You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatps.c 47 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b36 = .5;
  488. /* > \brief \b ZLATPS solves a triangular system of equations with the matrix held in packed storage. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZLATPS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatps.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatps.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatps.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, */
  507. /* CNORM, INFO ) */
  508. /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
  509. /* INTEGER INFO, N */
  510. /* DOUBLE PRECISION SCALE */
  511. /* DOUBLE PRECISION CNORM( * ) */
  512. /* COMPLEX*16 AP( * ), X( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > ZLATPS solves one of the triangular systems */
  519. /* > */
  520. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
  521. /* > */
  522. /* > with scaling to prevent overflow, where A is an upper or lower */
  523. /* > triangular matrix stored in packed form. Here A**T denotes the */
  524. /* > transpose of A, A**H denotes the conjugate transpose of A, x and b */
  525. /* > are n-element vectors, and s is a scaling factor, usually less than */
  526. /* > or equal to 1, chosen so that the components of x will be less than */
  527. /* > the overflow threshold. If the unscaled problem will not cause */
  528. /* > overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A */
  529. /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
  530. /* > non-trivial solution to A*x = 0 is returned. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the matrix A is upper or lower triangular. */
  538. /* > = 'U': Upper triangular */
  539. /* > = 'L': Lower triangular */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] TRANS */
  543. /* > \verbatim */
  544. /* > TRANS is CHARACTER*1 */
  545. /* > Specifies the operation applied to A. */
  546. /* > = 'N': Solve A * x = s*b (No transpose) */
  547. /* > = 'T': Solve A**T * x = s*b (Transpose) */
  548. /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] DIAG */
  552. /* > \verbatim */
  553. /* > DIAG is CHARACTER*1 */
  554. /* > Specifies whether or not the matrix A is unit triangular. */
  555. /* > = 'N': Non-unit triangular */
  556. /* > = 'U': Unit triangular */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NORMIN */
  560. /* > \verbatim */
  561. /* > NORMIN is CHARACTER*1 */
  562. /* > Specifies whether CNORM has been set or not. */
  563. /* > = 'Y': CNORM contains the column norms on entry */
  564. /* > = 'N': CNORM is not set on entry. On exit, the norms will */
  565. /* > be computed and stored in CNORM. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrix A. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] AP */
  575. /* > \verbatim */
  576. /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
  577. /* > The upper or lower triangular matrix A, packed columnwise in */
  578. /* > a linear array. The j-th column of A is stored in the array */
  579. /* > AP as follows: */
  580. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  581. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] X */
  585. /* > \verbatim */
  586. /* > X is COMPLEX*16 array, dimension (N) */
  587. /* > On entry, the right hand side b of the triangular system. */
  588. /* > On exit, X is overwritten by the solution vector x. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] SCALE */
  592. /* > \verbatim */
  593. /* > SCALE is DOUBLE PRECISION */
  594. /* > The scaling factor s for the triangular system */
  595. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
  596. /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
  597. /* > the vector x is an exact or approximate solution to A*x = 0. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] CNORM */
  601. /* > \verbatim */
  602. /* > CNORM is DOUBLE PRECISION array, dimension (N) */
  603. /* > */
  604. /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
  605. /* > contains the norm of the off-diagonal part of the j-th column */
  606. /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
  607. /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
  608. /* > must be greater than or equal to the 1-norm. */
  609. /* > */
  610. /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
  611. /* > returns the 1-norm of the offdiagonal part of the j-th column */
  612. /* > of A. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] INFO */
  616. /* > \verbatim */
  617. /* > INFO is INTEGER */
  618. /* > = 0: successful exit */
  619. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  620. /* > \endverbatim */
  621. /* Authors: */
  622. /* ======== */
  623. /* > \author Univ. of Tennessee */
  624. /* > \author Univ. of California Berkeley */
  625. /* > \author Univ. of Colorado Denver */
  626. /* > \author NAG Ltd. */
  627. /* > \date November 2017 */
  628. /* > \ingroup complex16OTHERauxiliary */
  629. /* > \par Further Details: */
  630. /* ===================== */
  631. /* > */
  632. /* > \verbatim */
  633. /* > */
  634. /* > A rough bound on x is computed; if that is less than overflow, ZTPSV */
  635. /* > is called, otherwise, specific code is used which checks for possible */
  636. /* > overflow or divide-by-zero at every operation. */
  637. /* > */
