You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelss.c 44 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__6 = 6;
  489. static integer c_n1 = -1;
  490. static integer c__1 = 1;
  491. static integer c__0 = 0;
  492. static real c_b59 = 0.f;
  493. /* > \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download CGELSS + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  512. /* WORK, LWORK, RWORK, INFO ) */
  513. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  514. /* REAL RCOND */
  515. /* REAL RWORK( * ), S( * ) */
  516. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CGELSS computes the minimum norm solution to a complex linear */
  523. /* > least squares problem: */
  524. /* > */
  525. /* > Minimize 2-norm(| b - A*x |). */
  526. /* > */
  527. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  528. /* > matrix which may be rank-deficient. */
  529. /* > */
  530. /* > Several right hand side vectors b and solution vectors x can be */
  531. /* > handled in a single call; they are stored as the columns of the */
  532. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  533. /* > X. */
  534. /* > */
  535. /* > The effective rank of A is determined by treating as zero those */
  536. /* > singular values which are less than RCOND times the largest singular */
  537. /* > value. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] M */
  542. /* > \verbatim */
  543. /* > M is INTEGER */
  544. /* > The number of rows of the matrix A. M >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The number of columns of the matrix A. N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] NRHS */
  554. /* > \verbatim */
  555. /* > NRHS is INTEGER */
  556. /* > The number of right hand sides, i.e., the number of columns */
  557. /* > of the matrices B and X. NRHS >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] A */
  561. /* > \verbatim */
  562. /* > A is COMPLEX array, dimension (LDA,N) */
  563. /* > On entry, the M-by-N matrix A. */
  564. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  565. /* > its right singular vectors, stored rowwise. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDA */
  569. /* > \verbatim */
  570. /* > LDA is INTEGER */
  571. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] B */
  575. /* > \verbatim */
  576. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  577. /* > On entry, the M-by-NRHS right hand side matrix B. */
  578. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  579. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  580. /* > the solution in the i-th column is given by the sum of */
  581. /* > squares of the modulus of elements n+1:m in that column. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] S */
  591. /* > \verbatim */
  592. /* > S is REAL array, dimension (f2cmin(M,N)) */
  593. /* > The singular values of A in decreasing order. */
  594. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] RCOND */
  598. /* > \verbatim */
  599. /* > RCOND is REAL */
  600. /* > RCOND is used to determine the effective rank of A. */
  601. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  602. /* > If RCOND < 0, machine precision is used instead. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] RANK */
  606. /* > \verbatim */
  607. /* > RANK is INTEGER */
  608. /* > The effective rank of A, i.e., the number of singular values */
  609. /* > which are greater than RCOND*S(1). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  615. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LWORK */
  619. /* > \verbatim */
  620. /* > LWORK is INTEGER */
  621. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  622. /* > LWORK >= 2*f2cmin(M,N) + f2cmax(M,N,NRHS) */
  623. /* > For good performance, LWORK should generally be larger. */
  624. /* > */
  625. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  626. /* > only calculates the optimal size of the WORK array, returns */
  627. /* > this value as the first entry of the WORK array, and no error */
  628. /* > message related to LWORK is issued by XERBLA. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] RWORK */
  632. /* > \verbatim */
  633. /* > RWORK is REAL array, dimension (5*f2cmin(M,N)) */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] INFO */
  637. /* > \verbatim */
  638. /* > INFO is INTEGER */
  639. /* > = 0: successful exit */
  640. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  641. /* > > 0: the algorithm for computing the SVD failed to converge; */
  642. /* > if INFO = i, i off-diagonal elements of an intermediate */
  643. /* > bidiagonal form did not converge to zero. */
  644. /* > \endverbatim */
  645. /* Authors: */
  646. /* ======== */
  647. /* > \author Univ. of Tennessee */
