You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chptrf.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CHPTRF */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CHPTRF + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrf.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrf.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrf.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CHPTRF( UPLO, N, AP, IPIV, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, N */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX AP( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > CHPTRF computes the factorization of a complex Hermitian packed */
  516. /* > matrix A using the Bunch-Kaufman diagonal pivoting method: */
  517. /* > */
  518. /* > A = U*D*U**H or A = L*D*L**H */
  519. /* > */
  520. /* > where U (or L) is a product of permutation and unit upper (lower) */
  521. /* > triangular matrices, and D is Hermitian and block diagonal with */
  522. /* > 1-by-1 and 2-by-2 diagonal blocks. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] UPLO */
  527. /* > \verbatim */
  528. /* > UPLO is CHARACTER*1 */
  529. /* > = 'U': Upper triangle of A is stored; */
  530. /* > = 'L': Lower triangle of A is stored. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The order of the matrix A. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in,out] AP */
  540. /* > \verbatim */
  541. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  542. /* > On entry, the upper or lower triangle of the Hermitian matrix */
  543. /* > A, packed columnwise in a linear array. The j-th column of A */
  544. /* > is stored in the array AP as follows: */
  545. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  546. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  547. /* > */
  548. /* > On exit, the block diagonal matrix D and the multipliers used */
  549. /* > to obtain the factor U or L, stored as a packed triangular */
  550. /* > matrix overwriting A (see below for further details). */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] IPIV */
  554. /* > \verbatim */
  555. /* > IPIV is INTEGER array, dimension (N) */
  556. /* > Details of the interchanges and the block structure of D. */
  557. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  558. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  559. /* > If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
  560. /* > columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  561. /* > is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
  562. /* > IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
  563. /* > interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[out] INFO */
  567. /* > \verbatim */
  568. /* > INFO is INTEGER */
  569. /* > = 0: successful exit */
  570. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  571. /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
  572. /* > has been completed, but the block diagonal matrix D is */
  573. /* > exactly singular, and division by zero will occur if it */
  574. /* > is used to solve a system of equations. */
  575. /* > \endverbatim */
  576. /* Authors: */
  577. /* ======== */
  578. /* > \author Univ. of Tennessee */
  579. /* > \author Univ. of California Berkeley */
  580. /* > \author Univ. of Colorado Denver */
  581. /* > \author NAG Ltd. */
  582. /* > \date December 2016 */
  583. /* > \ingroup complexOTHERcomputational */
  584. /* > \par Further Details: */
  585. /* ===================== */
  586. /* > */
  587. /* > \verbatim */
  588. /* > */