  638. /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
  639. /* > if A is lower triangular is */
  640. /* > */
  641. /* > x[1:n] := b[1:n] */
  642. /* > for j = 1, ..., n */
  643. /* > x(j) := x(j) / A(j,j) */
  644. /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
  645. /* > end */
  646. /* > */
  647. /* > Define bounds on the components of x after j iterations of the loop: */
  648. /* > M(j) = bound on x[1:j] */
  649. /* > G(j) = bound on x[j+1:n] */
  650. /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
  651. /* > */
  652. /* > Then for iteration j+1 we have */
  653. /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
  654. /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
  655. /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
  656. /* > */
  657. /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
  658. /* > column j+1 of A, not counting the diagonal. Hence */
  659. /* > */
  660. /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
  661. /* > 1<=i<=j */
  662. /* > and */
  663. /* > */
  664. /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
  665. /* > 1<=i< j */
  666. /* > */
  667. /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the */
  668. /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
  669. /* > f2cmax(underflow, 1/overflow). */
  670. /* > */
  671. /* > The bound on x(j) is also used to determine when a step in the */
  672. /* > columnwise method can be performed without fear of overflow. If */
  673. /* > the computed bound is greater than a large constant, x is scaled to */
  674. /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
  675. /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
  676. /* > */
  677. /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
  678. /* > A**H *x = b. The basic algorithm for A upper triangular is */
  679. /* > */
  680. /* > for j = 1, ..., n */
  681. /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
  682. /* > end */
  683. /* > */
  684. /* > We simultaneously compute two bounds */
  685. /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
  686. /* > M(j) = bound on x(i), 1<=i<=j */
  687. /* > */
  688. /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
  689. /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
  690. /* > Then the bound on x(j) is */
  691. /* > */
  692. /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
  693. /* > */
  694. /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
  695. /* > 1<=i<=j */
  696. /* > */
  697. /* > and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater */
  698. /* > than f2cmax(underflow, 1/overflow). */
  699. /* > \endverbatim */
  700. /* > */
  701. /* ===================================================================== */
  702. /* Subroutine */ int zlatps_(char *uplo, char *trans, char *diag, char *
  703. normin, integer *n, doublecomplex *ap, doublecomplex *x, doublereal *
  704. scale, doublereal *cnorm, integer *info)
  705. {
  706. /* System generated locals */
  707. integer i__1, i__2, i__3, i__4, i__5;
  708. doublereal d__1, d__2, d__3, d__4;
  709. doublecomplex z__1, z__2, z__3, z__4;
  710. /* Local variables */
  711. integer jinc, jlen;
  712. doublereal xbnd;
  713. integer imax;
  714. doublereal tmax;
  715. doublecomplex tjjs;
  716. doublereal xmax, grow;
  717. integer i__, j;
  718. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  719. integer *);
  720. extern logical lsame_(char *, char *);
  721. doublereal tscal;
  722. doublecomplex uscal;
  723. integer jlast;
  724. doublecomplex csumj;
  725. extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
  726. doublecomplex *, integer *, doublecomplex *, integer *);
  727. logical upper;
  728. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  729. doublecomplex *, integer *, doublecomplex *, integer *);
  730. extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
  731. doublecomplex *, integer *, doublecomplex *, integer *), ztpsv_(
  732. char *, char *, char *, integer *, doublecomplex *, doublecomplex
  733. *, integer *), dlabad_(doublereal *,
  734. doublereal *);
  735. extern doublereal dlamch_(char *);
  736. integer ip;
  737. doublereal xj;
  738. extern integer idamax_(integer *, doublereal *, integer *);
  739. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  740. integer *, doublereal *, doublecomplex *, integer *);
  741. doublereal bignum;
  742. extern integer izamax_(integer *, doublecomplex *, integer *);
  743. extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
  744. doublecomplex *);
  745. logical notran;
  746. integer jfirst;
  747. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  748. doublereal smlnum;
  749. logical nounit;
  750. doublereal rec, tjj;
  751. /* -- LAPACK auxiliary routine (version 3.8.0) -- */
  752. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  753. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  754. /* November 2017 */
  755. /* ===================================================================== */
  756. /* Parameter adjustments */
  757. --cnorm;
  758. --x;
  759. --ap;
  760. /* Function Body */
  761. *info = 0;
  762. upper = lsame_(uplo, "U");
  763. notran = lsame_(trans, "N");
  764. nounit = lsame_(diag, "N");
  765. /* Test the input parameters. */
  766. if (! upper && ! lsame_(uplo, "L")) {
  767. *info = -1;
  768. } else if (! notran && ! lsame_(trans, "T") && !
