You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeevx.c 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  490. rices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SGEEVX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeevx.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeevx.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeevx.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, */
  509. /* VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, */
  510. /* RCONDE, RCONDV, WORK, LWORK, IWORK, INFO ) */
  511. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  512. /* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
  513. /* REAL ABNRM */
  514. /* INTEGER IWORK( * ) */
  515. /* REAL A( LDA, * ), RCONDE( * ), RCONDV( * ), */
  516. /* $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ), */
  517. /* $ WI( * ), WORK( * ), WR( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > SGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
  524. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  525. /* > */
  526. /* > Optionally also, it computes a balancing transformation to improve */
  527. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  528. /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
  529. /* > (RCONDE), and reciprocal condition numbers for the right */
  530. /* > eigenvectors (RCONDV). */
  531. /* > */
  532. /* > The right eigenvector v(j) of A satisfies */
  533. /* > A * v(j) = lambda(j) * v(j) */
  534. /* > where lambda(j) is its eigenvalue. */
  535. /* > The left eigenvector u(j) of A satisfies */
  536. /* > u(j)**H * A = lambda(j) * u(j)**H */
  537. /* > where u(j)**H denotes the conjugate-transpose of u(j). */
  538. /* > */
  539. /* > The computed eigenvectors are normalized to have Euclidean norm */
  540. /* > equal to 1 and largest component real. */
  541. /* > */
  542. /* > Balancing a matrix means permuting the rows and columns to make it */
  543. /* > more nearly upper triangular, and applying a diagonal similarity */
  544. /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
  545. /* > make its rows and columns closer in norm and the condition numbers */
  546. /* > of its eigenvalues and eigenvectors smaller. The computed */
  547. /* > reciprocal condition numbers correspond to the balanced matrix. */
  548. /* > Permuting rows and columns will not change the condition numbers */
  549. /* > (in exact arithmetic) but diagonal scaling will. For further */
  550. /* > explanation of balancing, see section 4.10.2 of the LAPACK */
  551. /* > Users' Guide. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] BALANC */
  556. /* > \verbatim */
  557. /* > BALANC is CHARACTER*1 */
  558. /* > Indicates how the input matrix should be diagonally scaled */
  559. /* > and/or permuted to improve the conditioning of its */
  560. /* > eigenvalues. */
  561. /* > = 'N': Do not diagonally scale or permute; */
  562. /* > = 'P': Perform permutations to make the matrix more nearly */
  563. /* > upper triangular. Do not diagonally scale; */
  564. /* > = 'S': Diagonally scale the matrix, i.e. replace A by */
  565. /* > D*A*D**(-1), where D is a diagonal matrix chosen */
  566. /* > to make the rows and columns of A more equal in */
  567. /* > norm. Do not permute; */
  568. /* > = 'B': Both diagonally scale and permute A. */
  569. /* > */
  570. /* > Computed reciprocal condition numbers will be for the matrix */
  571. /* > after balancing and/or permuting. Permuting does not change */
  572. /* > condition numbers (in exact arithmetic), but balancing does. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] JOBVL */
  576. /* > \verbatim */
  577. /* > JOBVL is CHARACTER*1 */
  578. /* > = 'N': left eigenvectors of A are not computed; */
  579. /* > = 'V': left eigenvectors of A are computed. */
  580. /* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] JOBVR */
  584. /* > \verbatim */
  585. /* > JOBVR is CHARACTER*1 */
  586. /* > = 'N': right eigenvectors of A are not computed; */
  587. /* > = 'V': right eigenvectors of A are computed. */
  588. /* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] SENSE */
  592. /* > \verbatim */
  593. /* > SENSE is CHARACTER*1 */
  594. /* > Determines which reciprocal condition numbers are computed. */
  595. /* > = 'N': None are computed; */
  596. /* > = 'E': Computed for eigenvalues only; */
  597. /* > = 'V': Computed for right eigenvectors only; */
  598. /* > = 'B': Computed for eigenvalues and right eigenvectors. */
  599. /* > */
