You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlahrd.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef char integer1;
  52. #define TRUE_ (1)
  53. #define FALSE_ (0)
  54. /* Extern is for use with -E */
  55. #ifndef Extern
  56. #define Extern extern
  57. #endif
  58. /* I/O stuff */
  59. typedef int flag;
  60. typedef int ftnlen;
  61. typedef int ftnint;
  62. /*external read, write*/
  63. typedef struct
  64. { flag cierr;
  65. ftnint ciunit;
  66. flag ciend;
  67. char *cifmt;
  68. ftnint cirec;
  69. } cilist;
  70. /*internal read, write*/
  71. typedef struct
  72. { flag icierr;
  73. char *iciunit;
  74. flag iciend;
  75. char *icifmt;
  76. ftnint icirlen;
  77. ftnint icirnum;
  78. } icilist;
  79. /*open*/
  80. typedef struct
  81. { flag oerr;
  82. ftnint ounit;
  83. char *ofnm;
  84. ftnlen ofnmlen;
  85. char *osta;
  86. char *oacc;
  87. char *ofm;
  88. ftnint orl;
  89. char *oblnk;
  90. } olist;
  91. /*close*/
  92. typedef struct
  93. { flag cerr;
  94. ftnint cunit;
  95. char *csta;
  96. } cllist;
  97. /*rewind, backspace, endfile*/
  98. typedef struct
  99. { flag aerr;
  100. ftnint aunit;
  101. } alist;
  102. /* inquire */
  103. typedef struct
  104. { flag inerr;
  105. ftnint inunit;
  106. char *infile;
  107. ftnlen infilen;
  108. ftnint *inex; /*parameters in standard's order*/
  109. ftnint *inopen;
  110. ftnint *innum;
  111. ftnint *innamed;
  112. char *inname;
  113. ftnlen innamlen;
  114. char *inacc;
  115. ftnlen inacclen;
  116. char *inseq;
  117. ftnlen inseqlen;
  118. char *indir;
  119. ftnlen indirlen;
  120. char *infmt;
  121. ftnlen infmtlen;
  122. char *inform;
  123. ftnint informlen;
  124. char *inunf;
  125. ftnlen inunflen;
  126. ftnint *inrecl;
  127. ftnint *innrec;
  128. char *inblank;
  129. ftnlen inblanklen;
  130. } inlist;
  131. #define VOID void
  132. union Multitype { /* for multiple entry points */
  133. integer1 g;
  134. shortint h;
  135. integer i;
  136. /* longint j; */
  137. real r;
  138. doublereal d;
  139. complex c;
  140. doublecomplex z;
  141. };
  142. typedef union Multitype Multitype;
  143. struct Vardesc { /* for Namelist */
  144. char *name;
  145. char *addr;
  146. ftnlen *dims;
  147. int type;
  148. };
  149. typedef struct Vardesc Vardesc;
  150. struct Namelist {
  151. char *name;
  152. Vardesc **vars;
  153. int nvars;
  154. };
  155. typedef struct Namelist Namelist;
  156. #define abs(x) ((x) >= 0 ? (x) : -(x))
  157. #define dabs(x) (fabs(x))
  158. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  159. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  160. #define dmin(a,b) (f2cmin(a,b))
  161. #define dmax(a,b) (f2cmax(a,b))
  162. #define bit_test(a,b) ((a) >> (b) & 1)
  163. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  164. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  165. #define abort_() { sig_die("Fortran abort routine called", 1); }
  166. #define c_abs(z) (cabsf(Cf(z)))
  167. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  168. #ifdef _MSC_VER
  169. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  170. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  171. #else
  172. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  173. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  174. #endif
  175. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  176. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  177. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  178. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  179. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  180. #define d_abs(x) (fabs(*(x)))
  181. #define d_acos(x) (acos(*(x)))
  182. #define d_asin(x) (asin(*(x)))
  183. #define d_atan(x) (atan(*(x)))
  184. #define d_atn2(x, y) (atan2(*(x),*(y)))
  185. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  186. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  187. #define d_cos(x) (cos(*(x)))
  188. #define d_cosh(x) (cosh(*(x)))
  189. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  190. #define d_exp(x) (exp(*(x)))
  191. #define d_imag(z) (cimag(Cd(z)))
  192. #define r_imag(z) (cimagf(Cf(z)))
  193. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  194. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  195. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  196. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  197. #define d_log(x) (log(*(x)))