  769. lsame_(trans, "C")) {
  770. *info = -2;
  771. } else if (! nounit && ! lsame_(diag, "U")) {
  772. *info = -3;
  773. } else if (! lsame_(normin, "Y") && ! lsame_(normin,
  774. "N")) {
  775. *info = -4;
  776. } else if (*n < 0) {
  777. *info = -5;
  778. }
  779. if (*info != 0) {
  780. i__1 = -(*info);
  781. xerbla_("ZLATPS", &i__1, (ftnlen)6);
  782. return 0;
  783. }
  784. /* Quick return if possible */
  785. if (*n == 0) {
  786. return 0;
  787. }
  788. /* Determine machine dependent parameters to control overflow. */
  789. smlnum = dlamch_("Safe minimum");
  790. bignum = 1. / smlnum;
  791. dlabad_(&smlnum, &bignum);
  792. smlnum /= dlamch_("Precision");
  793. bignum = 1. / smlnum;
  794. *scale = 1.;
  795. if (lsame_(normin, "N")) {
  796. /* Compute the 1-norm of each column, not including the diagonal. */
  797. if (upper) {
  798. /* A is upper triangular. */
  799. ip = 1;
  800. i__1 = *n;
  801. for (j = 1; j <= i__1; ++j) {
  802. i__2 = j - 1;
  803. cnorm[j] = dzasum_(&i__2, &ap[ip], &c__1);
  804. ip += j;
  805. /* L10: */
  806. }
  807. } else {
  808. /* A is lower triangular. */
  809. ip = 1;
  810. i__1 = *n - 1;
  811. for (j = 1; j <= i__1; ++j) {
  812. i__2 = *n - j;
  813. cnorm[j] = dzasum_(&i__2, &ap[ip + 1], &c__1);
  814. ip = ip + *n - j + 1;
  815. /* L20: */
  816. }
  817. cnorm[*n] = 0.;
  818. }
  819. }
  820. /* Scale the column norms by TSCAL if the maximum element in CNORM is */
  821. /* greater than BIGNUM/2. */
  822. imax = idamax_(n, &cnorm[1], &c__1);
  823. tmax = cnorm[imax];
  824. if (tmax <= bignum * .5) {
  825. tscal = 1.;
  826. } else {
  827. tscal = .5 / (smlnum * tmax);
  828. dscal_(n, &tscal, &cnorm[1], &c__1);
  829. }
  830. /* Compute a bound on the computed solution vector to see if the */
  831. /* Level 2 BLAS routine ZTPSV can be used. */
  832. xmax = 0.;
  833. i__1 = *n;
  834. for (j = 1; j <= i__1; ++j) {
  835. /* Computing MAX */
  836. i__2 = j;
  837. d__3 = xmax, d__4 = (d__1 = x[i__2].r / 2., abs(d__1)) + (d__2 =
  838. d_imag(&x[j]) / 2., abs(d__2));
  839. xmax = f2cmax(d__3,d__4);
  840. /* L30: */
  841. }
  842. xbnd = xmax;
  843. if (notran) {
  844. /* Compute the growth in A * x = b. */
  845. if (upper) {
  846. jfirst = *n;
  847. jlast = 1;
  848. jinc = -1;
  849. } else {
  850. jfirst = 1;
  851. jlast = *n;
  852. jinc = 1;
  853. }
  854. if (tscal != 1.) {
  855. grow = 0.;
  856. goto L60;
  857. }
  858. if (nounit) {
  859. /* A is non-unit triangular. */
  860. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  861. /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
  862. grow = .5 / f2cmax(xbnd,smlnum);
  863. xbnd = grow;
  864. ip = jfirst * (jfirst + 1) / 2;
  865. jlen = *n;
  866. i__1 = jlast;
  867. i__2 = jinc;
  868. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  869. /* Exit the loop if the growth factor is too small. */
  870. if (grow <= smlnum) {
  871. goto L60;
  872. }
  873. i__3 = ip;
  874. tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
  875. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  876. d__2));
  877. if (tjj >= smlnum) {
  878. /* M(j) = G(j-1) / abs(A(j,j)) */
  879. /* Computing MIN */
  880. d__1 = xbnd, d__2 = f2cmin(1.,tjj) * grow;
  881. xbnd = f2cmin(d__1,d__2);
  882. } else {
  883. /* M(j) could overflow, set XBND to 0. */
  884. xbnd = 0.;
  885. }
  886. if (tjj + cnorm[j] >= smlnum) {
  887. /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
  888. grow *= tjj / (tjj + cnorm[j]);
  889. } else {
  890. /* G(j) could overflow, set GROW to 0. */
  891. grow = 0.;
  892. }
  893. ip += jinc * jlen;
  894. --jlen;
  895. /* L40: */
  896. }
  897. grow = xbnd;
  898. } else {
  899. /* A is unit triangular. */
  900. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  901. /* Computing MIN */