  600. /* > If SENSE = 'E' or 'B', both left and right eigenvectors */
  601. /* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] N */
  605. /* > \verbatim */
  606. /* > N is INTEGER */
  607. /* > The order of the matrix A. N >= 0. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in,out] A */
  611. /* > \verbatim */
  612. /* > A is REAL array, dimension (LDA,N) */
  613. /* > On entry, the N-by-N matrix A. */
  614. /* > On exit, A has been overwritten. If JOBVL = 'V' or */
  615. /* > JOBVR = 'V', A contains the real Schur form of the balanced */
  616. /* > version of the input matrix A. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDA */
  620. /* > \verbatim */
  621. /* > LDA is INTEGER */
  622. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] WR */
  626. /* > \verbatim */
  627. /* > WR is REAL array, dimension (N) */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] WI */
  631. /* > \verbatim */
  632. /* > WI is REAL array, dimension (N) */
  633. /* > WR and WI contain the real and imaginary parts, */
  634. /* > respectively, of the computed eigenvalues. Complex */
  635. /* > conjugate pairs of eigenvalues will appear consecutively */
  636. /* > with the eigenvalue having the positive imaginary part */
  637. /* > first. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] VL */
  641. /* > \verbatim */
  642. /* > VL is REAL array, dimension (LDVL,N) */
  643. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  644. /* > after another in the columns of VL, in the same order */
  645. /* > as their eigenvalues. */
  646. /* > If JOBVL = 'N', VL is not referenced. */
  647. /* > If the j-th eigenvalue is real, then u(j) = VL(:,j), */
  648. /* > the j-th column of VL. */
  649. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  650. /* > conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
  651. /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDVL */
  655. /* > \verbatim */
  656. /* > LDVL is INTEGER */
  657. /* > The leading dimension of the array VL. LDVL >= 1; if */
  658. /* > JOBVL = 'V', LDVL >= N. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] VR */
  662. /* > \verbatim */
  663. /* > VR is REAL array, dimension (LDVR,N) */
  664. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  665. /* > after another in the columns of VR, in the same order */
  666. /* > as their eigenvalues. */
  667. /* > If JOBVR = 'N', VR is not referenced. */
  668. /* > If the j-th eigenvalue is real, then v(j) = VR(:,j), */
  669. /* > the j-th column of VR. */
  670. /* > If the j-th and (j+1)-st eigenvalues form a complex */
  671. /* > conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
  672. /* > v(j+1) = VR(:,j) - i*VR(:,j+1). */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[in] LDVR */
  676. /* > \verbatim */
  677. /* > LDVR is INTEGER */
  678. /* > The leading dimension of the array VR. LDVR >= 1, and if */
  679. /* > JOBVR = 'V', LDVR >= N. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[out] ILO */
  683. /* > \verbatim */
  684. /* > ILO is INTEGER */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] IHI */
  688. /* > \verbatim */
  689. /* > IHI is INTEGER */
  690. /* > ILO and IHI are integer values determined when A was */
  691. /* > balanced. The balanced A(i,j) = 0 if I > J and */
  692. /* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] SCALE */
  696. /* > \verbatim */
  697. /* > SCALE is REAL array, dimension (N) */
  698. /* > Details of the permutations and scaling factors applied */
  699. /* > when balancing A. If P(j) is the index of the row and column */
  700. /* > interchanged with row and column j, and D(j) is the scaling */
  701. /* > factor applied to row and column j, then */
  702. /* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
  703. /* > = D(J), for J = ILO,...,IHI */
  704. /* > = P(J) for J = IHI+1,...,N. */
  705. /* > The order in which the interchanges are made is N to IHI+1, */
  706. /* > then 1 to ILO-1. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[out] ABNRM */
  710. /* > \verbatim */
  711. /* > ABNRM is REAL */
  712. /* > The one-norm of the balanced matrix (the maximum */
  713. /* > of the sum of absolute values of elements of any column). */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] RCONDE */
  717. /* > \verbatim */
  718. /* > RCONDE is REAL array, dimension (N) */
  719. /* > RCONDE(j) is the reciprocal condition number of the j-th */
  720. /* > eigenvalue. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] RCONDV */
  724. /* > \verbatim */
  725. /* > RCONDV is REAL array, dimension (N) */
