You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgsvj1.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b18 = 1.f;
  489. /* > \brief \b CGSVJ1 pre-processor for the routine cgesvj, applies Jacobi rotations targeting only particular
  490. pivots. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGSVJ1 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj1.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj1.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj1.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, */
  509. /* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP */
  512. /* CHARACTER*1 JOBV */
  513. /* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK ) */
  514. /* REAL SVA( N ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CGSVJ1 is called from CGESVJ as a pre-processor and that is its main */
  521. /* > purpose. It applies Jacobi rotations in the same way as CGESVJ does, but */
  522. /* > it targets only particular pivots and it does not check convergence */
  523. /* > (stopping criterion). Few tunning parameters (marked by [TP]) are */
  524. /* > available for the implementer. */
  525. /* > */
  526. /* > Further Details */
  527. /* > ~~~~~~~~~~~~~~~ */
  528. /* > CGSVJ1 applies few sweeps of Jacobi rotations in the column space of */
  529. /* > the input M-by-N matrix A. The pivot pairs are taken from the (1,2) */
  530. /* > off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The */
  531. /* > block-entries (tiles) of the (1,2) off-diagonal block are marked by the */
  532. /* > [x]'s in the following scheme: */
  533. /* > */
  534. /* > | * * * [x] [x] [x]| */
  535. /* > | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  536. /* > | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  537. /* > |[x] [x] [x] * * * | */
  538. /* > |[x] [x] [x] * * * | */
  539. /* > |[x] [x] [x] * * * | */
  540. /* > */
  541. /* > In terms of the columns of A, the first N1 columns are rotated 'against' */
  542. /* > the remaining N-N1 columns, trying to increase the angle between the */
  543. /* > corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is */
  544. /* > tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. */
  545. /* > The number of sweeps is given in NSWEEP and the orthogonality threshold */
  546. /* > is given in TOL. */
  547. /* > \endverbatim */
  548. /* Arguments: */
  549. /* ========== */
  550. /* > \param[in] JOBV */
  551. /* > \verbatim */
  552. /* > JOBV is CHARACTER*1 */
  553. /* > Specifies whether the output from this procedure is used */
  554. /* > to compute the matrix V: */
  555. /* > = 'V': the product of the Jacobi rotations is accumulated */
  556. /* > by postmulyiplying the N-by-N array V. */
  557. /* > (See the description of V.) */
  558. /* > = 'A': the product of the Jacobi rotations is accumulated */
  559. /* > by postmulyiplying the MV-by-N array V. */
  560. /* > (See the descriptions of MV and V.) */
  561. /* > = 'N': the Jacobi rotations are not accumulated. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. */
  574. /* > M >= N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] N1 */
  578. /* > \verbatim */
  579. /* > N1 is INTEGER */
  580. /* > N1 specifies the 2 x 2 block partition, the first N1 columns are */
  581. /* > rotated 'against' the remaining N-N1 columns of A. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] A */