  902. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  903. grow = f2cmin(d__1,d__2);
  904. i__2 = jlast;
  905. i__1 = jinc;
  906. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  907. /* Exit the loop if the growth factor is too small. */
  908. if (grow <= smlnum) {
  909. goto L60;
  910. }
  911. /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
  912. grow *= 1. / (cnorm[j] + 1.);
  913. /* L50: */
  914. }
  915. }
  916. L60:
  917. ;
  918. } else {
  919. /* Compute the growth in A**T * x = b or A**H * x = b. */
  920. if (upper) {
  921. jfirst = 1;
  922. jlast = *n;
  923. jinc = 1;
  924. } else {
  925. jfirst = *n;
  926. jlast = 1;
  927. jinc = -1;
  928. }
  929. if (tscal != 1.) {
  930. grow = 0.;
  931. goto L90;
  932. }
  933. if (nounit) {
  934. /* A is non-unit triangular. */
  935. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  936. /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
  937. grow = .5 / f2cmax(xbnd,smlnum);
  938. xbnd = grow;
  939. ip = jfirst * (jfirst + 1) / 2;
  940. jlen = 1;
  941. i__1 = jlast;
  942. i__2 = jinc;
  943. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  944. /* Exit the loop if the growth factor is too small. */
  945. if (grow <= smlnum) {
  946. goto L90;
  947. }
  948. /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
  949. xj = cnorm[j] + 1.;
  950. /* Computing MIN */
  951. d__1 = grow, d__2 = xbnd / xj;
  952. grow = f2cmin(d__1,d__2);
  953. i__3 = ip;
  954. tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
  955. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  956. d__2));
  957. if (tjj >= smlnum) {
  958. /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
  959. if (xj > tjj) {
  960. xbnd *= tjj / xj;
  961. }
  962. } else {
  963. /* M(j) could overflow, set XBND to 0. */
  964. xbnd = 0.;
  965. }
  966. ++jlen;
  967. ip += jinc * jlen;
  968. /* L70: */
  969. }
  970. grow = f2cmin(grow,xbnd);
  971. } else {
  972. /* A is unit triangular. */
  973. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  974. /* Computing MIN */
  975. d__1 = 1., d__2 = .5 / f2cmax(xbnd,smlnum);
  976. grow = f2cmin(d__1,d__2);
  977. i__2 = jlast;
  978. i__1 = jinc;
  979. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  980. /* Exit the loop if the growth factor is too small. */
  981. if (grow <= smlnum) {
  982. goto L90;
  983. }
  984. /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
  985. xj = cnorm[j] + 1.;
  986. grow /= xj;
  987. /* L80: */
  988. }
  989. }
  990. L90:
  991. ;
  992. }
  993. if (grow * tscal > smlnum) {
  994. /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
  995. /* elements of X is not too small. */
  996. ztpsv_(uplo, trans, diag, n, &ap[1], &x[1], &c__1);
  997. } else {
  998. /* Use a Level 1 BLAS solve, scaling intermediate results. */
  999. if (xmax > bignum * .5) {
  1000. /* Scale X so that its components are less than or equal to */
  1001. /* BIGNUM in absolute value. */
  1002. *scale = bignum * .5 / xmax;
  1003. zdscal_(n, scale, &x[1], &c__1);
  1004. xmax = bignum;
  1005. } else {
  1006. xmax *= 2.;
  1007. }
  1008. if (notran) {
  1009. /* Solve A * x = b */
  1010. ip = jfirst * (jfirst + 1) / 2;
  1011. i__1 = jlast;
  1012. i__2 = jinc;
  1013. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1014. /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
  1015. i__3 = j;
  1016. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1017. abs(d__2));
  1018. if (nounit) {
  1019. i__3 = ip;
  1020. z__1.r = tscal * ap[i__3].r, z__1.i = tscal * ap[i__3].i;
  1021. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1022. } else {
  1023. tjjs.r = tscal, tjjs.i = 0.;
  1024. if (tscal == 1.) {
  1025. goto L110;
  1026. }
  1027. }
