You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr2.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. static logical c_true = TRUE_;
  491. /* > \brief \b CLAQR2 performs the unitary similarity transformation of a Hessenberg matrix to detect and defl
  492. ate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CLAQR2 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr2.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr2.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr2.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  511. /* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, */
  512. /* NV, WV, LDWV, WORK, LWORK ) */
  513. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  514. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  515. /* LOGICAL WANTT, WANTZ */
  516. /* COMPLEX H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), */
  517. /* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CLAQR2 is identical to CLAQR3 except that it avoids */
  524. /* > recursion by calling CLAHQR instead of CLAQR4. */
  525. /* > */
  526. /* > Aggressive early deflation: */
  527. /* > */
  528. /* > This subroutine accepts as input an upper Hessenberg matrix */
  529. /* > H and performs an unitary similarity transformation */
  530. /* > designed to detect and deflate fully converged eigenvalues from */
  531. /* > a trailing principal submatrix. On output H has been over- */
  532. /* > written by a new Hessenberg matrix that is a perturbation of */
  533. /* > an unitary similarity transformation of H. It is to be */
  534. /* > hoped that the final version of H has many zero subdiagonal */
  535. /* > entries. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] WANTT */
  540. /* > \verbatim */
  541. /* > WANTT is LOGICAL */
  542. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  543. /* > so that the triangular Schur factor may be */
  544. /* > computed (in cooperation with the calling subroutine). */
  545. /* > If .FALSE., then only enough of H is updated to preserve */
  546. /* > the eigenvalues. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] WANTZ */
  550. /* > \verbatim */
  551. /* > WANTZ is LOGICAL */
  552. /* > If .TRUE., then the unitary matrix Z is updated so */
  553. /* > so that the unitary Schur factor may be computed */
  554. /* > (in cooperation with the calling subroutine). */
  555. /* > If .FALSE., then Z is not referenced. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  562. /* > order of the unitary matrix Z. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] KTOP */
  566. /* > \verbatim */
  567. /* > KTOP is INTEGER */
  568. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  569. /* > KBOT and KTOP together determine an isolated block */
  570. /* > along the diagonal of the Hessenberg matrix. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] KBOT */
  574. /* > \verbatim */
  575. /* > KBOT is INTEGER */
  576. /* > It is assumed without a check that either */
  577. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  578. /* > determine an isolated block along the diagonal of the */
  579. /* > Hessenberg matrix. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] NW */
  583. /* > \verbatim */
  584. /* > NW is INTEGER */
  585. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] H */
  589. /* > \verbatim */
  590. /* > H is COMPLEX array, dimension (LDH,N) */
  591. /* > On input the initial N-by-N section of H stores the */
  592. /* > Hessenberg matrix undergoing aggressive early deflation. */
  593. /* > On output H has been transformed by a unitary */
  594. /* > similarity transformation, perturbed, and the returned */
  595. /* > to Hessenberg form that (it is to be hoped) has some */
  596. /* > zero subdiagonal entries. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDH */
  600. /* > \verbatim */
  601. /* > LDH is INTEGER */
  602. /* > Leading dimension of H just as declared in the calling */
  603. /* > subroutine. N <= LDH */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] ILOZ */
  607. /* > \verbatim */
  608. /* > ILOZ is INTEGER */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] IHIZ */
  612. /* > \verbatim */
  613. /* > IHIZ is INTEGER */
  614. /* > Specify the rows of Z to which transformations must be */
  615. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in,out] Z */