  589. /* > If UPLO = 'U', then A = U*D*U**H, where */
  590. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  591. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  592. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  593. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  594. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  595. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  596. /* > */
  597. /* > ( I v 0 ) k-s */
  598. /* > U(k) = ( 0 I 0 ) s */
  599. /* > ( 0 0 I ) n-k */
  600. /* > k-s s n-k */
  601. /* > */
  602. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  603. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  604. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  605. /* > */
  606. /* > If UPLO = 'L', then A = L*D*L**H, where */
  607. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  608. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  609. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  610. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  611. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  612. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  613. /* > */
  614. /* > ( I 0 0 ) k-1 */
  615. /* > L(k) = ( 0 I 0 ) s */
  616. /* > ( 0 v I ) n-k-s+1 */
  617. /* > k-1 s n-k-s+1 */
  618. /* > */
  619. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  620. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  621. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  622. /* > \endverbatim */
  623. /* > \par Contributors: */
  624. /* ================== */
  625. /* > */
  626. /* > J. Lewis, Boeing Computer Services Company */
  627. /* > */
  628. /* ===================================================================== */
  629. /* Subroutine */ int chptrf_(char *uplo, integer *n, complex *ap, integer *
  630. ipiv, integer *info)
  631. {
  632. /* System generated locals */
  633. integer i__1, i__2, i__3, i__4, i__5, i__6;
  634. real r__1, r__2, r__3, r__4;
  635. complex q__1, q__2, q__3, q__4, q__5, q__6;
  636. /* Local variables */
  637. extern /* Subroutine */ int chpr_(char *, integer *, real *, complex *,
  638. integer *, complex *);
  639. integer imax, jmax;
  640. real d__;
  641. integer i__, j, k;
  642. complex t;
  643. real alpha;
  644. extern logical lsame_(char *, char *);
  645. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  646. complex *, integer *);
  647. integer kstep;
  648. logical upper;
  649. real r1, d11;
  650. complex d12;
  651. real d22;
  652. complex d21;
  653. extern real slapy2_(real *, real *);
  654. integer kc, kk, kp;
  655. real absakk;
  656. complex wk;
  657. integer kx;
  658. extern integer icamax_(integer *, complex *, integer *);
  659. real tt;
  660. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  661. *), xerbla_(char *, integer *, ftnlen);
  662. real colmax, rowmax;
  663. integer knc, kpc, npp;
  664. complex wkm1, wkp1;
  665. /* -- LAPACK computational routine (version 3.7.0) -- */
  666. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  667. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  668. /* December 2016 */
  669. /* ===================================================================== */
  670. /* Test the input parameters. */
  671. /* Parameter adjustments */
  672. --ipiv;
  673. --ap;
  674. /* Function Body */
  675. *info = 0;
  676. upper = lsame_(uplo, "U");
  677. if (! upper && ! lsame_(uplo, "L")) {
  678. *info = -1;
  679. } else if (*n < 0) {
  680. *info = -2;
  681. }
  682. if (*info != 0) {
  683. i__1 = -(*info);
  684. xerbla_("CHPTRF", &i__1, (ftnlen)6);