  1028. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs), abs(
  1029. d__2));
  1030. if (tjj > smlnum) {
  1031. /* abs(A(j,j)) > SMLNUM: */
  1032. if (tjj < 1.) {
  1033. if (xj > tjj * bignum) {
  1034. /* Scale x by 1/b(j). */
  1035. rec = 1. / xj;
  1036. zdscal_(n, &rec, &x[1], &c__1);
  1037. *scale *= rec;
  1038. xmax *= rec;
  1039. }
  1040. }
  1041. i__3 = j;
  1042. zladiv_(&z__1, &x[j], &tjjs);
  1043. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1044. i__3 = j;
  1045. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1046. , abs(d__2));
  1047. } else if (tjj > 0.) {
  1048. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1049. if (xj > tjj * bignum) {
  1050. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
  1051. /* to avoid overflow when dividing by A(j,j). */
  1052. rec = tjj * bignum / xj;
  1053. if (cnorm[j] > 1.) {
  1054. /* Scale by 1/CNORM(j) to avoid overflow when */
  1055. /* multiplying x(j) times column j. */
  1056. rec /= cnorm[j];
  1057. }
  1058. zdscal_(n, &rec, &x[1], &c__1);
  1059. *scale *= rec;
  1060. xmax *= rec;
  1061. }
  1062. i__3 = j;
  1063. zladiv_(&z__1, &x[j], &tjjs);
  1064. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1065. i__3 = j;
  1066. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1067. , abs(d__2));
  1068. } else {
  1069. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1070. /* scale = 0, and compute a solution to A*x = 0. */
  1071. i__3 = *n;
  1072. for (i__ = 1; i__ <= i__3; ++i__) {
  1073. i__4 = i__;
  1074. x[i__4].r = 0., x[i__4].i = 0.;
  1075. /* L100: */
  1076. }
  1077. i__3 = j;
  1078. x[i__3].r = 1., x[i__3].i = 0.;
  1079. xj = 1.;
  1080. *scale = 0.;
  1081. xmax = 0.;
  1082. }
  1083. L110:
  1084. /* Scale x if necessary to avoid overflow when adding a */
  1085. /* multiple of column j of A. */
  1086. if (xj > 1.) {
  1087. rec = 1. / xj;
  1088. if (cnorm[j] > (bignum - xmax) * rec) {
  1089. /* Scale x by 1/(2*abs(x(j))). */
  1090. rec *= .5;
  1091. zdscal_(n, &rec, &x[1], &c__1);
  1092. *scale *= rec;
  1093. }
  1094. } else if (xj * cnorm[j] > bignum - xmax) {
  1095. /* Scale x by 1/2. */
  1096. zdscal_(n, &c_b36, &x[1], &c__1);
  1097. *scale *= .5;
  1098. }
  1099. if (upper) {
  1100. if (j > 1) {
  1101. /* Compute the update */
  1102. /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
  1103. i__3 = j - 1;
  1104. i__4 = j;
  1105. z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
  1106. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1107. zaxpy_(&i__3, &z__1, &ap[ip - j + 1], &c__1, &x[1], &
  1108. c__1);
  1109. i__3 = j - 1;
  1110. i__ = izamax_(&i__3, &x[1], &c__1);
  1111. i__3 = i__;
  1112. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
  1113. &x[i__]), abs(d__2));
  1114. }
  1115. ip -= j;
  1116. } else {
  1117. if (j < *n) {
  1118. /* Compute the update */
  1119. /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
  1120. i__3 = *n - j;
  1121. i__4 = j;
  1122. z__2.r = -x[i__4].r, z__2.i = -x[i__4].i;
  1123. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1124. zaxpy_(&i__3, &z__1, &ap[ip + 1], &c__1, &x[j + 1], &
  1125. c__1);
  1126. i__3 = *n - j;
  1127. i__ = j + izamax_(&i__3, &x[j + 1], &c__1);
  1128. i__3 = i__;
  1129. xmax = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(
  1130. &x[i__]), abs(d__2));
  1131. }
  1132. ip = ip + *n - j + 1;
  1133. }
  1134. /* L120: */
  1135. }
  1136. } else if (lsame_(trans, "T")) {
  1137. /* Solve A**T * x = b */
  1138. ip = jfirst * (jfirst + 1) / 2;
  1139. jlen = 1;
  1140. i__2 = jlast;
  1141. i__1 = jinc;
  1142. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  1143. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1144. /* k<>j */
  1145. i__3 = j;
  1146. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1147. abs(d__2));