  619. /* > \verbatim */
  620. /* > Z is COMPLEX array, dimension (LDZ,N) */
  621. /* > IF WANTZ is .TRUE., then on output, the unitary */
  622. /* > similarity transformation mentioned above has been */
  623. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  624. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDZ */
  628. /* > \verbatim */
  629. /* > LDZ is INTEGER */
  630. /* > The leading dimension of Z just as declared in the */
  631. /* > calling subroutine. 1 <= LDZ. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] NS */
  635. /* > \verbatim */
  636. /* > NS is INTEGER */
  637. /* > The number of unconverged (ie approximate) eigenvalues */
  638. /* > returned in SR and SI that may be used as shifts by the */
  639. /* > calling subroutine. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] ND */
  643. /* > \verbatim */
  644. /* > ND is INTEGER */
  645. /* > The number of converged eigenvalues uncovered by this */
  646. /* > subroutine. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] SH */
  650. /* > \verbatim */
  651. /* > SH is COMPLEX array, dimension (KBOT) */
  652. /* > On output, approximate eigenvalues that may */
  653. /* > be used for shifts are stored in SH(KBOT-ND-NS+1) */
  654. /* > through SR(KBOT-ND). Converged eigenvalues are */
  655. /* > stored in SH(KBOT-ND+1) through SH(KBOT). */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] V */
  659. /* > \verbatim */
  660. /* > V is COMPLEX array, dimension (LDV,NW) */
  661. /* > An NW-by-NW work array. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] LDV */
  665. /* > \verbatim */
  666. /* > LDV is INTEGER */
  667. /* > The leading dimension of V just as declared in the */
  668. /* > calling subroutine. NW <= LDV */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] NH */
  672. /* > \verbatim */
  673. /* > NH is INTEGER */
  674. /* > The number of columns of T. NH >= NW. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] T */
  678. /* > \verbatim */
  679. /* > T is COMPLEX array, dimension (LDT,NW) */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[in] LDT */
  683. /* > \verbatim */
  684. /* > LDT is INTEGER */
  685. /* > The leading dimension of T just as declared in the */
  686. /* > calling subroutine. NW <= LDT */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[in] NV */
  690. /* > \verbatim */
  691. /* > NV is INTEGER */
  692. /* > The number of rows of work array WV available for */
  693. /* > workspace. NV >= NW. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[out] WV */
  697. /* > \verbatim */
  698. /* > WV is COMPLEX array, dimension (LDWV,NW) */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[in] LDWV */
  702. /* > \verbatim */
  703. /* > LDWV is INTEGER */
  704. /* > The leading dimension of W just as declared in the */
  705. /* > calling subroutine. NW <= LDV */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] WORK */
  709. /* > \verbatim */
  710. /* > WORK is COMPLEX array, dimension (LWORK) */
  711. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  712. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[in] LWORK */
  716. /* > \verbatim */
  717. /* > LWORK is INTEGER */
  718. /* > The dimension of the work array WORK. LWORK = 2*NW */
  719. /* > suffices, but greater efficiency may result from larger */
  720. /* > values of LWORK. */
  721. /* > */
  722. /* > If LWORK = -1, then a workspace query is assumed; CLAQR2 */
  723. /* > only estimates the optimal workspace size for the given */
  724. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  725. /* > in WORK(1). No error message related to LWORK is issued */
  726. /* > by XERBLA. Neither H nor Z are accessed. */
  727. /* > \endverbatim */
  728. /* Authors: */
  729. /* ======== */
  730. /* > \author Univ. of Tennessee */
  731. /* > \author Univ. of California Berkeley */
  732. /* > \author Univ. of Colorado Denver */
  733. /* > \author NAG Ltd. */
  734. /* > \date June 2017 */
  735. /* > \ingroup complexOTHERauxiliary */
  736. /* > \par Contributors: */
  737. /* ================== */
  738. /* > */
  739. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  740. /* > University of Kansas, USA */
  741. /* > */
  742. /* ===================================================================== */
