examine D from top to bottom. */
  718. i__1 = *n;
  719. for (*info = 1; *info <= i__1; ++(*info)) {
  720. i__2 = *info + *info * a_dim1;
  721. if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
  722. return;
  723. }
  724. }
  725. }
  726. *info = 0;
  727. /* Splitting Workspace */
  728. /* U01 is a block ( N, NB+1 ) */
  729. /* The first element of U01 is in WORK( 1, 1 ) */
  730. /* U11 is a block ( NB+1, NB+1 ) */
  731. /* The first element of U11 is in WORK( N+1, 1 ) */
  732. u11 = *n;
  733. /* INVD is a block ( N, 2 ) */
  734. /* The first element of INVD is in WORK( 1, INVD ) */
  735. invd = *nb + 2;
  736. if (upper) {
  737. /* Begin Upper */
  738. /* invA = P * inv(U**H) * inv(D) * inv(U) * P**T. */
  739. ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
  740. /* inv(D) and inv(D) * inv(U) */
  741. k = 1;
  742. while(k <= *n) {
  743. if (ipiv[k] > 0) {
  744. /* 1 x 1 diagonal NNB */
  745. i__1 = k + invd * work_dim1;
  746. i__2 = k + k * a_dim1;
  747. r__1 = 1.f / a[i__2].r;
  748. work[i__1].r = r__1, work[i__1].i = 0.f;
  749. i__1 = k + (invd + 1) * work_dim1;
  750. work[i__1].r = 0.f, work[i__1].i = 0.f;
  751. } else {
  752. /* 2 x 2 diagonal NNB */
  753. t = c_abs(&work[k + 1 + work_dim1]);
  754. i__1 = k + k * a_dim1;
  755. ak = a[i__1].r / t;
  756. i__1 = k + 1 + (k + 1) * a_dim1;
  757. akp1 = a[i__1].r / t;
  758. i__1 = k + 1 + work_dim1;
  759. q__1.r = work[i__1].r / t, q__1.i = work[i__1].i / t;
  760. akkp1.r = q__1.r, akkp1.i = q__1.i;
  761. r__1 = ak * akp1;
  762. q__2.r = r__1 - 1.f, q__2.i = 0.f;
  763. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  764. d__.r = q__1.r, d__.i = q__1.i;
  765. i__1 = k + invd * work_dim1;
  766. q__2.r = akp1, q__2.i = 0.f;
  767. c_div(&q__1, &q__2, &d__);
  768. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  769. i__1 = k + 1 + (invd + 1) * work_dim1;
  770. q__2.r = ak, q__2.i = 0.f;
  771. c_div(&q__1, &q__2, &d__);
  772. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  773. i__1 = k + (invd + 1) * work_dim1;
  774. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  775. c_div(&q__1, &q__2, &d__);
  776. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  777. i__1 = k + 1 + invd * work_dim1;
  778. r_cnjg(&q__1, &work[k + (invd + 1) * work_dim1]);
  779. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  780. ++k;
  781. }
  782. ++k;
  783. }
  784. /* inv(U**H) = (inv(U))**H */
  785. /* inv(U**H) * inv(D) * inv(U) */
  786. cut = *n;
  787. while(cut > 0) {
  788. nnb = *nb;
  789. if (cut <= nnb) {
  790. nnb = cut;
  791. } else {
  792. icount = 0;
  793. /* count negative elements, */
  794. i__1 = cut;
  795. for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) {
  796. if (ipiv[i__] < 0) {
  797. ++icount;
  798. }
  799. }
  800. /* need a even number for a clear cut */
  801. if (icount % 2 == 1) {
  802. ++nnb;
  803. }
  804. }
  805. cut -= nnb;
  806. /* U01 Block */
  807. i__1 = cut;
  808. for (i__ = 1; i__ <= i__1; ++i__) {
  809. i__2 = nnb;
  810. for (j = 1; j <= i__2; ++j) {
  811. i__3 = i__ + j * work_dim1;
  812. i__4 = i__ + (cut + j) * a_dim1;
  813. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  814. }
  815. }
  816. /* U11 Block */
  817. i__1 = nnb;
  818. for (i__ = 1; i__ <= i__1; ++i__) {
  819. i__2 = u11 + i__ + i__ * work_dim1;
  820. work[i__2].r = 1.f, work[i__2].i = 0.f;
  821. i__2 = i__ - 1;
  822. for (j = 1; j <= i__2; ++j) {
  823. i__3 = u11 + i__ + j * work_dim1;
  824. work[i__3].r = 0.f, work[i__3].i = 0.f;