  648. /* > \author Univ. of California Berkeley */
  649. /* > \author Univ. of Colorado Denver */
  650. /* > \author NAG Ltd. */
  651. /* > \date June 2016 */
  652. /* > \ingroup complexGEsolve */
  653. /* ===================================================================== */
  654. /* Subroutine */ int cgelss_(integer *m, integer *n, integer *nrhs, complex *
  655. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  656. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  657. info)
  658. {
  659. /* System generated locals */
  660. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  661. real r__1;
  662. /* Local variables */
  663. real anrm, bnrm;
  664. integer itau, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__,
  665. lwork_cungbr__, lwork_cunmbr__, i__, lwork_cunmlq__,
  666. lwork_cunmqr__;
  667. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  668. integer *, complex *, complex *, integer *, complex *, integer *,
  669. complex *, complex *, integer *);
  670. integer iascl, ibscl;
  671. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  672. , complex *, integer *, complex *, integer *, complex *, complex *
  673. , integer *);
  674. integer chunk;
  675. real sfmin;
  676. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  677. complex *, integer *);
  678. integer minmn, maxmn, itaup, itauq, mnthr, iwork, bl, ie, il;
  679. extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
  680. integer *, real *, real *, complex *, complex *, complex *,
  681. integer *, integer *), slabad_(real *, real *);
  682. extern real clange_(char *, integer *, integer *, complex *, integer *,
  683. real *);
  684. integer mm;
  685. extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
  686. integer *, complex *, complex *, integer *, integer *), clascl_(
  687. char *, integer *, integer *, real *, real *, integer *, integer *
  688. , complex *, integer *, integer *), cgeqrf_(integer *,
  689. integer *, complex *, integer *, complex *, complex *, integer *,
  690. integer *);
  691. extern real slamch_(char *);
  692. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  693. *, integer *, complex *, integer *), claset_(char *,
  694. integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen), cbdsqr_(char *,
  695. integer *, integer *, integer *, integer *, real *, real *,
  696. complex *, integer *, complex *, integer *, complex *, integer *,
  697. real *, integer *);
  698. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  699. integer *, integer *, ftnlen, ftnlen);
  700. real bignum;
  701. extern /* Subroutine */ int cungbr_(char *, integer *, integer *, integer
  702. *, complex *, integer *, complex *, complex *, integer *, integer
  703. *), slascl_(char *, integer *, integer *, real *, real *,
  704. integer *, integer *, real *, integer *, integer *),
  705. cunmbr_(char *, char *, char *, integer *, integer *, integer *,
  706. complex *, integer *, complex *, complex *, integer *, complex *,
  707. integer *, integer *), csrscl_(integer *,
  708. real *, complex *, integer *), slaset_(char *, integer *, integer
  709. *, real *, real *, real *, integer *), cunmlq_(char *,
  710. char *, integer *, integer *, integer *, complex *, integer *,
  711. complex *, complex *, integer *, complex *, integer *, integer *);
  712. integer ldwork;
  713. extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
  714. integer *, complex *, integer *, complex *, complex *, integer *,
  715. complex *, integer *, integer *);
  716. integer minwrk, maxwrk;
  717. real smlnum;
  718. integer irwork;
  719. logical lquery;
  720. complex dum[1];
  721. real eps, thr;
  722. /* -- LAPACK driver routine (version 3.7.0) -- */
  723. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  724. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  725. /* June 2016 */
  726. /* ===================================================================== */
  727. /* Test the input arguments */
  728. /* Parameter adjustments */
  729. a_dim1 = *lda;
  730. a_offset = 1 + a_dim1 * 1;
  731. a -= a_offset;
  732. b_dim1 = *ldb;
  733. b_offset = 1 + b_dim1 * 1;
  734. b -= b_offset;
  735. --s;
  736. --work;
  737. --rwork;
  738. /* Function Body */
  739. *info = 0;
  740. minmn = f2cmin(*m,*n);
  741. maxmn = f2cmax(*m,*n);
  742. lquery = *lwork == -1;
  743. if (*m < 0) {
  744. *info = -1;
  745. } else if (*n < 0) {
  746. *info = -2;
  747. } else if (*nrhs < 0) {
  748. *info = -3;
  749. } else if (*lda < f2cmax(1,*m)) {
  750. *info = -5;
  751. } else if (*ldb < f2cmax(1,maxmn)) {
  752. *info = -7;
  753. }
  754. /* Compute workspace */
  755. /* (Note: Comments in the code beginning "Workspace:" describe the */
  756. /* minimal amount of workspace needed at that point in the code, */