  585. /* > \verbatim */
  586. /* > A is COMPLEX array, dimension (LDA,N) */
  587. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  588. /* > the input matrix. */
  589. /* > On exit, */
  590. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  591. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  592. /* > rotation threshold and the total number of sweeps are given in */
  593. /* > TOL and NSWEEP, respectively. */
  594. /* > (See the descriptions of N1, D, TOL and NSWEEP.) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDA */
  598. /* > \verbatim */
  599. /* > LDA is INTEGER */
  600. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] D */
  604. /* > \verbatim */
  605. /* > D is COMPLEX array, dimension (N) */
  606. /* > The array D accumulates the scaling factors from the fast scaled */
  607. /* > Jacobi rotations. */
  608. /* > On entry, A*diag(D) represents the input matrix. */
  609. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  610. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  611. /* > rotation threshold and the total number of sweeps are given in */
  612. /* > TOL and NSWEEP, respectively. */
  613. /* > (See the descriptions of N1, A, TOL and NSWEEP.) */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] SVA */
  617. /* > \verbatim */
  618. /* > SVA is REAL array, dimension (N) */
  619. /* > On entry, SVA contains the Euclidean norms of the columns of */
  620. /* > the matrix A*diag(D). */
  621. /* > On exit, SVA contains the Euclidean norms of the columns of */
  622. /* > the matrix onexit*diag(D_onexit). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] MV */
  626. /* > \verbatim */
  627. /* > MV is INTEGER */
  628. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  629. /* > sequence of Jacobi rotations. */
  630. /* > If JOBV = 'N', then MV is not referenced. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] V */
  634. /* > \verbatim */
  635. /* > V is COMPLEX array, dimension (LDV,N) */
  636. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  637. /* > sequence of Jacobi rotations. */
  638. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  639. /* > sequence of Jacobi rotations. */
  640. /* > If JOBV = 'N', then V is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LDV */
  644. /* > \verbatim */
  645. /* > LDV is INTEGER */
  646. /* > The leading dimension of the array V, LDV >= 1. */
  647. /* > If JOBV = 'V', LDV >= N. */
  648. /* > If JOBV = 'A', LDV >= MV. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] EPS */
  652. /* > \verbatim */
  653. /* > EPS is REAL */
  654. /* > EPS = SLAMCH('Epsilon') */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] SFMIN */
  658. /* > \verbatim */
  659. /* > SFMIN is REAL */
  660. /* > SFMIN = SLAMCH('Safe Minimum') */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] TOL */
  664. /* > \verbatim */
  665. /* > TOL is REAL */
  666. /* > TOL is the threshold for Jacobi rotations. For a pair */
  667. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  668. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] NSWEEP */
  672. /* > \verbatim */
  673. /* > NSWEEP is INTEGER */
  674. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  675. /* > performed. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] WORK */
  679. /* > \verbatim */