  1148. uscal.r = tscal, uscal.i = 0.;
  1149. rec = 1. / f2cmax(xmax,1.);
  1150. if (cnorm[j] > (bignum - xj) * rec) {
  1151. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1152. rec *= .5;
  1153. if (nounit) {
  1154. i__3 = ip;
  1155. z__1.r = tscal * ap[i__3].r, z__1.i = tscal * ap[i__3]
  1156. .i;
  1157. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1158. } else {
  1159. tjjs.r = tscal, tjjs.i = 0.;
  1160. }
  1161. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1162. abs(d__2));
  1163. if (tjj > 1.) {
  1164. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1165. /* Computing MIN */
  1166. d__1 = 1., d__2 = rec * tjj;
  1167. rec = f2cmin(d__1,d__2);
  1168. zladiv_(&z__1, &uscal, &tjjs);
  1169. uscal.r = z__1.r, uscal.i = z__1.i;
  1170. }
  1171. if (rec < 1.) {
  1172. zdscal_(n, &rec, &x[1], &c__1);
  1173. *scale *= rec;
  1174. xmax *= rec;
  1175. }
  1176. }
  1177. csumj.r = 0., csumj.i = 0.;
  1178. if (uscal.r == 1. && uscal.i == 0.) {
  1179. /* If the scaling needed for A in the dot product is 1, */
  1180. /* call ZDOTU to perform the dot product. */
  1181. if (upper) {
  1182. i__3 = j - 1;
  1183. zdotu_(&z__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
  1184. c__1);
  1185. csumj.r = z__1.r, csumj.i = z__1.i;
  1186. } else if (j < *n) {
  1187. i__3 = *n - j;
  1188. zdotu_(&z__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
  1189. c__1);
  1190. csumj.r = z__1.r, csumj.i = z__1.i;
  1191. }
  1192. } else {
  1193. /* Otherwise, use in-line code for the dot product. */
  1194. if (upper) {
  1195. i__3 = j - 1;
  1196. for (i__ = 1; i__ <= i__3; ++i__) {
  1197. i__4 = ip - j + i__;
  1198. z__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
  1199. uscal.i, z__3.i = ap[i__4].r * uscal.i +
  1200. ap[i__4].i * uscal.r;
  1201. i__5 = i__;
  1202. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1203. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1204. i__5].r;
  1205. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1206. z__2.i;
  1207. csumj.r = z__1.r, csumj.i = z__1.i;
  1208. /* L130: */
  1209. }
  1210. } else if (j < *n) {
  1211. i__3 = *n - j;
  1212. for (i__ = 1; i__ <= i__3; ++i__) {
  1213. i__4 = ip + i__;
  1214. z__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
  1215. uscal.i, z__3.i = ap[i__4].r * uscal.i +
  1216. ap[i__4].i * uscal.r;
  1217. i__5 = j + i__;
  1218. z__2.r = z__3.r * x[i__5].r - z__3.i * x[i__5].i,
  1219. z__2.i = z__3.r * x[i__5].i + z__3.i * x[
  1220. i__5].r;
  1221. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1222. z__2.i;
  1223. csumj.r = z__1.r, csumj.i = z__1.i;
  1224. /* L140: */
  1225. }
  1226. }
  1227. }
  1228. z__1.r = tscal, z__1.i = 0.;
  1229. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1230. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1231. /* was not used to scale the dotproduct. */
  1232. i__3 = j;
  1233. i__4 = j;
  1234. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1235. csumj.i;
  1236. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1237. i__3 = j;
  1238. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1239. , abs(d__2));
  1240. if (nounit) {
  1241. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1242. i__3 = ip;
  1243. z__1.r = tscal * ap[i__3].r, z__1.i = tscal * ap[i__3]
  1244. .i;
  1245. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1246. } else {
  1247. tjjs.r = tscal, tjjs.i = 0.;
  1248. if (tscal == 1.) {
  1249. goto L160;
  1250. }
  1251. }
  1252. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1253. abs(d__2));
  1254. if (tjj > smlnum) {
  1255. /* abs(A(j,j)) > SMLNUM: */
  1256. if (tjj < 1.) {
  1257. if (xj > tjj * bignum) {
  1258. /* Scale X by 1/abs(x(j)). */
  1259. rec = 1. / xj;
  1260. zdscal_(n, &rec, &x[1], &c__1);