  743. /* Subroutine */ int claqr2_(logical *wantt, logical *wantz, integer *n,
  744. integer *ktop, integer *kbot, integer *nw, complex *h__, integer *ldh,
  745. integer *iloz, integer *ihiz, complex *z__, integer *ldz, integer *
  746. ns, integer *nd, complex *sh, complex *v, integer *ldv, integer *nh,
  747. complex *t, integer *ldt, integer *nv, complex *wv, integer *ldwv,
  748. complex *work, integer *lwork)
  749. {
  750. /* System generated locals */
  751. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  752. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  753. real r__1, r__2, r__3, r__4, r__5, r__6;
  754. complex q__1, q__2;
  755. /* Local variables */
  756. complex beta;
  757. integer kcol, info, ifst, ilst, ltop, krow, i__, j;
  758. complex s;
  759. extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
  760. , integer *, complex *, complex *, integer *, complex *),
  761. cgemm_(char *, char *, integer *, integer *, integer *, complex *,
  762. complex *, integer *, complex *, integer *, complex *, complex *,
  763. integer *), ccopy_(integer *, complex *, integer
  764. *, complex *, integer *);
  765. integer infqr, kwtop;
  766. extern /* Subroutine */ int slabad_(real *, real *), cgehrd_(integer *,
  767. integer *, integer *, complex *, integer *, complex *, complex *,
  768. integer *, integer *), clarfg_(integer *, complex *, complex *,
  769. integer *, complex *);
  770. integer jw;
  771. extern real slamch_(char *);
  772. extern /* Subroutine */ int clahqr_(logical *, logical *, integer *,
  773. integer *, integer *, complex *, integer *, complex *, integer *,
  774. integer *, complex *, integer *, integer *), clacpy_(char *,
  775. integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex
  776. *, complex *, integer *);
  777. real safmin, safmax;
  778. extern /* Subroutine */ int ctrexc_(char *, integer *, complex *, integer
  779. *, complex *, integer *, integer *, integer *, integer *),
  780. cunmhr_(char *, char *, integer *, integer *, integer *, integer
  781. *, complex *, integer *, complex *, complex *, integer *, complex
  782. *, integer *, integer *);
  783. real smlnum;
  784. integer lwkopt;
  785. real foo;
  786. integer kln;
  787. complex tau;
  788. integer knt;
  789. real ulp;
  790. integer lwk1, lwk2;
  791. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  792. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  793. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  794. /* June 2017 */
  795. /* ================================================================ */
  796. /* ==== Estimate optimal workspace. ==== */
  797. /* Parameter adjustments */
  798. h_dim1 = *ldh;
  799. h_offset = 1 + h_dim1 * 1;
  800. h__ -= h_offset;
  801. z_dim1 = *ldz;
  802. z_offset = 1 + z_dim1 * 1;
  803. z__ -= z_offset;
  804. --sh;
  805. v_dim1 = *ldv;
  806. v_offset = 1 + v_dim1 * 1;
  807. v -= v_offset;
  808. t_dim1 = *ldt;
  809. t_offset = 1 + t_dim1 * 1;
  810. t -= t_offset;
  811. wv_dim1 = *ldwv;
  812. wv_offset = 1 + wv_dim1 * 1;
  813. wv -= wv_offset;
  814. --work;
  815. /* Function Body */
  816. /* Computing MIN */
  817. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  818. jw = f2cmin(i__1,i__2);
  819. if (jw <= 2) {
  820. lwkopt = 1;
  821. } else {
  822. /* ==== Workspace query call to CGEHRD ==== */
  823. i__1 = jw - 1;
  824. cgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  825. c_n1, &info);
  826. lwk1 = (integer) work[1].r;
  827. /* ==== Workspace query call to CUNMHR ==== */
  828. i__1 = jw - 1;
  829. cunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  830. &v[v_offset], ldv, &work[1], &c_n1, &info);
  831. lwk2 = (integer) work[1].r;
  832. /* ==== Optimal workspace ==== */
  833. lwkopt = jw + f2cmax(lwk1,lwk2);
  834. }
  835. /* ==== Quick return in case of workspace query. ==== */
  836. if (*lwork == -1) {
  837. r__1 = (real) lwkopt;
  838. q__1.r = r__1, q__1.i = 0.f;
  839. work[1].r = q__1.r, work[1].i = q__1.i;
  840. return 0;
  841. }
  842. /* ==== Nothing to do ... */
  843. /* ... for an empty active block ... ==== */
  844. *ns = 0;
  845. *nd = 0;
  846. work[1].r = 1.f, work[1].i = 0.f;
  847. if (*ktop > *kbot) {
  848. return 0;
  849. }
  850. /* ... nor for an empty deflation window. ==== */
  851. if (*nw < 1) {
  852. return 0;
  853. }