  680. /* > WORK is COMPLEX array, dimension (LWORK) */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] LWORK */
  684. /* > \verbatim */
  685. /* > LWORK is INTEGER */
  686. /* > LWORK is the dimension of WORK. LWORK >= M. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit. */
  693. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date June 2016 */
  702. /* > \ingroup complexOTHERcomputational */
  703. /* > \par Contributor: */
  704. /* ================== */
  705. /* > */
  706. /* > Zlatko Drmac (Zagreb, Croatia) */
  707. /* ===================================================================== */
  708. /* Subroutine */ void cgsvj1_(char *jobv, integer *m, integer *n, integer *n1,
  709. complex *a, integer *lda, complex *d__, real *sva, integer *mv,
  710. complex *v, integer *ldv, real *eps, real *sfmin, real *tol, integer *
  711. nsweep, complex *work, integer *lwork, integer *info)
  712. {
  713. /* System generated locals */
  714. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  715. i__6, i__7;
  716. real r__1, r__2;
  717. complex q__1, q__2, q__3;
  718. /* Local variables */
  719. integer nblc;
  720. real aapp;
  721. complex aapq;
  722. real aaqq;
  723. integer nblr, ierr;
  724. real bigtheta;
  725. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  726. complex *, integer *, real *, complex *);
  727. complex ompq;
  728. integer pskipped;
  729. real aapp0, aapq1, temp1;
  730. integer i__, p, q;
  731. real t;
  732. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  733. *, complex *, integer *);
  734. real apoaq, aqoap;
  735. extern logical lsame_(char *, char *);
  736. real theta, small;
  737. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  738. complex *, integer *), cswap_(integer *, complex *, integer *,
  739. complex *, integer *);
  740. logical applv, rsvec;
  741. extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
  742. integer *, complex *, integer *);
  743. logical rotok;
  744. real rootsfmin;
  745. extern real scnrm2_(integer *, complex *, integer *);
  746. real cs, sn;
  747. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  748. real *, integer *, integer *, complex *, integer *, integer *);
  749. extern int xerbla_(char *, integer *, ftnlen);
  750. integer ijblsk, swband;
  751. extern integer isamax_(integer *, real *, integer *);
  752. integer blskip;
  753. extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
  754. *, real *);
  755. real mxaapq, thsign, mxsinj;
  756. integer emptsw, notrot, iswrot, jbc;
  757. real big;
  758. integer kbl, igl, ibr, jgl, mvl;
  759. real rootbig, rooteps;
  760. integer rowskip;
  761. real roottol;
  762. /* -- LAPACK computational routine (version 3.8.0) -- */
  763. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  764. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  765. /* June 2016 */
  766. /* ===================================================================== */
  767. /* Test the input parameters. */
  768. /* Parameter adjustments */
  769. --sva;
  770. --d__;
  771. a_dim1 = *lda;
  772. a_offset = 1 + a_dim1 * 1;
  773. a -= a_offset;
  774. v_dim1 = *ldv;
  775. v_offset = 1 + v_dim1 * 1;
  776. v -= v_offset;
  777. --work;
  778. /* Function Body */
  779. applv = lsame_(jobv, "A");
  780. rsvec = lsame_(jobv, "V");
  781. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  782. *info = -1;