  685. return 0;
  686. }
  687. /* Initialize ALPHA for use in choosing pivot block size. */
  688. alpha = (sqrt(17.f) + 1.f) / 8.f;
  689. if (upper) {
  690. /* Factorize A as U*D*U**H using the upper triangle of A */
  691. /* K is the main loop index, decreasing from N to 1 in steps of */
  692. /* 1 or 2 */
  693. k = *n;
  694. kc = (*n - 1) * *n / 2 + 1;
  695. L10:
  696. knc = kc;
  697. /* If K < 1, exit from loop */
  698. if (k < 1) {
  699. goto L110;
  700. }
  701. kstep = 1;
  702. /* Determine rows and columns to be interchanged and whether */
  703. /* a 1-by-1 or 2-by-2 pivot block will be used */
  704. i__1 = kc + k - 1;
  705. absakk = (r__1 = ap[i__1].r, abs(r__1));
  706. /* IMAX is the row-index of the largest off-diagonal element in */
  707. /* column K, and COLMAX is its absolute value */
  708. if (k > 1) {
  709. i__1 = k - 1;
  710. imax = icamax_(&i__1, &ap[kc], &c__1);
  711. i__1 = kc + imax - 1;
  712. colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
  713. imax - 1]), abs(r__2));
  714. } else {
  715. colmax = 0.f;
  716. }
  717. if (f2cmax(absakk,colmax) == 0.f) {
  718. /* Column K is zero: set INFO and continue */
  719. if (*info == 0) {
  720. *info = k;
  721. }
  722. kp = k;
  723. i__1 = kc + k - 1;
  724. i__2 = kc + k - 1;
  725. r__1 = ap[i__2].r;
  726. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  727. } else {
  728. if (absakk >= alpha * colmax) {
  729. /* no interchange, use 1-by-1 pivot block */
  730. kp = k;
  731. } else {
  732. /* JMAX is the column-index of the largest off-diagonal */
  733. /* element in row IMAX, and ROWMAX is its absolute value */
  734. rowmax = 0.f;
  735. jmax = imax;
  736. kx = imax * (imax + 1) / 2 + imax;
  737. i__1 = k;
  738. for (j = imax + 1; j <= i__1; ++j) {
  739. i__2 = kx;
  740. if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
  741. kx]), abs(r__2)) > rowmax) {
  742. i__2 = kx;
  743. rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
  744. r_imag(&ap[kx]), abs(r__2));
  745. jmax = j;
  746. }
  747. kx += j;
  748. /* L20: */
  749. }
  750. kpc = (imax - 1) * imax / 2 + 1;
  751. if (imax > 1) {
  752. i__1 = imax - 1;
  753. jmax = icamax_(&i__1, &ap[kpc], &c__1);
  754. /* Computing MAX */
  755. i__1 = kpc + jmax - 1;
  756. r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
  757. r__2 = r_imag(&ap[kpc + jmax - 1]), abs(r__2));
  758. rowmax = f2cmax(r__3,r__4);
  759. }
  760. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  761. /* no interchange, use 1-by-1 pivot block */
  762. kp = k;
  763. } else /* if(complicated condition) */ {
  764. i__1 = kpc + imax - 1;
  765. if ((r__1 = ap[i__1].r, abs(r__1)) >= alpha * rowmax) {
  766. /* interchange rows and columns K and IMAX, use 1-by-1 */
  767. /* pivot block */
  768. kp = imax;
  769. } else {
  770. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  771. /* pivot block */
  772. kp = imax;
  773. kstep = 2;
  774. }
  775. }
  776. }
  777. kk = k - kstep + 1;
  778. if (kstep == 2) {
  779. knc = knc - k + 1;
  780. }
  781. if (kp != kk) {
  782. /* Interchange rows and columns KK and KP in the leading */
  783. /* submatrix A(1:k,1:k) */
  784. i__1 = kp - 1;
  785. cswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
  786. kx = kpc + kp - 1;
  787. i__1 = kk - 1;
  788. for (j = kp + 1; j <= i__1; ++j) {
  789. kx = kx + j - 1;
  790. r_cnjg(&q__1, &ap[knc + j - 1]);
  791. t.r = q__1.r, t.i = q__1.i;
  792. i__2 = knc + j - 1;
  793. r_cnjg(&q__1, &ap[kx]);
  794. ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
