You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsygvx.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static doublereal c_b19 = 1.;
  489. /* > \brief \b DSYGVX */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DSYGVX + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvx.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvx.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvx.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, */
  508. /* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, */
  509. /* LWORK, IWORK, IFAIL, INFO ) */
  510. /* CHARACTER JOBZ, RANGE, UPLO */
  511. /* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N */
  512. /* DOUBLE PRECISION ABSTOL, VL, VU */
  513. /* INTEGER IFAIL( * ), IWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ), */
  515. /* $ Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DSYGVX computes selected eigenvalues, and optionally, eigenvectors */
  522. /* > of a real generalized symmetric-definite eigenproblem, of the form */
  523. /* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */
  524. /* > and B are assumed to be symmetric and B is also positive definite. */
  525. /* > Eigenvalues and eigenvectors can be selected by specifying either a */
  526. /* > range of values or a range of indices for the desired eigenvalues. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] ITYPE */
  531. /* > \verbatim */
  532. /* > ITYPE is INTEGER */
  533. /* > Specifies the problem type to be solved: */
  534. /* > = 1: A*x = (lambda)*B*x */
  535. /* > = 2: A*B*x = (lambda)*x */
  536. /* > = 3: B*A*x = (lambda)*x */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] JOBZ */
  540. /* > \verbatim */
  541. /* > JOBZ is CHARACTER*1 */
  542. /* > = 'N': Compute eigenvalues only; */
  543. /* > = 'V': Compute eigenvalues and eigenvectors. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] RANGE */
  547. /* > \verbatim */
  548. /* > RANGE is CHARACTER*1 */
  549. /* > = 'A': all eigenvalues will be found. */
  550. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  551. /* > will be found. */
  552. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] UPLO */
  556. /* > \verbatim */
  557. /* > UPLO is CHARACTER*1 */
  558. /* > = 'U': Upper triangle of A and B are stored; */
  559. /* > = 'L': Lower triangle of A and B are stored. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrix pencil (A,B). N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] A */
  569. /* > \verbatim */
  570. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  571. /* > On entry, the symmetric matrix A. If UPLO = 'U', the */
  572. /* > leading N-by-N upper triangular part of A contains the */
  573. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  574. /* > the leading N-by-N lower triangular part of A contains */
  575. /* > the lower triangular part of the matrix A. */
  576. /* > */
  577. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  578. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  579. /* > destroyed. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDA */
  583. /* > \verbatim */
  584. /* > LDA is INTEGER */
  585. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] B */
  589. /* > \verbatim */
  590. /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
  591. /* > On entry, the symmetric matrix B. If UPLO = 'U', the */
  592. /* > leading N-by-N upper triangular part of B contains the */
  593. /* > upper triangular part of the matrix B. If UPLO = 'L', */
  594. /* > the leading N-by-N lower triangular part of B contains */
  595. /* > the lower triangular part of the matrix B. */
  596. /* > */
  597. /* > On exit, if INFO <= N, the part of B containing the matrix is */
  598. /* > overwritten by the triangular factor U or L from the Cholesky */
  599. /* > factorization B = U**T*U or B = L*L**T. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDB */
  603. /* > \verbatim */
  604. /* > LDB is INTEGER */
  605. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] VL */
  609. /* > \verbatim */
  610. /* > VL is DOUBLE PRECISION */
  611. /* > If RANGE='V', the lower bound of the interval to */
  612. /* > be searched for eigenvalues. VL < VU. */
  613. /* > Not referenced if RANGE = 'A' or 'I'. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] VU */
  617. /* > \verbatim */
  618. /* > VU is DOUBLE PRECISION */
  619. /* > If RANGE='V', the upper bound of the interval to */
  620. /* > be searched for eigenvalues. VL < VU. */
  621. /* > Not referenced if RANGE = 'A' or 'I'. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] IL */
  625. /* > \verbatim */
  626. /* > IL is INTEGER */
  627. /* > If RANGE='I', the index of the */
  628. /* > smallest eigenvalue to be returned. */
  629. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  630. /* > Not referenced if RANGE = 'A' or 'V'. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] IU */
  634. /* > \verbatim */
  635. /* > IU is INTEGER */
  636. /* > If RANGE='I', the index of the */
  637. /* > largest eigenvalue to be returned. */
  638. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  639. /* > Not referenced if RANGE = 'A' or 'V'. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] ABSTOL */
  643. /* > \verbatim */
  644. /* > ABSTOL is DOUBLE PRECISION */
  645. /* > The absolute error tolerance for the eigenvalues. */
  646. /* > An approximate eigenvalue is accepted as converged */