  757. /* as well as the preferred amount for good performance. */
  758. /* CWorkspace refers to complex workspace, and RWorkspace refers */
  759. /* to real workspace. NB refers to the optimal block size for the */
  760. /* immediately following subroutine, as returned by ILAENV.) */
  761. if (*info == 0) {
  762. minwrk = 1;
  763. maxwrk = 1;
  764. if (minmn > 0) {
  765. mm = *m;
  766. mnthr = ilaenv_(&c__6, "CGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  767. 6, (ftnlen)1);
  768. if (*m >= *n && *m >= mnthr) {
  769. /* Path 1a - overdetermined, with many more rows than */
  770. /* columns */
  771. /* Compute space needed for CGEQRF */
  772. cgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  773. lwork_cgeqrf__ = dum[0].r;
  774. /* Compute space needed for CUNMQR */
  775. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[
  776. b_offset], ldb, dum, &c_n1, info);
  777. lwork_cunmqr__ = dum[0].r;
  778. mm = *n;
  779. /* Computing MAX */
  780. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF",
  781. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  782. maxwrk = f2cmax(i__1,i__2);
  783. /* Computing MAX */
  784. i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "CUNMQR",
  785. "LC", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  786. maxwrk = f2cmax(i__1,i__2);
  787. }
  788. if (*m >= *n) {
  789. /* Path 1 - overdetermined or exactly determined */
  790. /* Compute space needed for CGEBRD */
  791. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  792. dum, &c_n1, info);
  793. lwork_cgebrd__ = dum[0].r;
  794. /* Compute space needed for CUNMBR */
  795. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, &
  796. b[b_offset], ldb, dum, &c_n1, info);
  797. lwork_cunmbr__ = dum[0].r;
  798. /* Compute space needed for CUNGBR */
  799. cungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  800. info);
  801. lwork_cungbr__ = dum[0].r;
  802. /* Compute total workspace needed */
  803. /* Computing MAX */
  804. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cgebrd__;
  805. maxwrk = f2cmax(i__1,i__2);
  806. /* Computing MAX */
  807. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cunmbr__;
  808. maxwrk = f2cmax(i__1,i__2);
  809. /* Computing MAX */
  810. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cungbr__;
  811. maxwrk = f2cmax(i__1,i__2);
  812. /* Computing MAX */
  813. i__1 = maxwrk, i__2 = *n * *nrhs;
  814. maxwrk = f2cmax(i__1,i__2);
  815. minwrk = (*n << 1) + f2cmax(*nrhs,*m);
  816. }
  817. if (*n > *m) {
  818. minwrk = (*m << 1) + f2cmax(*nrhs,*n);
  819. if (*n >= mnthr) {
  820. /* Path 2a - underdetermined, with many more columns */
  821. /* than rows */
  822. /* Compute space needed for CGELQF */
  823. cgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  824. lwork_cgelqf__ = dum[0].r;
  825. /* Compute space needed for CGEBRD */
  826. cgebrd_(m, m, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  827. dum, &c_n1, info);
  828. lwork_cgebrd__ = dum[0].r;
  829. /* Compute space needed for CUNMBR */
  830. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum,
  831. &b[b_offset], ldb, dum, &c_n1, info);
  832. lwork_cunmbr__ = dum[0].r;
  833. /* Compute space needed for CUNGBR */
  834. cungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  835. info);
  836. lwork_cungbr__ = dum[0].r;
  837. /* Compute space needed for CUNMLQ */
  838. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[
  839. b_offset], ldb, dum, &c_n1, info);
  840. lwork_cunmlq__ = dum[0].r;
  841. /* Compute total workspace needed */
  842. maxwrk = *m + lwork_cgelqf__;
  843. /* Computing MAX */
  844. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cgebrd__;
  845. maxwrk = f2cmax(i__1,i__2);
  846. /* Computing MAX */
  847. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cunmbr__;
  848. maxwrk = f2cmax(i__1,i__2);
  849. /* Computing MAX */
  850. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cungbr__;
  851. maxwrk = f2cmax(i__1,i__2);
  852. if (*nrhs > 1) {
  853. /* Computing MAX */
  854. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  855. maxwrk = f2cmax(i__1,i__2);
  856. } else {
  857. /* Computing MAX */
  858. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  859. maxwrk = f2cmax(i__1,i__2);
  860. }
  861. /* Computing MAX */
  862. i__1 = maxwrk, i__2 = *m + lwork_cunmlq__;
  863. maxwrk = f2cmax(i__1,i__2);
  864. } else {
  865. /* Path 2 - underdetermined */
  866. /* Compute space needed for CGEBRD */
  867. cgebrd_(m, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  868. dum, &c_n1, info);
  869. lwork_cgebrd__ = dum[0].r;
  870. /* Compute space needed for CUNMBR */
  871. cunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum,
  872. &b[b_offset], ldb, dum, &c_n1, info);
  873. lwork_cunmbr__ = dum[0].r;