  854. /* ==== Machine constants ==== */
  855. safmin = slamch_("SAFE MINIMUM");
  856. safmax = 1.f / safmin;
  857. slabad_(&safmin, &safmax);
  858. ulp = slamch_("PRECISION");
  859. smlnum = safmin * ((real) (*n) / ulp);
  860. /* ==== Setup deflation window ==== */
  861. /* Computing MIN */
  862. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  863. jw = f2cmin(i__1,i__2);
  864. kwtop = *kbot - jw + 1;
  865. if (kwtop == *ktop) {
  866. s.r = 0.f, s.i = 0.f;
  867. } else {
  868. i__1 = kwtop + (kwtop - 1) * h_dim1;
  869. s.r = h__[i__1].r, s.i = h__[i__1].i;
  870. }
  871. if (*kbot == kwtop) {
  872. /* ==== 1-by-1 deflation window: not much to do ==== */
  873. i__1 = kwtop;
  874. i__2 = kwtop + kwtop * h_dim1;
  875. sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
  876. *ns = 1;
  877. *nd = 0;
  878. /* Computing MAX */
  879. i__1 = kwtop + kwtop * h_dim1;
  880. r__5 = smlnum, r__6 = ulp * ((r__1 = h__[i__1].r, abs(r__1)) + (r__2 =
  881. r_imag(&h__[kwtop + kwtop * h_dim1]), abs(r__2)));
  882. if ((r__3 = s.r, abs(r__3)) + (r__4 = r_imag(&s), abs(r__4)) <= f2cmax(
  883. r__5,r__6)) {
  884. *ns = 0;
  885. *nd = 1;
  886. if (kwtop > *ktop) {
  887. i__1 = kwtop + (kwtop - 1) * h_dim1;
  888. h__[i__1].r = 0.f, h__[i__1].i = 0.f;
  889. }
  890. }
  891. work[1].r = 1.f, work[1].i = 0.f;
  892. return 0;
  893. }
  894. /* ==== Convert to spike-triangular form. (In case of a */
  895. /* . rare QR failure, this routine continues to do */
  896. /* . aggressive early deflation using that part of */
  897. /* . the deflation window that converged using INFQR */
  898. /* . here and there to keep track.) ==== */
  899. clacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  900. ldt);
  901. i__1 = jw - 1;
  902. i__2 = *ldh + 1;
  903. i__3 = *ldt + 1;
  904. ccopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  905. i__3);
  906. claset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
  907. clahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[kwtop],
  908. &c__1, &jw, &v[v_offset], ldv, &infqr);
  909. /* ==== Deflation detection loop ==== */
  910. *ns = jw;
  911. ilst = infqr + 1;
  912. i__1 = jw;
  913. for (knt = infqr + 1; knt <= i__1; ++knt) {
  914. /* ==== Small spike tip deflation test ==== */
  915. i__2 = *ns + *ns * t_dim1;
  916. foo = (r__1 = t[i__2].r, abs(r__1)) + (r__2 = r_imag(&t[*ns + *ns *
  917. t_dim1]), abs(r__2));
  918. if (foo == 0.f) {
  919. foo = (r__1 = s.r, abs(r__1)) + (r__2 = r_imag(&s), abs(r__2));
  920. }
  921. i__2 = *ns * v_dim1 + 1;
  922. /* Computing MAX */
  923. r__5 = smlnum, r__6 = ulp * foo;
  924. if (((r__1 = s.r, abs(r__1)) + (r__2 = r_imag(&s), abs(r__2))) * ((
  925. r__3 = v[i__2].r, abs(r__3)) + (r__4 = r_imag(&v[*ns * v_dim1
  926. + 1]), abs(r__4))) <= f2cmax(r__5,r__6)) {
  927. /* ==== One more converged eigenvalue ==== */
  928. --(*ns);
  929. } else {
  930. /* ==== One undeflatable eigenvalue. Move it up out of the */
  931. /* . way. (CTREXC can not fail in this case.) ==== */
  932. ifst = *ns;
  933. ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
  934. ilst, &info);
  935. ++ilst;
  936. }
  937. /* L10: */
  938. }
  939. /* ==== Return to Hessenberg form ==== */
  940. if (*ns == 0) {
  941. s.r = 0.f, s.i = 0.f;
  942. }
  943. if (*ns < jw) {
  944. /* ==== sorting the diagonal of T improves accuracy for */
  945. /* . graded matrices. ==== */
  946. i__1 = *ns;
  947. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  948. ifst = i__;
  949. i__2 = *ns;
  950. for (j = i__ + 1; j <= i__2; ++j) {
  951. i__3 = j + j * t_dim1;
  952. i__4 = ifst + ifst * t_dim1;
  953. if ((r__1 = t[i__3].r, abs(r__1)) + (r__2 = r_imag(&t[j + j *
  954. t_dim1]), abs(r__2)) > (r__3 = t[i__4].r, abs(r__3))
  955. + (r__4 = r_imag(&t[ifst + ifst * t_dim1]), abs(r__4))
  956. ) {
  957. ifst = j;
  958. }
  959. /* L20: */
  960. }
  961. ilst = i__;
  962. if (ifst != ilst) {
  963. ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  964. &ilst, &info);
  965. }
  966. /* L30: */
  967. }
  968. }
  969. /* ==== Restore shift/eigenvalue array from T ==== */
  970. i__1 = jw;
  971. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  972. i__2 = kwtop + i__ - 1;
  973. i__3 = i__ + i__ * t_dim1;
  974. sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
  975. /* L40: */
  976. }