  795. i__2 = kx;
  796. ap[i__2].r = t.r, ap[i__2].i = t.i;
  797. /* L30: */
  798. }
  799. i__1 = kx + kk - 1;
  800. r_cnjg(&q__1, &ap[kx + kk - 1]);
  801. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  802. i__1 = knc + kk - 1;
  803. r1 = ap[i__1].r;
  804. i__1 = knc + kk - 1;
  805. i__2 = kpc + kp - 1;
  806. r__1 = ap[i__2].r;
  807. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  808. i__1 = kpc + kp - 1;
  809. ap[i__1].r = r1, ap[i__1].i = 0.f;
  810. if (kstep == 2) {
  811. i__1 = kc + k - 1;
  812. i__2 = kc + k - 1;
  813. r__1 = ap[i__2].r;
  814. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  815. i__1 = kc + k - 2;
  816. t.r = ap[i__1].r, t.i = ap[i__1].i;
  817. i__1 = kc + k - 2;
  818. i__2 = kc + kp - 1;
  819. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  820. i__1 = kc + kp - 1;
  821. ap[i__1].r = t.r, ap[i__1].i = t.i;
  822. }
  823. } else {
  824. i__1 = kc + k - 1;
  825. i__2 = kc + k - 1;
  826. r__1 = ap[i__2].r;
  827. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  828. if (kstep == 2) {
  829. i__1 = kc - 1;
  830. i__2 = kc - 1;
  831. r__1 = ap[i__2].r;
  832. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  833. }
  834. }
  835. /* Update the leading submatrix */
  836. if (kstep == 1) {
  837. /* 1-by-1 pivot block D(k): column k now holds */
  838. /* W(k) = U(k)*D(k) */
  839. /* where U(k) is the k-th column of U */
  840. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  841. /* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H */
  842. i__1 = kc + k - 1;
  843. r1 = 1.f / ap[i__1].r;
  844. i__1 = k - 1;
  845. r__1 = -r1;
  846. chpr_(uplo, &i__1, &r__1, &ap[kc], &c__1, &ap[1]);
  847. /* Store U(k) in column k */
  848. i__1 = k - 1;
  849. csscal_(&i__1, &r1, &ap[kc], &c__1);
  850. } else {
  851. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  852. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  853. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  854. /* of U */
  855. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  856. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H */
  857. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H */
  858. if (k > 2) {
  859. i__1 = k - 1 + (k - 1) * k / 2;
  860. r__1 = ap[i__1].r;
  861. r__2 = r_imag(&ap[k - 1 + (k - 1) * k / 2]);
  862. d__ = slapy2_(&r__1, &r__2);
  863. i__1 = k - 1 + (k - 2) * (k - 1) / 2;
  864. d22 = ap[i__1].r / d__;
  865. i__1 = k + (k - 1) * k / 2;
  866. d11 = ap[i__1].r / d__;
  867. tt = 1.f / (d11 * d22 - 1.f);
  868. i__1 = k - 1 + (k - 1) * k / 2;
  869. q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
  870. d12.r = q__1.r, d12.i = q__1.i;
  871. d__ = tt / d__;
  872. for (j = k - 2; j >= 1; --j) {
  873. i__1 = j + (k - 2) * (k - 1) / 2;
  874. q__3.r = d11 * ap[i__1].r, q__3.i = d11 * ap[i__1].i;
  875. r_cnjg(&q__5, &d12);
  876. i__2 = j + (k - 1) * k / 2;
  877. q__4.r = q__5.r * ap[i__2].r - q__5.i * ap[i__2].i,
  878. q__4.i = q__5.r * ap[i__2].i + q__5.i * ap[
  879. i__2].r;
  880. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  881. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  882. wkm1.r = q__1.r, wkm1.i = q__1.i;
  883. i__1 = j + (k - 1) * k / 2;
  884. q__3.r = d22 * ap[i__1].r, q__3.i = d22 * ap[i__1].i;
  885. i__2 = j + (k - 2) * (k - 1) / 2;
  886. q__4.r = d12.r * ap[i__2].r - d12.i * ap[i__2].i,
  887. q__4.i = d12.r * ap[i__2].i + d12.i * ap[i__2]
  888. .r;
  889. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  890. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  891. wk.r = q__1.r, wk.i = q__1.i;