  825. }
  826. i__2 = nnb;
  827. for (j = i__ + 1; j <= i__2; ++j) {
  828. i__3 = u11 + i__ + j * work_dim1;
  829. i__4 = cut + i__ + (cut + j) * a_dim1;
  830. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  831. }
  832. }
  833. /* invD * U01 */
  834. i__ = 1;
  835. while(i__ <= cut) {
  836. if (ipiv[i__] > 0) {
  837. i__1 = nnb;
  838. for (j = 1; j <= i__1; ++j) {
  839. i__2 = i__ + j * work_dim1;
  840. i__3 = i__ + invd * work_dim1;
  841. i__4 = i__ + j * work_dim1;
  842. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  843. work[i__4].i, q__1.i = work[i__3].r * work[
  844. i__4].i + work[i__3].i * work[i__4].r;
  845. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  846. }
  847. } else {
  848. i__1 = nnb;
  849. for (j = 1; j <= i__1; ++j) {
  850. i__2 = i__ + j * work_dim1;
  851. u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
  852. .i;
  853. i__2 = i__ + 1 + j * work_dim1;
  854. u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
  855. i__2].i;
  856. i__2 = i__ + j * work_dim1;
  857. i__3 = i__ + invd * work_dim1;
  858. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  859. u01_i_j__.i, q__2.i = work[i__3].r *
  860. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  861. i__4 = i__ + (invd + 1) * work_dim1;
  862. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  863. u01_ip1_j__.i, q__3.i = work[i__4].r *
  864. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  865. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  866. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  867. i__2 = i__ + 1 + j * work_dim1;
  868. i__3 = i__ + 1 + invd * work_dim1;
  869. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  870. u01_i_j__.i, q__2.i = work[i__3].r *
  871. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  872. i__4 = i__ + 1 + (invd + 1) * work_dim1;
  873. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  874. u01_ip1_j__.i, q__3.i = work[i__4].r *
  875. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  876. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  877. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  878. }
  879. ++i__;
  880. }
  881. ++i__;
  882. }
  883. /* invD1 * U11 */
  884. i__ = 1;
  885. while(i__ <= nnb) {
  886. if (ipiv[cut + i__] > 0) {
  887. i__1 = nnb;
  888. for (j = i__; j <= i__1; ++j) {
  889. i__2 = u11 + i__ + j * work_dim1;
  890. i__3 = cut + i__ + invd * work_dim1;
  891. i__4 = u11 + i__ + j * work_dim1;
  892. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  893. work[i__4].i, q__1.i = work[i__3].r * work[
  894. i__4].i + work[i__3].i * work[i__4].r;
  895. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  896. }
  897. } else {
  898. i__1 = nnb;
  899. for (j = i__; j <= i__1; ++j) {
  900. i__2 = u11 + i__ + j * work_dim1;
  901. u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
  902. .i;
  903. i__2 = u11 + i__ + 1 + j * work_dim1;
  904. u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
  905. i__2].i;
  906. i__2 = u11 + i__ + j * work_dim1;
  907. i__3 = cut + i__ + invd * work_dim1;
  908. i__4 = u11 + i__ + j * work_dim1;
  909. q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
  910. work[i__4].i, q__2.i = work[i__3].r * work[
  911. i__4].i + work[i__3].i * work[i__4].r;
  912. i__5 = cut + i__ + (invd + 1) * work_dim1;
  913. i__6 = u11 + i__ + 1 + j * work_dim1;
  914. q__3.r = work[i__5].r * work[i__6].r - work[i__5].i *
  915. work[i__6].i, q__3.i = work[i__5].r * work[