  874. /* Compute space needed for CUNGBR */
  875. cungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  876. info);
  877. lwork_cungbr__ = dum[0].r;
  878. maxwrk = (*m << 1) + lwork_cgebrd__;
  879. /* Computing MAX */
  880. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cunmbr__;
  881. maxwrk = f2cmax(i__1,i__2);
  882. /* Computing MAX */
  883. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cungbr__;
  884. maxwrk = f2cmax(i__1,i__2);
  885. /* Computing MAX */
  886. i__1 = maxwrk, i__2 = *n * *nrhs;
  887. maxwrk = f2cmax(i__1,i__2);
  888. }
  889. }
  890. maxwrk = f2cmax(minwrk,maxwrk);
  891. }
  892. work[1].r = (real) maxwrk, work[1].i = 0.f;
  893. if (*lwork < minwrk && ! lquery) {
  894. *info = -12;
  895. }
  896. }
  897. if (*info != 0) {
  898. i__1 = -(*info);
  899. xerbla_("CGELSS", &i__1, (ftnlen)6);
  900. return 0;
  901. } else if (lquery) {
  902. return 0;
  903. }
  904. /* Quick return if possible */
  905. if (*m == 0 || *n == 0) {
  906. *rank = 0;
  907. return 0;
  908. }
  909. /* Get machine parameters */
  910. eps = slamch_("P");
  911. sfmin = slamch_("S");
  912. smlnum = sfmin / eps;
  913. bignum = 1.f / smlnum;
  914. slabad_(&smlnum, &bignum);
  915. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  916. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  917. iascl = 0;
  918. if (anrm > 0.f && anrm < smlnum) {
  919. /* Scale matrix norm up to SMLNUM */
  920. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  921. info);
  922. iascl = 1;
  923. } else if (anrm > bignum) {
  924. /* Scale matrix norm down to BIGNUM */
  925. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  926. info);
  927. iascl = 2;
  928. } else if (anrm == 0.f) {
  929. /* Matrix all zero. Return zero solution. */
  930. i__1 = f2cmax(*m,*n);
  931. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  932. slaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn);
  933. *rank = 0;
  934. goto L70;
  935. }
  936. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  937. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  938. ibscl = 0;
  939. if (bnrm > 0.f && bnrm < smlnum) {
  940. /* Scale matrix norm up to SMLNUM */
  941. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  942. info);
  943. ibscl = 1;
  944. } else if (bnrm > bignum) {
  945. /* Scale matrix norm down to BIGNUM */
  946. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  947. info);
  948. ibscl = 2;
  949. }
  950. /* Overdetermined case */
  951. if (*m >= *n) {
  952. /* Path 1 - overdetermined or exactly determined */
  953. mm = *m;
  954. if (*m >= mnthr) {
  955. /* Path 1a - overdetermined, with many more rows than columns */
  956. mm = *n;
  957. itau = 1;
  958. iwork = itau + *n;
  959. /* Compute A=Q*R */
  960. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  961. /* (RWorkspace: none) */
  962. i__1 = *lwork - iwork + 1;
  963. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  964. info);
  965. /* Multiply B by transpose(Q) */
  966. /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
  967. /* (RWorkspace: none) */
  968. i__1 = *lwork - iwork + 1;
  969. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  970. b_offset], ldb, &work[iwork], &i__1, info);
  971. /* Zero out below R */
  972. if (*n > 1) {
  973. i__1 = *n - 1;
  974. i__2 = *n - 1;
  975. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  976. }
  977. }
  978. ie = 1;
  979. itauq = 1;
  980. itaup = itauq + *n;
  981. iwork = itaup + *n;
  982. /* Bidiagonalize R in A */
  983. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  984. /* (RWorkspace: need N) */
  985. i__1 = *lwork - iwork + 1;
  986. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  987. work[itaup], &work[iwork], &i__1, info);
  988. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  989. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  990. /* (RWorkspace: none) */
  991. i__1 = *lwork - iwork + 1;
  992. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  993. &b[b_offset], ldb, &work[iwork], &i__1, info);
  994. /* Generate right bidiagonalizing vectors of R in A */
  995. /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  996. /* (RWorkspace: none) */
  997. i__1 = *lwork - iwork + 1;
  998. cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  999. i__1, info);
  1000. irwork = ie + *n;
  1001. /* Perform bidiagonal QR iteration */
  1002. /* multiply B by transpose of left singular vectors */
  1003. /* compute right singular vectors in A */
  1004. /* (CWorkspace: none) */
  1005. /* (RWorkspace: need BDSPAC) */
  1006. cbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda,
  1007. dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1008. if (*info != 0) {
  1009. goto L70;
  1010. }