  783. } else if (*m < 0) {
  784. *info = -2;
  785. } else if (*n < 0 || *n > *m) {
  786. *info = -3;
  787. } else if (*n1 < 0) {
  788. *info = -4;
  789. } else if (*lda < *m) {
  790. *info = -6;
  791. } else if ((rsvec || applv) && *mv < 0) {
  792. *info = -9;
  793. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  794. *info = -11;
  795. } else if (*tol <= *eps) {
  796. *info = -14;
  797. } else if (*nsweep < 0) {
  798. *info = -15;
  799. } else if (*lwork < *m) {
  800. *info = -17;
  801. } else {
  802. *info = 0;
  803. }
  804. /* #:( */
  805. if (*info != 0) {
  806. i__1 = -(*info);
  807. xerbla_("CGSVJ1", &i__1, (ftnlen)6);
  808. return;
  809. }
  810. if (rsvec) {
  811. mvl = *n;
  812. } else if (applv) {
  813. mvl = *mv;
  814. }
  815. rsvec = rsvec || applv;
  816. rooteps = sqrt(*eps);
  817. rootsfmin = sqrt(*sfmin);
  818. small = *sfmin / *eps;
  819. big = 1.f / *sfmin;
  820. rootbig = 1.f / rootsfmin;
  821. /* LARGE = BIG / SQRT( REAL( M*N ) ) */
  822. bigtheta = 1.f / rooteps;
  823. roottol = sqrt(*tol);
  824. /* RSVEC = LSAME( JOBV, 'Y' ) */
  825. emptsw = *n1 * (*n - *n1);
  826. notrot = 0;
  827. kbl = f2cmin(8,*n);
  828. nblr = *n1 / kbl;
  829. if (nblr * kbl != *n1) {
  830. ++nblr;
  831. }
  832. nblc = (*n - *n1) / kbl;
  833. if (nblc * kbl != *n - *n1) {
  834. ++nblc;
  835. }
  836. /* Computing 2nd power */
  837. i__1 = kbl;
  838. blskip = i__1 * i__1 + 1;
  839. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  840. rowskip = f2cmin(5,kbl);
  841. /* [TP] ROWSKIP is a tuning parameter. */
  842. swband = 0;
  843. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  844. /* if CGESVJ is used as a computational routine in the preconditioned */
  845. /* Jacobi SVD algorithm CGEJSV. */
  846. /* | * * * [x] [x] [x]| */
  847. /* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  848. /* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  849. /* |[x] [x] [x] * * * | */
  850. /* |[x] [x] [x] * * * | */
  851. /* |[x] [x] [x] * * * | */
  852. i__1 = *nsweep;
  853. for (i__ = 1; i__ <= i__1; ++i__) {
  854. mxaapq = 0.f;
  855. mxsinj = 0.f;
  856. iswrot = 0;
  857. notrot = 0;
  858. pskipped = 0;
  859. /* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
  860. /* 1 <= p < q <= N. This is the first step toward a blocked implementation */
  861. /* of the rotations. New implementation, based on block transformations, */
  862. /* is under development. */
  863. i__2 = nblr;
  864. for (ibr = 1; ibr <= i__2; ++ibr) {
  865. igl = (ibr - 1) * kbl + 1;
  866. /* ... go to the off diagonal blocks */
  867. igl = (ibr - 1) * kbl + 1;
  868. /* DO 2010 jbc = ibr + 1, NBL */
  869. i__3 = nblc;
  870. for (jbc = 1; jbc <= i__3; ++jbc) {
  871. jgl = (jbc - 1) * kbl + *n1 + 1;
  872. /* doing the block at ( ibr, jbc ) */
  873. ijblsk = 0;
  874. /* Computing MIN */
  875. i__5 = igl + kbl - 1;
  876. i__4 = f2cmin(i__5,*n1);
  877. for (p = igl; p <= i__4; ++p) {
  878. aapp = sva[p];
  879. if (aapp > 0.f) {
  880. pskipped = 0;
  881. /* Computing MIN */
  882. i__6 = jgl + kbl - 1;
  883. i__5 = f2cmin(i__6,*n);
  884. for (q = jgl; q <= i__5; ++q) {
  885. aaqq = sva[q];
  886. if (aaqq > 0.f) {
  887. aapp0 = aapp;
  888. /* Safe Gram matrix computation */
  889. if (aaqq >= 1.f) {
  890. if (aapp >= aaqq) {
  891. rotok = small * aapp <= aaqq;
  892. } else {