  916. i__6].i + work[i__5].i * work[i__6].r;
  917. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  918. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  919. i__2 = u11 + i__ + 1 + j * work_dim1;
  920. i__3 = cut + i__ + 1 + invd * work_dim1;
  921. q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
  922. u11_i_j__.i, q__2.i = work[i__3].r *
  923. u11_i_j__.i + work[i__3].i * u11_i_j__.r;
  924. i__4 = cut + i__ + 1 + (invd + 1) * work_dim1;
  925. q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
  926. u11_ip1_j__.i, q__3.i = work[i__4].r *
  927. u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
  928. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  929. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  930. }
  931. ++i__;
  932. }
  933. ++i__;
  934. }
  935. /* U11**H * invD1 * U11 -> U11 */
  936. i__1 = *n + *nb + 1;
  937. ctrmm_("L", "U", "C", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut +
  938. 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  939. i__1 = nnb;
  940. for (i__ = 1; i__ <= i__1; ++i__) {
  941. i__2 = nnb;
  942. for (j = i__; j <= i__2; ++j) {
  943. i__3 = cut + i__ + (cut + j) * a_dim1;
  944. i__4 = u11 + i__ + j * work_dim1;
  945. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  946. }
  947. }
  948. /* U01**H * invD * U01 -> A( CUT+I, CUT+J ) */
  949. i__1 = *n + *nb + 1;
  950. i__2 = *n + *nb + 1;
  951. cgemm_("C", "N", &nnb, &nnb, &cut, &c_b1, &a[(cut + 1) * a_dim1 +
  952. 1], lda, &work[work_offset], &i__1, &c_b2, &work[u11 + 1
  953. + work_dim1], &i__2);
  954. /* U11 = U11**H * invD1 * U11 + U01**H * invD * U01 */
  955. i__1 = nnb;
  956. for (i__ = 1; i__ <= i__1; ++i__) {
  957. i__2 = nnb;
  958. for (j = i__; j <= i__2; ++j) {
  959. i__3 = cut + i__ + (cut + j) * a_dim1;
  960. i__4 = cut + i__ + (cut + j) * a_dim1;
  961. i__5 = u11 + i__ + j * work_dim1;
  962. q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i +
  963. work[i__5].i;
  964. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  965. }
  966. }
  967. /* U01 = U00**H * invD0 * U01 */
  968. i__1 = *n + *nb + 1;
  969. ctrmm_("L", uplo, "C", "U", &cut, &nnb, &c_b1, &a[a_offset], lda,
  970. &work[work_offset], &i__1);
  971. /* Update U01 */
  972. i__1 = cut;
  973. for (i__ = 1; i__ <= i__1; ++i__) {
  974. i__2 = nnb;
  975. for (j = 1; j <= i__2; ++j) {
  976. i__3 = i__ + (cut + j) * a_dim1;
  977. i__4 = i__ + j * work_dim1;
  978. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  979. }
  980. }
  981. /* Next Block */
  982. }
  983. /* Apply PERMUTATIONS P and P**T: */
  984. /* P * inv(U**H) * inv(D) * inv(U) * P**T. */
  985. /* Interchange rows and columns I and IPIV(I) in reverse order */
  986. /* from the formation order of IPIV vector for Upper case. */
  987. /* ( We can use a loop over IPIV with increment 1, */
  988. /* since the ABS value of IPIV(I) represents the row (column) */
  989. /* index of the interchange with row (column) i in both 1x1 */
  990. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  991. /* for 1x1 and 2x2 pivot cases ) */
  992. i__1 = *n;
  993. for (i__ = 1; i__ <= i__1; ++i__) {
  994. ip = (i__2 = ipiv[i__], abs(i__2));
  995. if (ip != i__) {
  996. if (i__ < ip) {
  997. cheswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  998. }
  999. if (i__ > ip) {
  1000. cheswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  1001. }
  1002. }
  1003. }
  1004. } else {
  1005. /* Begin Lower */
  1006. /* inv A = P * inv(L**H) * inv(D) * inv(L) * P**T. */