  892. for (i__ = j; i__ >= 1; --i__) {
  893. i__1 = i__ + (j - 1) * j / 2;
  894. i__2 = i__ + (j - 1) * j / 2;
  895. i__3 = i__ + (k - 1) * k / 2;
  896. r_cnjg(&q__4, &wk);
  897. q__3.r = ap[i__3].r * q__4.r - ap[i__3].i *
  898. q__4.i, q__3.i = ap[i__3].r * q__4.i + ap[
  899. i__3].i * q__4.r;
  900. q__2.r = ap[i__2].r - q__3.r, q__2.i = ap[i__2].i
  901. - q__3.i;
  902. i__4 = i__ + (k - 2) * (k - 1) / 2;
  903. r_cnjg(&q__6, &wkm1);
  904. q__5.r = ap[i__4].r * q__6.r - ap[i__4].i *
  905. q__6.i, q__5.i = ap[i__4].r * q__6.i + ap[
  906. i__4].i * q__6.r;
  907. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  908. q__5.i;
  909. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  910. /* L40: */
  911. }
  912. i__1 = j + (k - 1) * k / 2;
  913. ap[i__1].r = wk.r, ap[i__1].i = wk.i;
  914. i__1 = j + (k - 2) * (k - 1) / 2;
  915. ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
  916. i__1 = j + (j - 1) * j / 2;
  917. i__2 = j + (j - 1) * j / 2;
  918. r__1 = ap[i__2].r;
  919. q__1.r = r__1, q__1.i = 0.f;
  920. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  921. /* L50: */
  922. }
  923. }
  924. }
  925. }
  926. /* Store details of the interchanges in IPIV */
  927. if (kstep == 1) {
  928. ipiv[k] = kp;
  929. } else {
  930. ipiv[k] = -kp;
  931. ipiv[k - 1] = -kp;
  932. }
  933. /* Decrease K and return to the start of the main loop */
  934. k -= kstep;
  935. kc = knc - k;
  936. goto L10;
  937. } else {
  938. /* Factorize A as L*D*L**H using the lower triangle of A */
  939. /* K is the main loop index, increasing from 1 to N in steps of */
  940. /* 1 or 2 */
  941. k = 1;
  942. kc = 1;
  943. npp = *n * (*n + 1) / 2;
  944. L60:
  945. knc = kc;
  946. /* If K > N, exit from loop */
  947. if (k > *n) {
  948. goto L110;
  949. }
  950. kstep = 1;
  951. /* Determine rows and columns to be interchanged and whether */
  952. /* a 1-by-1 or 2-by-2 pivot block will be used */
  953. i__1 = kc;
  954. absakk = (r__1 = ap[i__1].r, abs(r__1));
  955. /* IMAX is the row-index of the largest off-diagonal element in */
  956. /* column K, and COLMAX is its absolute value */
  957. if (k < *n) {
  958. i__1 = *n - k;
  959. imax = k + icamax_(&i__1, &ap[kc + 1], &c__1);
  960. i__1 = kc + imax - k;
  961. colmax = (r__1 = ap[i__1].r, abs(r__1)) + (r__2 = r_imag(&ap[kc +
  962. imax - k]), abs(r__2));
  963. } else {
  964. colmax = 0.f;
  965. }
  966. if (f2cmax(absakk,colmax) == 0.f) {
  967. /* Column K is zero: set INFO and continue */
  968. if (*info == 0) {
  969. *info = k;
  970. }
  971. kp = k;
  972. i__1 = kc;
  973. i__2 = kc;
  974. r__1 = ap[i__2].r;
  975. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  976. } else {
  977. if (absakk >= alpha * colmax) {
  978. /* no interchange, use 1-by-1 pivot block */
  979. kp = k;
  980. } else {
  981. /* JMAX is the column-index of the largest off-diagonal */
  982. /* element in row IMAX, and ROWMAX is its absolute value */
  983. rowmax = 0.f;
  984. kx = kc + imax - k;
  985. i__1 = imax - 1;
  986. for (j = k; j <= i__1; ++j) {
  987. i__2 = kx;
  988. if ((r__1 = ap[i__2].r, abs(r__1)) + (r__2 = r_imag(&ap[
  989. kx]), abs(r__2)) > rowmax) {
  990. i__2 = kx;
  991. rowmax = (r__1 = ap[i__2].r, abs(r__1)) + (r__2 =
  992. r_imag(&ap[kx]), abs(r__2));
  993. jmax = j;
  994. }
  995. kx = kx + *n - j;
  996. /* L70: */
  997. }
  998. kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
  999. if (imax < *n) {
  1000. i__1 = *n - imax;
  1001. jmax = imax + icamax_(&i__1, &ap[kpc + 1], &c__1);