  726. /* > RCONDV(j) is the reciprocal condition number of the j-th */
  727. /* > right eigenvector. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] WORK */
  731. /* > \verbatim */
  732. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  733. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  734. /* > \endverbatim */
  735. /* > */
  736. /* > \param[in] LWORK */
  737. /* > \verbatim */
  738. /* > LWORK is INTEGER */
  739. /* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
  740. /* > LWORK >= f2cmax(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
  741. /* > LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
  742. /* > For good performance, LWORK must generally be larger. */
  743. /* > */
  744. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  745. /* > only calculates the optimal size of the WORK array, returns */
  746. /* > this value as the first entry of the WORK array, and no error */
  747. /* > message related to LWORK is issued by XERBLA. */
  748. /* > \endverbatim */
  749. /* > */
  750. /* > \param[out] IWORK */
  751. /* > \verbatim */
  752. /* > IWORK is INTEGER array, dimension (2*N-2) */
  753. /* > If SENSE = 'N' or 'E', not referenced. */
  754. /* > \endverbatim */
  755. /* > */
  756. /* > \param[out] INFO */
  757. /* > \verbatim */
  758. /* > INFO is INTEGER */
  759. /* > = 0: successful exit */
  760. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  761. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  762. /* > eigenvalues, and no eigenvectors or condition numbers */
  763. /* > have been computed; elements 1:ILO-1 and i+1:N of WR */
  764. /* > and WI contain eigenvalues which have converged. */
  765. /* > \endverbatim */
  766. /* Authors: */
  767. /* ======== */
  768. /* > \author Univ. of Tennessee */
  769. /* > \author Univ. of California Berkeley */
  770. /* > \author Univ. of Colorado Denver */
  771. /* > \author NAG Ltd. */
  772. /* > \date June 2016 */
  773. /* @generated from dgeevx.f, fortran d -> s, Tue Apr 19 01:47:44 2016 */
  774. /* > \ingroup realGEeigen */
  775. /* ===================================================================== */
  776. /* Subroutine */ int sgeevx_(char *balanc, char *jobvl, char *jobvr, char *
  777. sense, integer *n, real *a, integer *lda, real *wr, real *wi, real *
  778. vl, integer *ldvl, real *vr, integer *ldvr, integer *ilo, integer *
  779. ihi, real *scale, real *abnrm, real *rconde, real *rcondv, real *work,
  780. integer *lwork, integer *iwork, integer *info)
  781. {
  782. /* System generated locals */
  783. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  784. i__2, i__3;
  785. real r__1, r__2;
  786. /* Local variables */
  787. char side[1];
  788. real anrm;
  789. integer ierr, itau, iwrk, nout;
  790. extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
  791. integer *, real *, real *);
  792. extern real snrm2_(integer *, real *, integer *);
  793. integer i__, k;
  794. real r__;
  795. integer icond;
  796. extern logical lsame_(char *, char *);
  797. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  798. extern real slapy2_(real *, real *);
  799. real cs;
  800. extern /* Subroutine */ int slabad_(real *, real *);
  801. logical scalea;
  802. real cscale;
  803. extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *,
  804. integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
  805. integer *, integer *, real *, integer *);
  806. real sn;
  807. extern real slamch_(char *), slange_(char *, integer *, integer *,
  808. real *, integer *, real *);
  809. extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
  810. *, integer *, real *, real *, integer *, integer *), xerbla_(char
  811. *, integer *, ftnlen);
  812. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  813. integer *, integer *, ftnlen, ftnlen);
  814. logical select[1];
  815. real bignum;
  816. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  817. real *, integer *, integer *, real *, integer *, integer *);
  818. extern integer isamax_(integer *, real *, integer *);
  819. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  820. integer *, real *, integer *), slartg_(real *, real *,
  821. real *, real *, real *), sorghr_(integer *, integer *, integer *,
  822. real *, integer *, real *, real *, integer *, integer *), shseqr_(
  823. char *, char *, integer *, integer *, integer *, real *, integer *
  824. , real *, real *, real *, integer *, real *, integer *, integer *);
  825. integer minwrk, maxwrk;