  1007. ctrtri_(uplo, "U", n, &a[a_offset], lda, info);
  1008. /* inv(D) and inv(D) * inv(L) */
  1009. k = *n;
  1010. while(k >= 1) {
  1011. if (ipiv[k] > 0) {
  1012. /* 1 x 1 diagonal NNB */
  1013. i__1 = k + invd * work_dim1;
  1014. i__2 = k + k * a_dim1;
  1015. r__1 = 1.f / a[i__2].r;
  1016. work[i__1].r = r__1, work[i__1].i = 0.f;
  1017. i__1 = k + (invd + 1) * work_dim1;
  1018. work[i__1].r = 0.f, work[i__1].i = 0.f;
  1019. } else {
  1020. /* 2 x 2 diagonal NNB */
  1021. t = c_abs(&work[k - 1 + work_dim1]);
  1022. i__1 = k - 1 + (k - 1) * a_dim1;
  1023. ak = a[i__1].r / t;
  1024. i__1 = k + k * a_dim1;
  1025. akp1 = a[i__1].r / t;
  1026. i__1 = k - 1 + work_dim1;
  1027. q__1.r = work[i__1].r / t, q__1.i = work[i__1].i / t;
  1028. akkp1.r = q__1.r, akkp1.i = q__1.i;
  1029. r__1 = ak * akp1;
  1030. q__2.r = r__1 - 1.f, q__2.i = 0.f;
  1031. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1032. d__.r = q__1.r, d__.i = q__1.i;
  1033. i__1 = k - 1 + invd * work_dim1;
  1034. q__2.r = akp1, q__2.i = 0.f;
  1035. c_div(&q__1, &q__2, &d__);
  1036. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1037. i__1 = k + invd * work_dim1;
  1038. q__2.r = ak, q__2.i = 0.f;
  1039. c_div(&q__1, &q__2, &d__);
  1040. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1041. i__1 = k + (invd + 1) * work_dim1;
  1042. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  1043. c_div(&q__1, &q__2, &d__);
  1044. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1045. i__1 = k - 1 + (invd + 1) * work_dim1;
  1046. r_cnjg(&q__1, &work[k + (invd + 1) * work_dim1]);
  1047. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1048. --k;
  1049. }
  1050. --k;
  1051. }
  1052. /* inv(L**H) = (inv(L))**H */
  1053. /* inv(L**H) * inv(D) * inv(L) */
  1054. cut = 0;
  1055. while(cut < *n) {
  1056. nnb = *nb;
  1057. if (cut + nnb > *n) {
  1058. nnb = *n - cut;
  1059. } else {
  1060. icount = 0;
  1061. /* count negative elements, */
  1062. i__1 = cut + nnb;
  1063. for (i__ = cut + 1; i__ <= i__1; ++i__) {
  1064. if (ipiv[i__] < 0) {
  1065. ++icount;
  1066. }
  1067. }
  1068. /* need a even number for a clear cut */
  1069. if (icount % 2 == 1) {
  1070. ++nnb;
  1071. }
  1072. }
  1073. /* L21 Block */
  1074. i__1 = *n - cut - nnb;
  1075. for (i__ = 1; i__ <= i__1; ++i__) {
  1076. i__2 = nnb;
  1077. for (j = 1; j <= i__2; ++j) {
  1078. i__3 = i__ + j * work_dim1;
  1079. i__4 = cut + nnb + i__ + (cut + j) * a_dim1;
  1080. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  1081. }
  1082. }
  1083. /* L11 Block */
  1084. i__1 = nnb;
  1085. for (i__ = 1; i__ <= i__1; ++i__) {
  1086. i__2 = u11 + i__ + i__ * work_dim1;
  1087. work[i__2].r = 1.f, work[i__2].i = 0.f;
  1088. i__2 = nnb;
  1089. for (j = i__ + 1; j <= i__2; ++j) {
  1090. i__3 = u11 + i__ + j * work_dim1;
  1091. work[i__3].r = 0.f, work[i__3].i = 0.f;
  1092. }
  1093. i__2 = i__ - 1;
  1094. for (j = 1; j <= i__2; ++j) {
  1095. i__3 = u11 + i__ + j * work_dim1;
  1096. i__4 = cut + i__ + (cut + j) * a_dim1;
  1097. work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i;
  1098. }
  1099. }
  1100. /* invD*L21 */
  1101. i__ = *n - cut - nnb;
  1102. while(i__ >= 1) {
  1103. if (ipiv[cut + nnb + i__] > 0) {
  1104. i__1 = nnb;
  1105. for (j = 1; j <= i__1; ++j) {
  1106. i__2 = i__ + j * work_dim1;
  1107. i__3 = cut + nnb + i__ + invd * work_dim1;
  1108. i__4 = i__ + j * work_dim1;
  1109. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1110. work[i__4].i, q__1.i = work[i__3].r * work[