  198. #define d_mod(x, y) (fmod(*(x), *(y)))
  199. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  200. #define d_nint(x) u_nint(*(x))
  201. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  202. #define d_sign(a,b) u_sign(*(a),*(b))
  203. #define r_sign(a,b) u_sign(*(a),*(b))
  204. #define d_sin(x) (sin(*(x)))
  205. #define d_sinh(x) (sinh(*(x)))
  206. #define d_sqrt(x) (sqrt(*(x)))
  207. #define d_tan(x) (tan(*(x)))
  208. #define d_tanh(x) (tanh(*(x)))
  209. #define i_abs(x) abs(*(x))
  210. #define i_dnnt(x) ((integer)u_nint(*(x)))
  211. #define i_len(s, n) (n)
  212. #define i_nint(x) ((integer)u_nint(*(x)))
  213. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  214. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  215. #define pow_si(B,E) spow_ui(*(B),*(E))
  216. #define pow_ri(B,E) spow_ui(*(B),*(E))
  217. #define pow_di(B,E) dpow_ui(*(B),*(E))
  218. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  219. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  220. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  221. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  222. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  223. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  224. #define sig_die(s, kill) { exit(1); }
  225. #define s_stop(s, n) {exit(0);}
  226. #define z_abs(z) (cabs(Cd(z)))
  227. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  228. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  229. #define myexit_() break;
  230. #define mycycle() continue;
  231. #define myceiling(w) {ceil(w)}
  232. #define myhuge(w) {HUGE_VAL}
  233. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  234. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  235. /* procedure parameter types for -A and -C++ */
  236. /* Table of constant values */
  237. static doublereal c_b4 = -1.;
  238. static doublereal c_b5 = 1.;
  239. static integer c__1 = 1;
  240. static doublereal c_b38 = 0.;
  241. /* > \brief \b DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
  242. e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
  243. on to the unreduced part of A. */
  244. /* =========== DOCUMENTATION =========== */
  245. /* Online html documentation available at */
  246. /* http://www.netlib.org/lapack/explore-html/ */
  247. /* > \htmlonly */
  248. /* > Download DLAHRD + dependencies */
  249. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.
  250. f"> */
  251. /* > [TGZ]</a> */
  252. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.
  253. f"> */
  254. /* > [ZIP]</a> */
  255. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.
  256. f"> */
  257. /* > [TXT]</a> */
  258. /* > \endhtmlonly */
  259. /* Definition: */
  260. /* =========== */
  261. /* SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */
  262. /* INTEGER K, LDA, LDT, LDY, N, NB */
  263. /* DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ), */
  264. /* $ Y( LDY, NB ) */
  265. /* > \par Purpose: */
  266. /* ============= */
  267. /* > */
  268. /* > \verbatim */
  269. /* > */
  270. /* > This routine is deprecated and has been replaced by routine DLAHR2. */
  271. /* > */
  272. /* > DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
  273. /* > matrix A so that elements below the k-th subdiagonal are zero. The */
  274. /* > reduction is performed by an orthogonal similarity transformation */
  275. /* > Q**T * A * Q. The routine returns the matrices V and T which determine */
  276. /* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
  277. /* > \endverbatim */
  278. /* Arguments: */
  279. /* ========== */
  280. /* > \param[in] N */
  281. /* > \verbatim */
  282. /* > N is INTEGER */
  283. /* > The order of the matrix A. */
  284. /* > \endverbatim */
  285. /* > */
  286. /* > \param[in] K */
  287. /* > \verbatim */
  288. /* > K is INTEGER */
  289. /* > The offset for the reduction. Elements below the k-th */
  290. /* > subdiagonal in the first NB columns are reduced to zero. */
  291. /* > \endverbatim */
  292. /* > */
  293. /* > \param[in] NB */
  294. /* > \verbatim */
  295. /* > NB is INTEGER */
  296. /* > The number of columns to be reduced. */