  826. extern /* Subroutine */ int strsna_(char *, char *, logical *, integer *,
  827. real *, integer *, real *, integer *, real *, integer *, real *,
  828. real *, integer *, integer *, real *, integer *, integer *,
  829. integer *);
  830. logical wantvl, wntsnb;
  831. integer hswork;
  832. logical wntsne;
  833. real smlnum;
  834. logical lquery, wantvr, wntsnn, wntsnv;
  835. extern /* Subroutine */ int strevc3_(char *, char *, logical *, integer *,
  836. real *, integer *, real *, integer *, real *, integer *, integer
  837. *, integer *, real *, integer *, integer *);
  838. char job[1];
  839. real scl, dum[1], eps;
  840. integer lwork_trevc__;
  841. /* -- LAPACK driver routine (version 3.7.1) -- */
  842. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  843. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  844. /* June 2016 */
  845. /* ===================================================================== */
  846. /* Test the input arguments */
  847. /* Parameter adjustments */
  848. a_dim1 = *lda;
  849. a_offset = 1 + a_dim1 * 1;
  850. a -= a_offset;
  851. --wr;
  852. --wi;
  853. vl_dim1 = *ldvl;
  854. vl_offset = 1 + vl_dim1 * 1;
  855. vl -= vl_offset;
  856. vr_dim1 = *ldvr;
  857. vr_offset = 1 + vr_dim1 * 1;
  858. vr -= vr_offset;
  859. --scale;
  860. --rconde;
  861. --rcondv;
  862. --work;
  863. --iwork;
  864. /* Function Body */
  865. *info = 0;
  866. lquery = *lwork == -1;
  867. wantvl = lsame_(jobvl, "V");
  868. wantvr = lsame_(jobvr, "V");
  869. wntsnn = lsame_(sense, "N");
  870. wntsne = lsame_(sense, "E");
  871. wntsnv = lsame_(sense, "V");
  872. wntsnb = lsame_(sense, "B");
  873. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  874. || lsame_(balanc, "B"))) {
  875. *info = -1;
  876. } else if (! wantvl && ! lsame_(jobvl, "N")) {
  877. *info = -2;
  878. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  879. *info = -3;
  880. } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
  881. && ! (wantvl && wantvr)) {
  882. *info = -4;
  883. } else if (*n < 0) {
  884. *info = -5;
  885. } else if (*lda < f2cmax(1,*n)) {
  886. *info = -7;
  887. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  888. *info = -11;
  889. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  890. *info = -13;
  891. }
  892. /* Compute workspace */
  893. /* (Note: Comments in the code beginning "Workspace:" describe the */
  894. /* minimal amount of workspace needed at that point in the code, */
  895. /* as well as the preferred amount for good performance. */
  896. /* NB refers to the optimal block size for the immediately */
  897. /* following subroutine, as returned by ILAENV. */
  898. /* HSWORK refers to the workspace preferred by SHSEQR, as */
  899. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  900. /* the worst case.) */
  901. if (*info == 0) {
  902. if (*n == 0) {
  903. minwrk = 1;
  904. maxwrk = 1;
  905. } else {
  906. maxwrk = *n + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1, n, &
  907. c__0, (ftnlen)6, (ftnlen)1);
  908. if (wantvl) {
  909. strevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  910. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  911. work[1], &c_n1, &ierr);
  912. lwork_trevc__ = (integer) work[1];
  913. /* Computing MAX */
  914. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  915. maxwrk = f2cmax(i__1,i__2);
  916. shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  917. 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
  918. } else if (wantvr) {
  919. strevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  920. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  921. work[1], &c_n1, &ierr);
  922. lwork_trevc__ = (integer) work[1];
  923. /* Computing MAX */
  924. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  925. maxwrk = f2cmax(i__1,i__2);
  926. shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  927. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  928. } else {
  929. if (wntsnn) {
  930. shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  931. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  932. info);
  933. } else {
  934. shseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
  935. &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
  936. info);
  937. }
  938. }
  939. hswork = (integer) work[1];
  940. if (! wantvl && ! wantvr) {
  941. minwrk = *n << 1;
  942. if (! wntsnn) {
  943. /* Computing MAX */
  944. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  945. minwrk = f2cmax(i__1,i__2);
  946. }
  947. maxwrk = f2cmax(maxwrk,hswork);