  1111. i__4].i + work[i__3].i * work[i__4].r;
  1112. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1113. }
  1114. } else {
  1115. i__1 = nnb;
  1116. for (j = 1; j <= i__1; ++j) {
  1117. i__2 = i__ + j * work_dim1;
  1118. u01_i_j__.r = work[i__2].r, u01_i_j__.i = work[i__2]
  1119. .i;
  1120. i__2 = i__ - 1 + j * work_dim1;
  1121. u01_ip1_j__.r = work[i__2].r, u01_ip1_j__.i = work[
  1122. i__2].i;
  1123. i__2 = i__ + j * work_dim1;
  1124. i__3 = cut + nnb + i__ + invd * work_dim1;
  1125. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  1126. u01_i_j__.i, q__2.i = work[i__3].r *
  1127. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  1128. i__4 = cut + nnb + i__ + (invd + 1) * work_dim1;
  1129. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  1130. u01_ip1_j__.i, q__3.i = work[i__4].r *
  1131. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  1132. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1133. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1134. i__2 = i__ - 1 + j * work_dim1;
  1135. i__3 = cut + nnb + i__ - 1 + (invd + 1) * work_dim1;
  1136. q__2.r = work[i__3].r * u01_i_j__.r - work[i__3].i *
  1137. u01_i_j__.i, q__2.i = work[i__3].r *
  1138. u01_i_j__.i + work[i__3].i * u01_i_j__.r;
  1139. i__4 = cut + nnb + i__ - 1 + invd * work_dim1;
  1140. q__3.r = work[i__4].r * u01_ip1_j__.r - work[i__4].i *
  1141. u01_ip1_j__.i, q__3.i = work[i__4].r *
  1142. u01_ip1_j__.i + work[i__4].i * u01_ip1_j__.r;
  1143. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1144. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1145. }
  1146. --i__;
  1147. }
  1148. --i__;
  1149. }
  1150. /* invD1*L11 */
  1151. i__ = nnb;
  1152. while(i__ >= 1) {
  1153. if (ipiv[cut + i__] > 0) {
  1154. i__1 = nnb;
  1155. for (j = 1; j <= i__1; ++j) {
  1156. i__2 = u11 + i__ + j * work_dim1;
  1157. i__3 = cut + i__ + invd * work_dim1;
  1158. i__4 = u11 + i__ + j * work_dim1;
  1159. q__1.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1160. work[i__4].i, q__1.i = work[i__3].r * work[
  1161. i__4].i + work[i__3].i * work[i__4].r;
  1162. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1163. }
  1164. } else {
  1165. i__1 = nnb;
  1166. for (j = 1; j <= i__1; ++j) {
  1167. i__2 = u11 + i__ + j * work_dim1;
  1168. u11_i_j__.r = work[i__2].r, u11_i_j__.i = work[i__2]
  1169. .i;
  1170. i__2 = u11 + i__ - 1 + j * work_dim1;
  1171. u11_ip1_j__.r = work[i__2].r, u11_ip1_j__.i = work[
  1172. i__2].i;
  1173. i__2 = u11 + i__ + j * work_dim1;
  1174. i__3 = cut + i__ + invd * work_dim1;
  1175. i__4 = u11 + i__ + j * work_dim1;
  1176. q__2.r = work[i__3].r * work[i__4].r - work[i__3].i *
  1177. work[i__4].i, q__2.i = work[i__3].r * work[
  1178. i__4].i + work[i__3].i * work[i__4].r;
  1179. i__5 = cut + i__ + (invd + 1) * work_dim1;
  1180. q__3.r = work[i__5].r * u11_ip1_j__.r - work[i__5].i *
  1181. u11_ip1_j__.i, q__3.i = work[i__5].r *
  1182. u11_ip1_j__.i + work[i__5].i * u11_ip1_j__.r;
  1183. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1184. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1185. i__2 = u11 + i__ - 1 + j * work_dim1;
  1186. i__3 = cut + i__ - 1 + (invd + 1) * work_dim1;
  1187. q__2.r = work[i__3].r * u11_i_j__.r - work[i__3].i *
  1188. u11_i_j__.i, q__2.i = work[i__3].r *
  1189. u11_i_j__.i + work[i__3].i * u11_i_j__.r;
  1190. i__4 = cut + i__ - 1 + invd * work_dim1;
  1191. q__3.r = work[i__4].r * u11_ip1_j__.r - work[i__4].i *
  1192. u11_ip1_j__.i, q__3.i = work[i__4].r *