  893. rotok = small * aaqq <= aapp;
  894. }
  895. if (aapp < big / aaqq) {
  896. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  897. c__1, &a[q * a_dim1 + 1], &
  898. c__1);
  899. q__2.r = q__3.r / aaqq, q__2.i =
  900. q__3.i / aaqq;
  901. q__1.r = q__2.r / aapp, q__1.i =
  902. q__2.i / aapp;
  903. aapq.r = q__1.r, aapq.i = q__1.i;
  904. } else {
  905. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  906. work[1], &c__1);
  907. clascl_("G", &c__0, &c__0, &aapp, &
  908. c_b18, m, &c__1, &work[1],
  909. lda, &ierr);
  910. cdotc_(&q__2, m, &work[1], &c__1, &a[
  911. q * a_dim1 + 1], &c__1);
  912. q__1.r = q__2.r / aaqq, q__1.i =
  913. q__2.i / aaqq;
  914. aapq.r = q__1.r, aapq.i = q__1.i;
  915. }
  916. } else {
  917. if (aapp >= aaqq) {
  918. rotok = aapp <= aaqq / small;
  919. } else {
  920. rotok = aaqq <= aapp / small;
  921. }
  922. if (aapp > small / aaqq) {
  923. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  924. c__1, &a[q * a_dim1 + 1], &
  925. c__1);
  926. r__1 = f2cmax(aaqq,aapp);
  927. q__2.r = q__3.r / r__1, q__2.i =
  928. q__3.i / r__1;
  929. r__2 = f2cmin(aaqq,aapp);
  930. q__1.r = q__2.r / r__2, q__1.i =
  931. q__2.i / r__2;
  932. aapq.r = q__1.r, aapq.i = q__1.i;
  933. } else {
  934. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  935. work[1], &c__1);
  936. clascl_("G", &c__0, &c__0, &aaqq, &
  937. c_b18, m, &c__1, &work[1],
  938. lda, &ierr);
  939. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  940. c__1, &work[1], &c__1);
  941. q__1.r = q__2.r / aapp, q__1.i =
  942. q__2.i / aapp;
  943. aapq.r = q__1.r, aapq.i = q__1.i;
  944. }
  945. }
  946. /* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q) */
  947. aapq1 = -c_abs(&aapq);
  948. /* Computing MAX */
  949. r__1 = mxaapq, r__2 = -aapq1;
  950. mxaapq = f2cmax(r__1,r__2);
  951. /* TO rotate or NOT to rotate, THAT is the question ... */
  952. if (abs(aapq1) > *tol) {
  953. r__1 = c_abs(&aapq);
  954. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  955. r__1;
  956. ompq.r = q__1.r, ompq.i = q__1.i;
  957. notrot = 0;
  958. /* [RTD] ROTATED = ROTATED + 1 */
  959. pskipped = 0;
  960. ++iswrot;
  961. if (rotok) {
  962. aqoap = aaqq / aapp;
  963. apoaq = aapp / aaqq;
  964. theta = (r__1 = aqoap - apoaq, abs(
  965. r__1)) * -.5f / aapq1;
  966. if (aaqq > aapp0) {
  967. theta = -theta;
  968. }
  969. if (abs(theta) > bigtheta) {
  970. t = .5f / theta;
  971. cs = 1.f;
  972. r_cnjg(&q__2, &ompq);
  973. q__1.r = t * q__2.r, q__1.i = t *
  974. q__2.i;
  975. crot_(m, &a[p * a_dim1 + 1], &
  976. c__1, &a[q * a_dim1 + 1],
  977. &c__1, &cs, &q__1);
  978. if (rsvec) {
  979. r_cnjg(&q__2, &ompq);
  980. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  981. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  982. v_dim1 + 1], &c__1, &cs, &q__1);
  983. }
  984. /* Computing MAX */
  985. r__1 = 0.f, r__2 = t * apoaq *
  986. aapq1 + 1.f;
  987. sva[q] = aaqq * sqrt((f2cmax(r__1,
  988. r__2)));
  989. /* Computing MAX */
  990. r__1 = 0.f, r__2 = 1.f - t *
  991. aqoap * aapq1;
  992. aapp *= sqrt((f2cmax(r__1,r__2)));
  993. /* Computing MAX */
  994. r__1 = mxsinj, r__2 = abs(t);
  995. mxsinj = f2cmax(r__1,r__2);
  996. } else {
  997. thsign = -r_sign(&c_b18, &aapq1);
  998. if (aaqq > aapp0) {
  999. thsign = -thsign;
  1000. }
  1001. t = 1.f / (theta + thsign * sqrt(