  297. /* > \endverbatim */
  298. /* > */
  299. /* > \param[in,out] A */
  300. /* > \verbatim */
  301. /* > A is DOUBLE PRECISION array, dimension (LDA,N-K+1) */
  302. /* > On entry, the n-by-(n-k+1) general matrix A. */
  303. /* > On exit, the elements on and above the k-th subdiagonal in */
  304. /* > the first NB columns are overwritten with the corresponding */
  305. /* > elements of the reduced matrix; the elements below the k-th */
  306. /* > subdiagonal, with the array TAU, represent the matrix Q as a */
  307. /* > product of elementary reflectors. The other columns of A are */
  308. /* > unchanged. See Further Details. */
  309. /* > \endverbatim */
  310. /* > */
  311. /* > \param[in] LDA */
  312. /* > \verbatim */
  313. /* > LDA is INTEGER */
  314. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  315. /* > \endverbatim */
  316. /* > */
  317. /* > \param[out] TAU */
  318. /* > \verbatim */
  319. /* > TAU is DOUBLE PRECISION array, dimension (NB) */
  320. /* > The scalar factors of the elementary reflectors. See Further */
  321. /* > Details. */
  322. /* > \endverbatim */
  323. /* > */
  324. /* > \param[out] T */
  325. /* > \verbatim */
  326. /* > T is DOUBLE PRECISION array, dimension (LDT,NB) */
  327. /* > The upper triangular matrix T. */
  328. /* > \endverbatim */
  329. /* > */
  330. /* > \param[in] LDT */
  331. /* > \verbatim */
  332. /* > LDT is INTEGER */
  333. /* > The leading dimension of the array T. LDT >= NB. */
  334. /* > \endverbatim */
  335. /* > */
  336. /* > \param[out] Y */
  337. /* > \verbatim */
  338. /* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */
  339. /* > The n-by-nb matrix Y. */
  340. /* > \endverbatim */
  341. /* > */
  342. /* > \param[in] LDY */
  343. /* > \verbatim */
  344. /* > LDY is INTEGER */
  345. /* > The leading dimension of the array Y. LDY >= N. */
  346. /* > \endverbatim */
  347. /* Authors: */
  348. /* ======== */
  349. /* > \author Univ. of Tennessee */
  350. /* > \author Univ. of California Berkeley */
  351. /* > \author Univ. of Colorado Denver */
  352. /* > \author NAG Ltd. */
  353. /* > \date December 2016 */
  354. /* > \ingroup doubleOTHERauxiliary */
  355. /* > \par Further Details: */
  356. /* ===================== */
  357. /* > */
  358. /* > \verbatim */
  359. /* > */
  360. /* > The matrix Q is represented as a product of nb elementary reflectors */
  361. /* > */
  362. /* > Q = H(1) H(2) . . . H(nb). */
  363. /* > */
  364. /* > Each H(i) has the form */
  365. /* > */
  366. /* > H(i) = I - tau * v * v**T */
  367. /* > */
  368. /* > where tau is a real scalar, and v is a real vector with */
  369. /* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
  370. /* > A(i+k+1:n,i), and tau in TAU(i). */
  371. /* > */
  372. /* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
  373. /* > V which is needed, with T and Y, to apply the transformation to the */
  374. /* > unreduced part of the matrix, using an update of the form: */
  375. /* > A := (I - V*T*V**T) * (A - Y*V**T). */
  376. /* > */
  377. /* > The contents of A on exit are illustrated by the following example */
  378. /* > with n = 7, k = 3 and nb = 2: */
  379. /* > */
  380. /* > ( a h a a a ) */
  381. /* > ( a h a a a ) */
  382. /* > ( a h a a a ) */
  383. /* > ( h h a a a ) */
  384. /* > ( v1 h a a a ) */
  385. /* > ( v1 v2 a a a ) */
  386. /* > ( v1 v2 a a a ) */
  387. /* > */
  388. /* > where a denotes an element of the original matrix A, h denotes a */
  389. /* > modified element of the upper Hessenberg matrix H, and vi denotes an */
  390. /* > element of the vector defining H(i). */
  391. /* > \endverbatim */
  392. /* > */
  393. /* ===================================================================== */
  394. /* Subroutine */ void dlahrd_(integer *n, integer *k, integer *nb, doublereal *
  395. a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
  396. doublereal *y, integer *ldy)
  397. {
  398. /* System generated locals */
  399. integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
  400. i__3;
  401. doublereal d__1;
  402. /* Local variables */
  403. integer i__;
  404. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  405. integer *), dgemv_(char *, integer *, integer *, doublereal *,
  406. doublereal *, integer *, doublereal *, integer *, doublereal *,