  647. /* > when it is determined to lie in an interval [a,b] */
  648. /* > of width less than or equal to */
  649. /* > */
  650. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  651. /* > */
  652. /* > where EPS is the machine precision. If ABSTOL is less than */
  653. /* > or equal to zero, then EPS*|T| will be used in its place, */
  654. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  655. /* > by reducing C to tridiagonal form, where C is the symmetric */
  656. /* > matrix of the standard symmetric problem to which the */
  657. /* > generalized problem is transformed. */
  658. /* > */
  659. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  660. /* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
  661. /* > If this routine returns with INFO>0, indicating that some */
  662. /* > eigenvectors did not converge, try setting ABSTOL to */
  663. /* > 2*DLAMCH('S'). */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] M */
  667. /* > \verbatim */
  668. /* > M is INTEGER */
  669. /* > The total number of eigenvalues found. 0 <= M <= N. */
  670. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] W */
  674. /* > \verbatim */
  675. /* > W is DOUBLE PRECISION array, dimension (N) */
  676. /* > On normal exit, the first M elements contain the selected */
  677. /* > eigenvalues in ascending order. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[out] Z */
  681. /* > \verbatim */
  682. /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M)) */
  683. /* > If JOBZ = 'N', then Z is not referenced. */
  684. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  685. /* > contain the orthonormal eigenvectors of the matrix A */
  686. /* > corresponding to the selected eigenvalues, with the i-th */
  687. /* > column of Z holding the eigenvector associated with W(i). */
  688. /* > The eigenvectors are normalized as follows: */
  689. /* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
  690. /* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
  691. /* > */
  692. /* > If an eigenvector fails to converge, then that column of Z */
  693. /* > contains the latest approximation to the eigenvector, and the */
  694. /* > index of the eigenvector is returned in IFAIL. */
  695. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  696. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  697. /* > is not known in advance and an upper bound must be used. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[in] LDZ */
  701. /* > \verbatim */
  702. /* > LDZ is INTEGER */
  703. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  704. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] WORK */
  708. /* > \verbatim */
  709. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  710. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[in] LWORK */
  714. /* > \verbatim */
  715. /* > LWORK is INTEGER */
  716. /* > The length of the array WORK. LWORK >= f2cmax(1,8*N). */
  717. /* > For optimal efficiency, LWORK >= (NB+3)*N, */
  718. /* > where NB is the blocksize for DSYTRD returned by ILAENV. */
  719. /* > */
  720. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  721. /* > only calculates the optimal size of the WORK array, returns */
  722. /* > this value as the first entry of the WORK array, and no error */
  723. /* > message related to LWORK is issued by XERBLA. */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[out] IWORK */
  727. /* > \verbatim */
  728. /* > IWORK is INTEGER array, dimension (5*N) */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[out] IFAIL */
  732. /* > \verbatim */
  733. /* > IFAIL is INTEGER array, dimension (N) */
  734. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  735. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  736. /* > indices of the eigenvectors that failed to converge. */
  737. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  738. /* > \endverbatim */
  739. /* > */
  740. /* > \param[out] INFO */
  741. /* > \verbatim */
  742. /* > INFO is INTEGER */
  743. /* > = 0: successful exit */
  744. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  745. /* > > 0: DPOTRF or DSYEVX returned an error code: */
  746. /* > <= N: if INFO = i, DSYEVX failed to converge; */
  747. /* > i eigenvectors failed to converge. Their indices */
  748. /* > are stored in array IFAIL. */
  749. /* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
  750. /* > minor of order i of B is not positive definite. */
  751. /* > The factorization of B could not be completed and */
  752. /* > no eigenvalues or eigenvectors were computed. */
  753. /* > \endverbatim */
  754. /* Authors: */
  755. /* ======== */
  756. /* > \author Univ. of Tennessee */
  757. /* > \author Univ. of California Berkeley */
  758. /* > \author Univ. of Colorado Denver */
  759. /* > \author NAG Ltd. */
  760. /* > \date June 2016 */
  761. /* > \ingroup doubleSYeigen */
  762. /* > \par Contributors: */
  763. /* ================== */
  764. /* > */
  765. /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
  766. /* ===================================================================== */
  767. /* Subroutine */ int dsygvx_(integer *itype, char *jobz, char *range, char *
  768. uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer
  769. *ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu,
  770. doublereal *abstol, integer *m, doublereal *w, doublereal *z__,