  1002. theta * theta + 1.f));
  1003. cs = sqrt(1.f / (t * t + 1.f));
  1004. sn = t * cs;
  1005. /* Computing MAX */
  1006. r__1 = mxsinj, r__2 = abs(sn);
  1007. mxsinj = f2cmax(r__1,r__2);
  1008. /* Computing MAX */
  1009. r__1 = 0.f, r__2 = t * apoaq *
  1010. aapq1 + 1.f;
  1011. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1012. r__2)));
  1013. /* Computing MAX */
  1014. r__1 = 0.f, r__2 = 1.f - t *
  1015. aqoap * aapq1;
  1016. aapp *= sqrt((f2cmax(r__1,r__2)));
  1017. r_cnjg(&q__2, &ompq);
  1018. q__1.r = sn * q__2.r, q__1.i = sn
  1019. * q__2.i;
  1020. crot_(m, &a[p * a_dim1 + 1], &
  1021. c__1, &a[q * a_dim1 + 1],
  1022. &c__1, &cs, &q__1);
  1023. if (rsvec) {
  1024. r_cnjg(&q__2, &ompq);
  1025. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1026. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1027. v_dim1 + 1], &c__1, &cs, &q__1);
  1028. }
  1029. }
  1030. i__6 = p;
  1031. i__7 = q;
  1032. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1033. i__7].i;
  1034. q__1.r = q__2.r * ompq.r - q__2.i *
  1035. ompq.i, q__1.i = q__2.r *
  1036. ompq.i + q__2.i * ompq.r;
  1037. d__[i__6].r = q__1.r, d__[i__6].i =
  1038. q__1.i;
  1039. } else {
  1040. if (aapp > aaqq) {
  1041. ccopy_(m, &a[p * a_dim1 + 1], &
  1042. c__1, &work[1], &c__1);
  1043. clascl_("G", &c__0, &c__0, &aapp,
  1044. &c_b18, m, &c__1, &work[1]
  1045. , lda, &ierr);
  1046. clascl_("G", &c__0, &c__0, &aaqq,
  1047. &c_b18, m, &c__1, &a[q *
  1048. a_dim1 + 1], lda, &ierr);
  1049. q__1.r = -aapq.r, q__1.i =
  1050. -aapq.i;
  1051. caxpy_(m, &q__1, &work[1], &c__1,
  1052. &a[q * a_dim1 + 1], &c__1)
  1053. ;
  1054. clascl_("G", &c__0, &c__0, &c_b18,
  1055. &aaqq, m, &c__1, &a[q *
  1056. a_dim1 + 1], lda, &ierr);
  1057. /* Computing MAX */
  1058. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1059. aapq1;
  1060. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1061. r__2)));
  1062. mxsinj = f2cmax(mxsinj,*sfmin);
  1063. } else {
  1064. ccopy_(m, &a[q * a_dim1 + 1], &
  1065. c__1, &work[1], &c__1);
  1066. clascl_("G", &c__0, &c__0, &aaqq,
  1067. &c_b18, m, &c__1, &work[1]
  1068. , lda, &ierr);
  1069. clascl_("G", &c__0, &c__0, &aapp,
  1070. &c_b18, m, &c__1, &a[p *
  1071. a_dim1 + 1], lda, &ierr);
  1072. r_cnjg(&q__2, &aapq);
  1073. q__1.r = -q__2.r, q__1.i =
  1074. -q__2.i;
  1075. caxpy_(m, &q__1, &work[1], &c__1,
  1076. &a[p * a_dim1 + 1], &c__1)
  1077. ;
  1078. clascl_("G", &c__0, &c__0, &c_b18,
  1079. &aapp, m, &c__1, &a[p *
  1080. a_dim1 + 1], lda, &ierr);
  1081. /* Computing MAX */
  1082. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1083. aapq1;
  1084. sva[p] = aapp * sqrt((f2cmax(r__1,
  1085. r__2)));
  1086. mxsinj = f2cmax(mxsinj,*sfmin);
  1087. }
  1088. }
  1089. /* END IF ROTOK THEN ... ELSE */
  1090. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1091. /* Computing 2nd power */
  1092. r__1 = sva[q] / aaqq;
  1093. if (r__1 * r__1 <= rooteps) {
  1094. if (aaqq < rootbig && aaqq >
  1095. rootsfmin) {
  1096. sva[q] = scnrm2_(m, &a[q * a_dim1
  1097. + 1], &c__1);
  1098. } else {
  1099. t = 0.f;
  1100. aaqq = 1.f;
  1101. classq_(m, &a[q * a_dim1 + 1], &
  1102. c__1, &t, &aaqq);
  1103. sva[q] = t * sqrt(aaqq);
  1104. }
  1105. }
  1106. /* Computing 2nd power */
  1107. r__1 = aapp / aapp0;
  1108. if (r__1 * r__1 <= rooteps) {
  1109. if (aapp < rootbig && aapp >