  407. doublereal *, integer *), dcopy_(integer *, doublereal *,
  408. integer *, doublereal *, integer *), daxpy_(integer *, doublereal
  409. *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
  410. *, char *, char *, integer *, doublereal *, integer *, doublereal
  411. *, integer *);
  412. doublereal ei;
  413. extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
  414. integer *, doublereal *);
  415. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  416. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  417. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  418. /* December 2016 */
  419. /* ===================================================================== */
  420. /* Quick return if possible */
  421. /* Parameter adjustments */
  422. --tau;
  423. a_dim1 = *lda;
  424. a_offset = 1 + a_dim1 * 1;
  425. a -= a_offset;
  426. t_dim1 = *ldt;
  427. t_offset = 1 + t_dim1 * 1;
  428. t -= t_offset;
  429. y_dim1 = *ldy;
  430. y_offset = 1 + y_dim1 * 1;
  431. y -= y_offset;
  432. /* Function Body */
  433. if (*n <= 1) {
  434. return;
  435. }
  436. i__1 = *nb;
  437. for (i__ = 1; i__ <= i__1; ++i__) {
  438. if (i__ > 1) {
  439. /* Update A(1:n,i) */
  440. /* Compute i-th column of A - Y * V**T */
  441. i__2 = i__ - 1;
  442. dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k
  443. + i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
  444. c__1);
  445. /* Apply I - V * T**T * V**T to this column (call it b) from the */
  446. /* left, using the last column of T as workspace */
  447. /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
  448. /* ( V2 ) ( b2 ) */
  449. /* where V1 is unit lower triangular */
  450. /* w := V1**T * b1 */
  451. i__2 = i__ - 1;
  452. dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
  453. 1], &c__1);
  454. i__2 = i__ - 1;
  455. dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
  456. lda, &t[*nb * t_dim1 + 1], &c__1);
  457. /* w := w + V2**T *b2 */
  458. i__2 = *n - *k - i__ + 1;
  459. i__3 = i__ - 1;
  460. dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
  461. lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
  462. t_dim1 + 1], &c__1);
  463. /* w := T**T *w */
  464. i__2 = i__ - 1;
  465. dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
  466. &t[*nb * t_dim1 + 1], &c__1);
  467. /* b2 := b2 - V2*w */
  468. i__2 = *n - *k - i__ + 1;
  469. i__3 = i__ - 1;
  470. dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
  471. lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
  472. i__ * a_dim1], &c__1);
  473. /* b1 := b1 - V1*w */
  474. i__2 = i__ - 1;
  475. dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
  476. , lda, &t[*nb * t_dim1 + 1], &c__1);
  477. i__2 = i__ - 1;
  478. daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
  479. * a_dim1], &c__1);
  480. a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
  481. }
  482. /* Generate the elementary reflector H(i) to annihilate */
  483. /* A(k+i+1:n,i) */
  484. i__2 = *n - *k - i__ + 1;
  485. /* Computing MIN */
  486. i__3 = *k + i__ + 1;
  487. dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
  488. a_dim1], &c__1, &tau[i__]);
  489. ei = a[*k + i__ + i__ * a_dim1];
  490. a[*k + i__ + i__ * a_dim1] = 1.;
  491. /* Compute Y(1:n,i) */
  492. i__2 = *n - *k - i__ + 1;
  493. dgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1],
  494. lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ *
  495. y_dim1 + 1], &c__1);
  496. i__2 = *n - *k - i__ + 1;
  497. i__3 = i__ - 1;
  498. dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
  499. a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
  500. 1], &c__1);
  501. i__2 = i__ - 1;
  502. dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ *
  503. t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
  504. dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
  505. /* Compute T(1:i,i) */
  506. i__2 = i__ - 1;
  507. d__1 = -tau[i__];
  508. dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
  509. i__2 = i__ - 1;
  510. dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
  511. &t[i__ * t_dim1 + 1], &c__1)
  512. ;
  513. t[i__ + i__ * t_dim1] = tau[i__];
  514. /* L10: */
  515. }
  516. a[*k + *nb + *nb * a_dim1] = ei;
  517. return;
  518. /* End of DLAHRD */
  519. } /* dlahrd_ */