  1193. u11_ip1_j__.i + work[i__4].i * u11_ip1_j__.r;
  1194. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1195. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1196. }
  1197. --i__;
  1198. }
  1199. --i__;
  1200. }
  1201. /* L11**H * invD1 * L11 -> L11 */
  1202. i__1 = *n + *nb + 1;
  1203. ctrmm_("L", uplo, "C", "U", &nnb, &nnb, &c_b1, &a[cut + 1 + (cut
  1204. + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1);
  1205. i__1 = nnb;
  1206. for (i__ = 1; i__ <= i__1; ++i__) {
  1207. i__2 = i__;
  1208. for (j = 1; j <= i__2; ++j) {
  1209. i__3 = cut + i__ + (cut + j) * a_dim1;
  1210. i__4 = u11 + i__ + j * work_dim1;
  1211. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1212. }
  1213. }
  1214. if (cut + nnb < *n) {
  1215. /* L21**H * invD2*L21 -> A( CUT+I, CUT+J ) */
  1216. i__1 = *n - nnb - cut;
  1217. i__2 = *n + *nb + 1;
  1218. i__3 = *n + *nb + 1;
  1219. cgemm_("C", "N", &nnb, &nnb, &i__1, &c_b1, &a[cut + nnb + 1 +
  1220. (cut + 1) * a_dim1], lda, &work[work_offset], &i__2, &
  1221. c_b2, &work[u11 + 1 + work_dim1], &i__3);
  1222. /* L11 = L11**H * invD1 * L11 + U01**H * invD * U01 */
  1223. i__1 = nnb;
  1224. for (i__ = 1; i__ <= i__1; ++i__) {
  1225. i__2 = i__;
  1226. for (j = 1; j <= i__2; ++j) {
  1227. i__3 = cut + i__ + (cut + j) * a_dim1;
  1228. i__4 = cut + i__ + (cut + j) * a_dim1;
  1229. i__5 = u11 + i__ + j * work_dim1;
  1230. q__1.r = a[i__4].r + work[i__5].r, q__1.i = a[i__4].i
  1231. + work[i__5].i;
  1232. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1233. }
  1234. }
  1235. /* L01 = L22**H * invD2 * L21 */
  1236. i__1 = *n - nnb - cut;
  1237. i__2 = *n + *nb + 1;
  1238. ctrmm_("L", uplo, "C", "U", &i__1, &nnb, &c_b1, &a[cut + nnb
  1239. + 1 + (cut + nnb + 1) * a_dim1], lda, &work[
  1240. work_offset], &i__2);
  1241. /* Update L21 */
  1242. i__1 = *n - cut - nnb;
  1243. for (i__ = 1; i__ <= i__1; ++i__) {
  1244. i__2 = nnb;
  1245. for (j = 1; j <= i__2; ++j) {
  1246. i__3 = cut + nnb + i__ + (cut + j) * a_dim1;
  1247. i__4 = i__ + j * work_dim1;
  1248. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1249. }
  1250. }
  1251. } else {
  1252. /* L11 = L11**H * invD1 * L11 */
  1253. i__1 = nnb;
  1254. for (i__ = 1; i__ <= i__1; ++i__) {
  1255. i__2 = i__;
  1256. for (j = 1; j <= i__2; ++j) {
  1257. i__3 = cut + i__ + (cut + j) * a_dim1;
  1258. i__4 = u11 + i__ + j * work_dim1;
  1259. a[i__3].r = work[i__4].r, a[i__3].i = work[i__4].i;
  1260. }
  1261. }
  1262. }
  1263. /* Next Block */
  1264. cut += nnb;
  1265. }
  1266. /* Apply PERMUTATIONS P and P**T: */
  1267. /* P * inv(L**H) * inv(D) * inv(L) * P**T. */
  1268. /* Interchange rows and columns I and IPIV(I) in reverse order */
  1269. /* from the formation order of IPIV vector for Lower case. */
  1270. /* ( We can use a loop over IPIV with increment -1, */
  1271. /* since the ABS value of IPIV(I) represents the row (column) */
  1272. /* index of the interchange with row (column) i in both 1x1 */
  1273. /* and 2x2 pivot cases, i.e. we don't need separate code branches */
  1274. /* for 1x1 and 2x2 pivot cases ) */
  1275. for (i__ = *n; i__ >= 1; --i__) {
  1276. ip = (i__1 = ipiv[i__], abs(i__1));
  1277. if (ip != i__) {
  1278. if (i__ < ip) {
  1279. cheswapr_(uplo, n, &a[a_offset], lda, &i__, &ip);
  1280. }
  1281. if (i__ > ip) {
  1282. cheswapr_(uplo, n, &a[a_offset], lda, &ip, &i__);
  1283. }
  1284. }
  1285. }
  1286. }
  1287. return;
  1288. /* End of CHETRI_3X */
  1289. } /* chetri_3x__ */