  1002. /* Computing MAX */
  1003. i__1 = kpc + jmax - imax;
  1004. r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, abs(r__1)) + (
  1005. r__2 = r_imag(&ap[kpc + jmax - imax]), abs(r__2));
  1006. rowmax = f2cmax(r__3,r__4);
  1007. }
  1008. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1009. /* no interchange, use 1-by-1 pivot block */
  1010. kp = k;
  1011. } else /* if(complicated condition) */ {
  1012. i__1 = kpc;
  1013. if ((r__1 = ap[i__1].r, abs(r__1)) >= alpha * rowmax) {
  1014. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1015. /* pivot block */
  1016. kp = imax;
  1017. } else {
  1018. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1019. /* pivot block */
  1020. kp = imax;
  1021. kstep = 2;
  1022. }
  1023. }
  1024. }
  1025. kk = k + kstep - 1;
  1026. if (kstep == 2) {
  1027. knc = knc + *n - k + 1;
  1028. }
  1029. if (kp != kk) {
  1030. /* Interchange rows and columns KK and KP in the trailing */
  1031. /* submatrix A(k:n,k:n) */
  1032. if (kp < *n) {
  1033. i__1 = *n - kp;
  1034. cswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
  1035. &c__1);
  1036. }
  1037. kx = knc + kp - kk;
  1038. i__1 = kp - 1;
  1039. for (j = kk + 1; j <= i__1; ++j) {
  1040. kx = kx + *n - j + 1;
  1041. r_cnjg(&q__1, &ap[knc + j - kk]);
  1042. t.r = q__1.r, t.i = q__1.i;
  1043. i__2 = knc + j - kk;
  1044. r_cnjg(&q__1, &ap[kx]);
  1045. ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
  1046. i__2 = kx;
  1047. ap[i__2].r = t.r, ap[i__2].i = t.i;
  1048. /* L80: */
  1049. }
  1050. i__1 = knc + kp - kk;
  1051. r_cnjg(&q__1, &ap[knc + kp - kk]);
  1052. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  1053. i__1 = knc;
  1054. r1 = ap[i__1].r;
  1055. i__1 = knc;
  1056. i__2 = kpc;
  1057. r__1 = ap[i__2].r;
  1058. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  1059. i__1 = kpc;
  1060. ap[i__1].r = r1, ap[i__1].i = 0.f;
  1061. if (kstep == 2) {
  1062. i__1 = kc;
  1063. i__2 = kc;
  1064. r__1 = ap[i__2].r;
  1065. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  1066. i__1 = kc + 1;
  1067. t.r = ap[i__1].r, t.i = ap[i__1].i;
  1068. i__1 = kc + 1;
  1069. i__2 = kc + kp - k;
  1070. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  1071. i__1 = kc + kp - k;
  1072. ap[i__1].r = t.r, ap[i__1].i = t.i;
  1073. }
  1074. } else {
  1075. i__1 = kc;
  1076. i__2 = kc;
  1077. r__1 = ap[i__2].r;
  1078. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  1079. if (kstep == 2) {
  1080. i__1 = knc;
  1081. i__2 = knc;
  1082. r__1 = ap[i__2].r;
  1083. ap[i__1].r = r__1, ap[i__1].i = 0.f;
  1084. }
  1085. }
  1086. /* Update the trailing submatrix */
  1087. if (kstep == 1) {
  1088. /* 1-by-1 pivot block D(k): column k now holds */
  1089. /* W(k) = L(k)*D(k) */
  1090. /* where L(k) is the k-th column of L */
  1091. if (k < *n) {
  1092. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1093. /* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H */
  1094. i__1 = kc;
  1095. r1 = 1.f / ap[i__1].r;
  1096. i__1 = *n - k;
  1097. r__1 = -r1;
  1098. chpr_(uplo, &i__1, &r__1, &ap[kc + 1], &c__1, &ap[kc + *n
  1099. - k + 1]);
  1100. /* Store L(k) in column K */
  1101. i__1 = *n - k;
  1102. csscal_(&i__1, &r1, &ap[kc + 1], &c__1);
  1103. }
  1104. } else {
  1105. /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
  1106. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1107. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1108. /* of L */
  1109. if (k < *n - 1) {
  1110. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1111. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H */