  1261. *scale *= rec;
  1262. xmax *= rec;
  1263. }
  1264. }
  1265. i__3 = j;
  1266. zladiv_(&z__1, &x[j], &tjjs);
  1267. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1268. } else if (tjj > 0.) {
  1269. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1270. if (xj > tjj * bignum) {
  1271. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1272. rec = tjj * bignum / xj;
  1273. zdscal_(n, &rec, &x[1], &c__1);
  1274. *scale *= rec;
  1275. xmax *= rec;
  1276. }
  1277. i__3 = j;
  1278. zladiv_(&z__1, &x[j], &tjjs);
  1279. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1280. } else {
  1281. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1282. /* scale = 0 and compute a solution to A**T *x = 0. */
  1283. i__3 = *n;
  1284. for (i__ = 1; i__ <= i__3; ++i__) {
  1285. i__4 = i__;
  1286. x[i__4].r = 0., x[i__4].i = 0.;
  1287. /* L150: */
  1288. }
  1289. i__3 = j;
  1290. x[i__3].r = 1., x[i__3].i = 0.;
  1291. *scale = 0.;
  1292. xmax = 0.;
  1293. }
  1294. L160:
  1295. ;
  1296. } else {
  1297. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1298. /* product has already been divided by 1/A(j,j). */
  1299. i__3 = j;
  1300. zladiv_(&z__2, &x[j], &tjjs);
  1301. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1302. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1303. }
  1304. /* Computing MAX */
  1305. i__3 = j;
  1306. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1307. d_imag(&x[j]), abs(d__2));
  1308. xmax = f2cmax(d__3,d__4);
  1309. ++jlen;
  1310. ip += jinc * jlen;
  1311. /* L170: */
  1312. }
  1313. } else {
  1314. /* Solve A**H * x = b */
  1315. ip = jfirst * (jfirst + 1) / 2;
  1316. jlen = 1;
  1317. i__1 = jlast;
  1318. i__2 = jinc;
  1319. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1320. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1321. /* k<>j */
  1322. i__3 = j;
  1323. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j]),
  1324. abs(d__2));
  1325. uscal.r = tscal, uscal.i = 0.;
  1326. rec = 1. / f2cmax(xmax,1.);
  1327. if (cnorm[j] > (bignum - xj) * rec) {
  1328. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1329. rec *= .5;
  1330. if (nounit) {
  1331. d_cnjg(&z__2, &ap[ip]);
  1332. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1333. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1334. } else {
  1335. tjjs.r = tscal, tjjs.i = 0.;
  1336. }
  1337. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1338. abs(d__2));
  1339. if (tjj > 1.) {
  1340. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1341. /* Computing MIN */
  1342. d__1 = 1., d__2 = rec * tjj;
  1343. rec = f2cmin(d__1,d__2);
  1344. zladiv_(&z__1, &uscal, &tjjs);
  1345. uscal.r = z__1.r, uscal.i = z__1.i;
  1346. }
  1347. if (rec < 1.) {
  1348. zdscal_(n, &rec, &x[1], &c__1);
  1349. *scale *= rec;
  1350. xmax *= rec;
  1351. }
  1352. }
  1353. csumj.r = 0., csumj.i = 0.;
  1354. if (uscal.r == 1. && uscal.i == 0.) {
  1355. /* If the scaling needed for A in the dot product is 1, */
  1356. /* call ZDOTC to perform the dot product. */
  1357. if (upper) {
  1358. i__3 = j - 1;
  1359. zdotc_(&z__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
  1360. c__1);
  1361. csumj.r = z__1.r, csumj.i = z__1.i;
  1362. } else if (j < *n) {
  1363. i__3 = *n - j;
  1364. zdotc_(&z__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
  1365. c__1);
  1366. csumj.r = z__1.r, csumj.i = z__1.i;
  1367. }
  1368. } else {
  1369. /* Otherwise, use in-line code for the dot product. */
  1370. if (upper) {
  1371. i__3 = j - 1;
  1372. for (i__ = 1; i__ <= i__3; ++i__) {
  1373. d_cnjg(&z__4, &ap[ip - j + i__]);
  1374. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1375. z__3.i = z__4.r * uscal.i + z__4.i *
  1376. uscal.r;
  1377. i__4 = i__;