  977. if (*ns < jw || s.r == 0.f && s.i == 0.f) {
  978. if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {
  979. /* ==== Reflect spike back into lower triangle ==== */
  980. ccopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  981. i__1 = *ns;
  982. for (i__ = 1; i__ <= i__1; ++i__) {
  983. i__2 = i__;
  984. r_cnjg(&q__1, &work[i__]);
  985. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  986. /* L50: */
  987. }
  988. beta.r = work[1].r, beta.i = work[1].i;
  989. clarfg_(ns, &beta, &work[2], &c__1, &tau);
  990. work[1].r = 1.f, work[1].i = 0.f;
  991. i__1 = jw - 2;
  992. i__2 = jw - 2;
  993. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);
  994. r_cnjg(&q__1, &tau);
  995. clarf_("L", ns, &jw, &work[1], &c__1, &q__1, &t[t_offset], ldt, &
  996. work[jw + 1]);
  997. clarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  998. work[jw + 1]);
  999. clarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1000. work[jw + 1]);
  1001. i__1 = *lwork - jw;
  1002. cgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1003. , &i__1, &info);
  1004. }
  1005. /* ==== Copy updated reduced window into place ==== */
  1006. if (kwtop > 1) {
  1007. i__1 = kwtop + (kwtop - 1) * h_dim1;
  1008. r_cnjg(&q__2, &v[v_dim1 + 1]);
  1009. q__1.r = s.r * q__2.r - s.i * q__2.i, q__1.i = s.r * q__2.i + s.i
  1010. * q__2.r;
  1011. h__[i__1].r = q__1.r, h__[i__1].i = q__1.i;
  1012. }
  1013. clacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1014. , ldh);
  1015. i__1 = jw - 1;
  1016. i__2 = *ldt + 1;
  1017. i__3 = *ldh + 1;
  1018. ccopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1019. &i__3);
  1020. /* ==== Accumulate orthogonal matrix in order update */
  1021. /* . H and Z, if requested. ==== */
  1022. if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {
  1023. i__1 = *lwork - jw;
  1024. cunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1025. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1026. }
  1027. /* ==== Update vertical slab in H ==== */
  1028. if (*wantt) {
  1029. ltop = 1;
  1030. } else {
  1031. ltop = *ktop;
  1032. }
  1033. i__1 = kwtop - 1;
  1034. i__2 = *nv;
  1035. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1036. i__2) {
  1037. /* Computing MIN */
  1038. i__3 = *nv, i__4 = kwtop - krow;
  1039. kln = f2cmin(i__3,i__4);
  1040. cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop *
  1041. h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset],
  1042. ldwv);
  1043. clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1044. h_dim1], ldh);
  1045. /* L60: */
  1046. }
  1047. /* ==== Update horizontal slab in H ==== */
  1048. if (*wantt) {
  1049. i__2 = *n;
  1050. i__1 = *nh;
  1051. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1052. kcol += i__1) {
  1053. /* Computing MIN */
  1054. i__3 = *nh, i__4 = *n - kcol + 1;
  1055. kln = f2cmin(i__3,i__4);
  1056. cgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
  1057. h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset],
  1058. ldt);
  1059. clacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1060. h_dim1], ldh);
  1061. /* L70: */
  1062. }
  1063. }
  1064. /* ==== Update vertical slab in Z ==== */
  1065. if (*wantz) {
  1066. i__1 = *ihiz;
  1067. i__2 = *nv;
  1068. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1069. i__2) {
  1070. /* Computing MIN */
  1071. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1072. kln = f2cmin(i__3,i__4);
  1073. cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop *
  1074. z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
  1075. , ldwv);
  1076. clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1077. kwtop * z_dim1], ldz);
  1078. /* L80: */
  1079. }
  1080. }
  1081. }
  1082. /* ==== Return the number of deflations ... ==== */
  1083. *nd = jw - *ns;
  1084. /* ==== ... and the number of shifts. (Subtracting */
  1085. /* . INFQR from the spike length takes care */
  1086. /* . of the case of a rare QR failure while */
  1087. /* . calculating eigenvalues of the deflation */
  1088. /* . window.) ==== */
  1089. *ns -= infqr;
  1090. /* ==== Return optimal workspace. ==== */
  1091. r__1 = (real) lwkopt;
  1092. q__1.r = r__1, q__1.i = 0.f;
  1093. work[1].r = q__1.r, work[1].i = q__1.i;
  1094. /* ==== End of CLAQR2 ==== */
  1095. return 0;
  1096. } /* claqr2_ */