  1112. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H */
  1113. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  1114. /* columns of L */
  1115. i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
  1116. r__1 = ap[i__1].r;
  1117. r__2 = r_imag(&ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2]);
  1118. d__ = slapy2_(&r__1, &r__2);
  1119. i__1 = k + 1 + k * ((*n << 1) - k - 1) / 2;
  1120. d11 = ap[i__1].r / d__;
  1121. i__1 = k + (k - 1) * ((*n << 1) - k) / 2;
  1122. d22 = ap[i__1].r / d__;
  1123. tt = 1.f / (d11 * d22 - 1.f);
  1124. i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
  1125. q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
  1126. d21.r = q__1.r, d21.i = q__1.i;
  1127. d__ = tt / d__;
  1128. i__1 = *n;
  1129. for (j = k + 2; j <= i__1; ++j) {
  1130. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1131. q__3.r = d11 * ap[i__2].r, q__3.i = d11 * ap[i__2].i;
  1132. i__3 = j + k * ((*n << 1) - k - 1) / 2;
  1133. q__4.r = d21.r * ap[i__3].r - d21.i * ap[i__3].i,
  1134. q__4.i = d21.r * ap[i__3].i + d21.i * ap[i__3]
  1135. .r;
  1136. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1137. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  1138. wk.r = q__1.r, wk.i = q__1.i;
  1139. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1140. q__3.r = d22 * ap[i__2].r, q__3.i = d22 * ap[i__2].i;
  1141. r_cnjg(&q__5, &d21);
  1142. i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
  1143. q__4.r = q__5.r * ap[i__3].r - q__5.i * ap[i__3].i,
  1144. q__4.i = q__5.r * ap[i__3].i + q__5.i * ap[
  1145. i__3].r;
  1146. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1147. q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
  1148. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1149. i__2 = *n;
  1150. for (i__ = j; i__ <= i__2; ++i__) {
  1151. i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1152. i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
  1153. i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
  1154. r_cnjg(&q__4, &wk);
  1155. q__3.r = ap[i__5].r * q__4.r - ap[i__5].i *
  1156. q__4.i, q__3.i = ap[i__5].r * q__4.i + ap[
  1157. i__5].i * q__4.r;
  1158. q__2.r = ap[i__4].r - q__3.r, q__2.i = ap[i__4].i
  1159. - q__3.i;
  1160. i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
  1161. r_cnjg(&q__6, &wkp1);
  1162. q__5.r = ap[i__6].r * q__6.r - ap[i__6].i *
  1163. q__6.i, q__5.i = ap[i__6].r * q__6.i + ap[
  1164. i__6].i * q__6.r;
  1165. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  1166. q__5.i;
  1167. ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
  1168. /* L90: */
  1169. }
  1170. i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
  1171. ap[i__2].r = wk.r, ap[i__2].i = wk.i;
  1172. i__2 = j + k * ((*n << 1) - k - 1) / 2;
  1173. ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
  1174. i__2 = j + (j - 1) * ((*n << 1) - j) / 2;
  1175. i__3 = j + (j - 1) * ((*n << 1) - j) / 2;
  1176. r__1 = ap[i__3].r;
  1177. q__1.r = r__1, q__1.i = 0.f;
  1178. ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
  1179. /* L100: */
  1180. }
  1181. }
  1182. }
  1183. }
  1184. /* Store details of the interchanges in IPIV */
  1185. if (kstep == 1) {
  1186. ipiv[k] = kp;
  1187. } else {
  1188. ipiv[k] = -kp;
  1189. ipiv[k + 1] = -kp;
  1190. }
  1191. /* Increase K and return to the start of the main loop */
  1192. k += kstep;
  1193. kc = knc + *n - k + 2;
  1194. goto L60;
  1195. }
  1196. L110:
  1197. return 0;
  1198. /* End of CHPTRF */
  1199. } /* chptrf_ */