  948. if (! wntsnn) {
  949. /* Computing MAX */
  950. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  951. maxwrk = f2cmax(i__1,i__2);
  952. }
  953. } else {
  954. minwrk = *n * 3;
  955. if (! wntsnn && ! wntsne) {
  956. /* Computing MAX */
  957. i__1 = minwrk, i__2 = *n * *n + *n * 6;
  958. minwrk = f2cmax(i__1,i__2);
  959. }
  960. maxwrk = f2cmax(maxwrk,hswork);
  961. /* Computing MAX */
  962. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "SORGHR",
  963. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  964. maxwrk = f2cmax(i__1,i__2);
  965. if (! wntsnn && ! wntsne) {
  966. /* Computing MAX */
  967. i__1 = maxwrk, i__2 = *n * *n + *n * 6;
  968. maxwrk = f2cmax(i__1,i__2);
  969. }
  970. /* Computing MAX */
  971. i__1 = maxwrk, i__2 = *n * 3;
  972. maxwrk = f2cmax(i__1,i__2);
  973. }
  974. maxwrk = f2cmax(maxwrk,minwrk);
  975. }
  976. work[1] = (real) maxwrk;
  977. if (*lwork < minwrk && ! lquery) {
  978. *info = -21;
  979. }
  980. }
  981. if (*info != 0) {
  982. i__1 = -(*info);
  983. xerbla_("SGEEVX", &i__1, (ftnlen)6);
  984. return 0;
  985. } else if (lquery) {
  986. return 0;
  987. }
  988. /* Quick return if possible */
  989. if (*n == 0) {
  990. return 0;
  991. }
  992. /* Get machine constants */
  993. eps = slamch_("P");
  994. smlnum = slamch_("S");
  995. bignum = 1.f / smlnum;
  996. slabad_(&smlnum, &bignum);
  997. smlnum = sqrt(smlnum) / eps;
  998. bignum = 1.f / smlnum;
  999. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1000. icond = 0;
  1001. anrm = slange_("M", n, n, &a[a_offset], lda, dum);
  1002. scalea = FALSE_;
  1003. if (anrm > 0.f && anrm < smlnum) {
  1004. scalea = TRUE_;
  1005. cscale = smlnum;
  1006. } else if (anrm > bignum) {
  1007. scalea = TRUE_;
  1008. cscale = bignum;
  1009. }
  1010. if (scalea) {
  1011. slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  1012. ierr);
  1013. }
  1014. /* Balance the matrix and compute ABNRM */
  1015. sgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
  1016. *abnrm = slange_("1", n, n, &a[a_offset], lda, dum);
  1017. if (scalea) {
  1018. dum[0] = *abnrm;
  1019. slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
  1020. ierr);
  1021. *abnrm = dum[0];
  1022. }
  1023. /* Reduce to upper Hessenberg form */
  1024. /* (Workspace: need 2*N, prefer N+N*NB) */
  1025. itau = 1;
  1026. iwrk = itau + *n;
  1027. i__1 = *lwork - iwrk + 1;
  1028. sgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
  1029. ierr);
  1030. if (wantvl) {
  1031. /* Want left eigenvectors */
  1032. /* Copy Householder vectors to VL */
  1033. *(unsigned char *)side = 'L';
  1034. slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  1035. ;
  1036. /* Generate orthogonal matrix in VL */
  1037. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1038. i__1 = *lwork - iwrk + 1;
  1039. sorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
  1040. i__1, &ierr);
  1041. /* Perform QR iteration, accumulating Schur vectors in VL */
  1042. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1043. iwrk = itau;
  1044. i__1 = *lwork - iwrk + 1;
  1045. shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
  1046. vl_offset], ldvl, &work[iwrk], &i__1, info);
  1047. if (wantvr) {
  1048. /* Want left and right eigenvectors */
  1049. /* Copy Schur vectors to VR */
  1050. *(unsigned char *)side = 'B';
  1051. slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  1052. }
  1053. } else if (wantvr) {
  1054. /* Want right eigenvectors */
  1055. /* Copy Householder vectors to VR */
  1056. *(unsigned char *)side = 'R';
  1057. slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  1058. ;
  1059. /* Generate orthogonal matrix in VR */
  1060. /* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
  1061. i__1 = *lwork - iwrk + 1;
  1062. sorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
  1063. i__1, &ierr);
  1064. /* Perform QR iteration, accumulating Schur vectors in VR */
  1065. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1066. iwrk = itau;
  1067. i__1 = *lwork - iwrk + 1;
  1068. shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1069. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1070. } else {
  1071. /* Compute eigenvalues only */
  1072. /* If condition numbers desired, compute Schur form */
  1073. if (wntsnn) {
  1074. *(unsigned char *)job = 'E';
  1075. } else {
  1076. *(unsigned char *)job = 'S';
  1077. }
  1078. /* (Workspace: need 1, prefer HSWORK (see comments) ) */
  1079. iwrk = itau;
  1080. i__1 = *lwork - iwrk + 1;