  1378. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1379. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1380. i__4].r;
  1381. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1382. z__2.i;
  1383. csumj.r = z__1.r, csumj.i = z__1.i;
  1384. /* L180: */
  1385. }
  1386. } else if (j < *n) {
  1387. i__3 = *n - j;
  1388. for (i__ = 1; i__ <= i__3; ++i__) {
  1389. d_cnjg(&z__4, &ap[ip + i__]);
  1390. z__3.r = z__4.r * uscal.r - z__4.i * uscal.i,
  1391. z__3.i = z__4.r * uscal.i + z__4.i *
  1392. uscal.r;
  1393. i__4 = j + i__;
  1394. z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
  1395. z__2.i = z__3.r * x[i__4].i + z__3.i * x[
  1396. i__4].r;
  1397. z__1.r = csumj.r + z__2.r, z__1.i = csumj.i +
  1398. z__2.i;
  1399. csumj.r = z__1.r, csumj.i = z__1.i;
  1400. /* L190: */
  1401. }
  1402. }
  1403. }
  1404. z__1.r = tscal, z__1.i = 0.;
  1405. if (uscal.r == z__1.r && uscal.i == z__1.i) {
  1406. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1407. /* was not used to scale the dotproduct. */
  1408. i__3 = j;
  1409. i__4 = j;
  1410. z__1.r = x[i__4].r - csumj.r, z__1.i = x[i__4].i -
  1411. csumj.i;
  1412. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1413. i__3 = j;
  1414. xj = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[j])
  1415. , abs(d__2));
  1416. if (nounit) {
  1417. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1418. d_cnjg(&z__2, &ap[ip]);
  1419. z__1.r = tscal * z__2.r, z__1.i = tscal * z__2.i;
  1420. tjjs.r = z__1.r, tjjs.i = z__1.i;
  1421. } else {
  1422. tjjs.r = tscal, tjjs.i = 0.;
  1423. if (tscal == 1.) {
  1424. goto L210;
  1425. }
  1426. }
  1427. tjj = (d__1 = tjjs.r, abs(d__1)) + (d__2 = d_imag(&tjjs),
  1428. abs(d__2));
  1429. if (tjj > smlnum) {
  1430. /* abs(A(j,j)) > SMLNUM: */
  1431. if (tjj < 1.) {
  1432. if (xj > tjj * bignum) {
  1433. /* Scale X by 1/abs(x(j)). */
  1434. rec = 1. / xj;
  1435. zdscal_(n, &rec, &x[1], &c__1);
  1436. *scale *= rec;
  1437. xmax *= rec;
  1438. }
  1439. }
  1440. i__3 = j;
  1441. zladiv_(&z__1, &x[j], &tjjs);
  1442. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1443. } else if (tjj > 0.) {
  1444. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1445. if (xj > tjj * bignum) {
  1446. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1447. rec = tjj * bignum / xj;
  1448. zdscal_(n, &rec, &x[1], &c__1);
  1449. *scale *= rec;
  1450. xmax *= rec;
  1451. }
  1452. i__3 = j;
  1453. zladiv_(&z__1, &x[j], &tjjs);
  1454. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1455. } else {
  1456. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1457. /* scale = 0 and compute a solution to A**H *x = 0. */
  1458. i__3 = *n;
  1459. for (i__ = 1; i__ <= i__3; ++i__) {
  1460. i__4 = i__;
  1461. x[i__4].r = 0., x[i__4].i = 0.;
  1462. /* L200: */
  1463. }
  1464. i__3 = j;
  1465. x[i__3].r = 1., x[i__3].i = 0.;
  1466. *scale = 0.;
  1467. xmax = 0.;
  1468. }
  1469. L210:
  1470. ;
  1471. } else {
  1472. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1473. /* product has already been divided by 1/A(j,j). */
  1474. i__3 = j;
  1475. zladiv_(&z__2, &x[j], &tjjs);
  1476. z__1.r = z__2.r - csumj.r, z__1.i = z__2.i - csumj.i;
  1477. x[i__3].r = z__1.r, x[i__3].i = z__1.i;
  1478. }
  1479. /* Computing MAX */
  1480. i__3 = j;
  1481. d__3 = xmax, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1482. d_imag(&x[j]), abs(d__2));
  1483. xmax = f2cmax(d__3,d__4);
  1484. ++jlen;
  1485. ip += jinc * jlen;
  1486. /* L220: */
  1487. }
  1488. }
  1489. *scale /= tscal;
  1490. }
  1491. /* Scale the column norms by 1/TSCAL for return. */
  1492. if (tscal != 1.) {
  1493. d__1 = 1. / tscal;
  1494. dscal_(n, &d__1, &cnorm[1], &c__1);
  1495. }
  1496. return 0;
  1497. /* End of ZLATPS */
  1498. } /* zlatps_ */