  771. integer *ldz, doublereal *work, integer *lwork, integer *iwork,
  772. integer *ifail, integer *info)
  773. {
  774. /* System generated locals */
  775. integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;
  776. /* Local variables */
  777. extern logical lsame_(char *, char *);
  778. extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *,
  779. integer *, integer *, doublereal *, doublereal *, integer *,
  780. doublereal *, integer *);
  781. char trans[1];
  782. extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
  783. integer *, integer *, doublereal *, doublereal *, integer *,
  784. doublereal *, integer *);
  785. logical upper, wantz;
  786. integer nb;
  787. logical alleig, indeig, valeig;
  788. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  789. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  790. integer *, integer *, ftnlen, ftnlen);
  791. extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *,
  792. integer *, integer *);
  793. integer lwkmin;
  794. extern /* Subroutine */ int dsygst_(integer *, char *, integer *,
  795. doublereal *, integer *, doublereal *, integer *, integer *);
  796. integer lwkopt;
  797. logical lquery;
  798. extern /* Subroutine */ int dsyevx_(char *, char *, char *, integer *,
  799. doublereal *, integer *, doublereal *, doublereal *, integer *,
  800. integer *, doublereal *, integer *, doublereal *, doublereal *,
  801. integer *, doublereal *, integer *, integer *, integer *, integer
  802. *);
  803. /* -- LAPACK driver routine (version 3.7.0) -- */
  804. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  805. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  806. /* June 2016 */
  807. /* ===================================================================== */
  808. /* Test the input parameters. */
  809. /* Parameter adjustments */
  810. a_dim1 = *lda;
  811. a_offset = 1 + a_dim1 * 1;
  812. a -= a_offset;
  813. b_dim1 = *ldb;
  814. b_offset = 1 + b_dim1 * 1;
  815. b -= b_offset;
  816. --w;
  817. z_dim1 = *ldz;
  818. z_offset = 1 + z_dim1 * 1;
  819. z__ -= z_offset;
  820. --work;
  821. --iwork;
  822. --ifail;
  823. /* Function Body */
  824. upper = lsame_(uplo, "U");
  825. wantz = lsame_(jobz, "V");
  826. alleig = lsame_(range, "A");
  827. valeig = lsame_(range, "V");
  828. indeig = lsame_(range, "I");
  829. lquery = *lwork == -1;
  830. *info = 0;
  831. if (*itype < 1 || *itype > 3) {
  832. *info = -1;
  833. } else if (! (wantz || lsame_(jobz, "N"))) {
  834. *info = -2;
  835. } else if (! (alleig || valeig || indeig)) {
  836. *info = -3;
  837. } else if (! (upper || lsame_(uplo, "L"))) {
  838. *info = -4;
  839. } else if (*n < 0) {
  840. *info = -5;
  841. } else if (*lda < f2cmax(1,*n)) {
  842. *info = -7;
  843. } else if (*ldb < f2cmax(1,*n)) {
  844. *info = -9;
  845. } else {
  846. if (valeig) {
  847. if (*n > 0 && *vu <= *vl) {
  848. *info = -11;
  849. }
  850. } else if (indeig) {
  851. if (*il < 1 || *il > f2cmax(1,*n)) {
  852. *info = -12;
  853. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  854. *info = -13;
  855. }
  856. }
  857. }
  858. if (*info == 0) {
  859. if (*ldz < 1 || wantz && *ldz < *n) {
  860. *info = -18;
  861. }
  862. }
  863. if (*info == 0) {
  864. /* Computing MAX */
  865. i__1 = 1, i__2 = *n << 3;
  866. lwkmin = f2cmax(i__1,i__2);
  867. nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
  868. (ftnlen)1);
  869. /* Computing MAX */
  870. i__1 = lwkmin, i__2 = (nb + 3) * *n;
  871. lwkopt = f2cmax(i__1,i__2);
  872. work[1] = (doublereal) lwkopt;
  873. if (*lwork < lwkmin && ! lquery) {
  874. *info = -20;
  875. }
  876. }
  877. if (*info != 0) {
  878. i__1 = -(*info);
  879. xerbla_("DSYGVX", &i__1, (ftnlen)6);
  880. return 0;
  881. } else if (lquery) {
  882. return 0;
  883. }
  884. /* Quick return if possible */
  885. *m = 0;
  886. if (*n == 0) {
  887. return 0;
  888. }
  889. /* Form a Cholesky factorization of B. */
  890. dpotrf_(uplo, n, &b[b_offset], ldb, info);
  891. if (*info != 0) {
  892. *info = *n + *info;
  893. return 0;
  894. }
  895. /* Transform problem to standard eigenvalue problem and solve. */
  896. dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
  897. dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol,
  898. m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[
  899. 1], info);
  900. if (wantz) {
  901. /* Backtransform eigenvectors to the original problem. */
  902. if (*info > 0) {
  903. *m = *info - 1;
  904. }
  905. if (*itype == 1 || *itype == 2) {
  906. /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
  907. /* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */
  908. if (upper) {
  909. *(unsigned char *)trans = 'N';
  910. } else {
  911. *(unsigned char *)trans = 'T';
  912. }
  913. dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
  914. , ldb, &z__[z_offset], ldz);
  915. } else if (*itype == 3) {
  916. /* For B*A*x=(lambda)*x; */
  917. /* backtransform eigenvectors: x = L*y or U**T*y */
  918. if (upper) {
  919. *(unsigned char *)trans = 'T';
  920. } else {
  921. *(unsigned char *)trans = 'N';
  922. }
  923. dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
  924. , ldb, &z__[z_offset], ldz);
  925. }
  926. }
  927. /* Set WORK(1) to optimal workspace size. */
  928. work[1] = (doublereal) lwkopt;
  929. return 0;
  930. /* End of DSYGVX */
  931. } /* dsygvx_ */