  1081. shseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
  1082. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1083. }
  1084. /* If INFO .NE. 0 from SHSEQR, then quit */
  1085. if (*info != 0) {
  1086. goto L50;
  1087. }
  1088. if (wantvl || wantvr) {
  1089. /* Compute left and/or right eigenvectors */
  1090. /* (Workspace: need 3*N, prefer N + 2*N*NB) */
  1091. i__1 = *lwork - iwrk + 1;
  1092. strevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  1093. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  1094. ierr);
  1095. }
  1096. /* Compute condition numbers if desired */
  1097. /* (Workspace: need N*N+6*N unless SENSE = 'E') */
  1098. if (! wntsnn) {
  1099. strsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
  1100. ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
  1101. &work[iwrk], n, &iwork[1], &icond);
  1102. }
  1103. if (wantvl) {
  1104. /* Undo balancing of left eigenvectors */
  1105. sgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
  1106. &ierr);
  1107. /* Normalize left eigenvectors and make largest component real */
  1108. i__1 = *n;
  1109. for (i__ = 1; i__ <= i__1; ++i__) {
  1110. if (wi[i__] == 0.f) {
  1111. scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1112. sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1113. } else if (wi[i__] > 0.f) {
  1114. r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1115. r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1116. scl = 1.f / slapy2_(&r__1, &r__2);
  1117. sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1118. sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  1119. i__2 = *n;
  1120. for (k = 1; k <= i__2; ++k) {
  1121. /* Computing 2nd power */
  1122. r__1 = vl[k + i__ * vl_dim1];
  1123. /* Computing 2nd power */
  1124. r__2 = vl[k + (i__ + 1) * vl_dim1];
  1125. work[k] = r__1 * r__1 + r__2 * r__2;
  1126. /* L10: */
  1127. }
  1128. k = isamax_(n, &work[1], &c__1);
  1129. slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
  1130. &cs, &sn, &r__);
  1131. srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
  1132. vl_dim1 + 1], &c__1, &cs, &sn);
  1133. vl[k + (i__ + 1) * vl_dim1] = 0.f;
  1134. }
  1135. /* L20: */
  1136. }
  1137. }
  1138. if (wantvr) {
  1139. /* Undo balancing of right eigenvectors */
  1140. sgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
  1141. &ierr);
  1142. /* Normalize right eigenvectors and make largest component real */
  1143. i__1 = *n;
  1144. for (i__ = 1; i__ <= i__1; ++i__) {
  1145. if (wi[i__] == 0.f) {
  1146. scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1147. sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1148. } else if (wi[i__] > 0.f) {
  1149. r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1150. r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1151. scl = 1.f / slapy2_(&r__1, &r__2);
  1152. sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1153. sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  1154. i__2 = *n;
  1155. for (k = 1; k <= i__2; ++k) {
  1156. /* Computing 2nd power */
  1157. r__1 = vr[k + i__ * vr_dim1];
  1158. /* Computing 2nd power */
  1159. r__2 = vr[k + (i__ + 1) * vr_dim1];
  1160. work[k] = r__1 * r__1 + r__2 * r__2;
  1161. /* L30: */
  1162. }
  1163. k = isamax_(n, &work[1], &c__1);
  1164. slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
  1165. &cs, &sn, &r__);
  1166. srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
  1167. vr_dim1 + 1], &c__1, &cs, &sn);
  1168. vr[k + (i__ + 1) * vr_dim1] = 0.f;
  1169. }
  1170. /* L40: */
  1171. }
  1172. }
  1173. /* Undo scaling if necessary */
  1174. L50:
  1175. if (scalea) {
  1176. i__1 = *n - *info;
  1177. /* Computing MAX */
  1178. i__3 = *n - *info;
  1179. i__2 = f2cmax(i__3,1);
  1180. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
  1181. 1], &i__2, &ierr);
  1182. i__1 = *n - *info;
  1183. /* Computing MAX */
  1184. i__3 = *n - *info;
  1185. i__2 = f2cmax(i__3,1);
  1186. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
  1187. 1], &i__2, &ierr);
  1188. if (*info == 0) {
  1189. if ((wntsnv || wntsnb) && icond == 0) {
  1190. slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
  1191. 1], n, &ierr);
  1192. }
  1193. } else {
  1194. i__1 = *ilo - 1;
  1195. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
  1196. n, &ierr);
  1197. i__1 = *ilo - 1;
  1198. slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
  1199. n, &ierr);
  1200. }
  1201. }
  1202. work[1] = (real) maxwrk;
  1203. return 0;
  1204. /* End of SGEEVX */
  1205. } /* sgeevx_ */