  1110. rootsfmin) {
  1111. aapp = scnrm2_(m, &a[p * a_dim1 +
  1112. 1], &c__1);
  1113. } else {
  1114. t = 0.f;
  1115. aapp = 1.f;
  1116. classq_(m, &a[p * a_dim1 + 1], &
  1117. c__1, &t, &aapp);
  1118. aapp = t * sqrt(aapp);
  1119. }
  1120. sva[p] = aapp;
  1121. }
  1122. /* end of OK rotation */
  1123. } else {
  1124. ++notrot;
  1125. /* [RTD] SKIPPED = SKIPPED + 1 */
  1126. ++pskipped;
  1127. ++ijblsk;
  1128. }
  1129. } else {
  1130. ++notrot;
  1131. ++pskipped;
  1132. ++ijblsk;
  1133. }
  1134. if (i__ <= swband && ijblsk >= blskip) {
  1135. sva[p] = aapp;
  1136. notrot = 0;
  1137. goto L2011;
  1138. }
  1139. if (i__ <= swband && pskipped > rowskip) {
  1140. aapp = -aapp;
  1141. notrot = 0;
  1142. goto L2203;
  1143. }
  1144. /* L2200: */
  1145. }
  1146. /* end of the q-loop */
  1147. L2203:
  1148. sva[p] = aapp;
  1149. } else {
  1150. if (aapp == 0.f) {
  1151. /* Computing MIN */
  1152. i__5 = jgl + kbl - 1;
  1153. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1154. }
  1155. if (aapp < 0.f) {
  1156. notrot = 0;
  1157. }
  1158. }
  1159. /* L2100: */
  1160. }
  1161. /* end of the p-loop */
  1162. /* L2010: */
  1163. }
  1164. /* end of the jbc-loop */
  1165. L2011:
  1166. /* 2011 bailed out of the jbc-loop */
  1167. /* Computing MIN */
  1168. i__4 = igl + kbl - 1;
  1169. i__3 = f2cmin(i__4,*n);
  1170. for (p = igl; p <= i__3; ++p) {
  1171. sva[p] = (r__1 = sva[p], abs(r__1));
  1172. /* L2012: */
  1173. }
  1174. /* ** */
  1175. /* L2000: */
  1176. }
  1177. /* 2000 :: end of the ibr-loop */
  1178. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1179. sva[*n] = scnrm2_(m, &a[*n * a_dim1 + 1], &c__1);
  1180. } else {
  1181. t = 0.f;
  1182. aapp = 1.f;
  1183. classq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1184. sva[*n] = t * sqrt(aapp);
  1185. }
  1186. /* Additional steering devices */
  1187. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1188. swband = i__;
  1189. }
  1190. if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * *tol && (real) (*
  1191. n) * mxaapq * mxsinj < *tol) {
  1192. goto L1994;
  1193. }
  1194. if (notrot >= emptsw) {
  1195. goto L1994;
  1196. }
  1197. /* L1993: */
  1198. }
  1199. /* end i=1:NSWEEP loop */
  1200. /* #:( Reaching this point means that the procedure has not converged. */
  1201. *info = *nsweep - 1;
  1202. goto L1995;
  1203. L1994:
  1204. /* #:) Reaching this point means numerical convergence after the i-th */
  1205. /* sweep. */
  1206. *info = 0;
  1207. /* #:) INFO = 0 confirms successful iterations. */
  1208. L1995:
  1209. /* Sort the vector SVA() of column norms. */
  1210. i__1 = *n - 1;
  1211. for (p = 1; p <= i__1; ++p) {
  1212. i__2 = *n - p + 1;
  1213. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1214. if (p != q) {
  1215. temp1 = sva[p];
  1216. sva[p] = sva[q];
  1217. sva[q] = temp1;
  1218. i__2 = p;
  1219. aapq.r = d__[i__2].r, aapq.i = d__[i__2].i;
  1220. i__2 = p;
  1221. i__3 = q;
  1222. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  1223. i__2 = q;
  1224. d__[i__2].r = aapq.r, d__[i__2].i = aapq.i;
  1225. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1226. if (rsvec) {
  1227. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1228. c__1);
  1229. }
  1230. }
  1231. /* L5991: */
  1232. }
  1233. return;
  1234. } /* cgsvj1_ */