  1011. /* Multiply B by reciprocals of singular values */
  1012. /* Computing MAX */
  1013. r__1 = *rcond * s[1];
  1014. thr = f2cmax(r__1,sfmin);
  1015. if (*rcond < 0.f) {
  1016. /* Computing MAX */
  1017. r__1 = eps * s[1];
  1018. thr = f2cmax(r__1,sfmin);
  1019. }
  1020. *rank = 0;
  1021. i__1 = *n;
  1022. for (i__ = 1; i__ <= i__1; ++i__) {
  1023. if (s[i__] > thr) {
  1024. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1025. ++(*rank);
  1026. } else {
  1027. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  1028. }
  1029. /* L10: */
  1030. }
  1031. /* Multiply B by right singular vectors */
  1032. /* (CWorkspace: need N, prefer N*NRHS) */
  1033. /* (RWorkspace: none) */
  1034. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1035. cgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[
  1036. b_offset], ldb, &c_b1, &work[1], ldb);
  1037. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  1038. ;
  1039. } else if (*nrhs > 1) {
  1040. chunk = *lwork / *n;
  1041. i__1 = *nrhs;
  1042. i__2 = chunk;
  1043. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  1044. /* Computing MIN */
  1045. i__3 = *nrhs - i__ + 1;
  1046. bl = f2cmin(i__3,chunk);
  1047. cgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ *
  1048. b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1049. clacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  1050. /* L20: */
  1051. }
  1052. } else {
  1053. cgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, &
  1054. c_b1, &work[1], &c__1);
  1055. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1056. }
  1057. } else /* if(complicated condition) */ {
  1058. /* Computing MAX */
  1059. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1060. if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + f2cmax(i__2,i__1)) {
  1061. /* Underdetermined case, M much less than N */
  1062. /* Path 2a - underdetermined, with many more columns than rows */
  1063. /* and sufficient workspace for an efficient algorithm */
  1064. ldwork = *m;
  1065. /* Computing MAX */
  1066. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1067. if (*lwork >= *m * 3 + *m * *lda + f2cmax(i__2,i__1)) {
  1068. ldwork = *lda;
  1069. }
  1070. itau = 1;
  1071. iwork = *m + 1;
  1072. /* Compute A=L*Q */
  1073. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  1074. /* (RWorkspace: none) */
  1075. i__2 = *lwork - iwork + 1;
  1076. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  1077. info);
  1078. il = iwork;
  1079. /* Copy L to WORK(IL), zeroing out above it */
  1080. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1081. i__2 = *m - 1;
  1082. i__1 = *m - 1;
  1083. claset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], &
  1084. ldwork);
  1085. ie = 1;
  1086. itauq = il + ldwork * *m;
  1087. itaup = itauq + *m;
  1088. iwork = itaup + *m;
  1089. /* Bidiagonalize L in WORK(IL) */
  1090. /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1091. /* (RWorkspace: need M) */
  1092. i__2 = *lwork - iwork + 1;
  1093. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  1094. &work[itaup], &work[iwork], &i__2, info);
  1095. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  1096. /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
  1097. /* (RWorkspace: none) */
  1098. i__2 = *lwork - iwork + 1;
  1099. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  1100. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  1101. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  1102. /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
  1103. /* (RWorkspace: none) */
  1104. i__2 = *lwork - iwork + 1;
  1105. cungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  1106. iwork], &i__2, info);
  1107. irwork = ie + *m;
  1108. /* Perform bidiagonal QR iteration, computing right singular */
  1109. /* vectors of L in WORK(IL) and multiplying B by transpose of */
  1110. /* left singular vectors */
  1111. /* (CWorkspace: need M*M) */
  1112. /* (RWorkspace: need BDSPAC) */
  1113. cbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], &
  1114. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[
  1115. irwork], info);
  1116. if (*info != 0) {
  1117. goto L70;
  1118. }
  1119. /* Multiply B by reciprocals of singular values */
  1120. /* Computing MAX */
  1121. r__1 = *rcond * s[1];
  1122. thr = f2cmax(r__1,sfmin);
  1123. if (*rcond < 0.f) {
  1124. /* Computing MAX */
  1125. r__1 = eps * s[1];
  1126. thr = f2cmax(r__1,sfmin);
  1127. }
  1128. *rank = 0;
  1129. i__2 = *m;
  1130. for (i__ = 1; i__ <= i__2; ++i__) {
  1131. if (s[i__] > thr) {
  1132. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1133. ++(*rank);
  1134. } else {
  1135. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1136. ldb);
  1137. }
  1138. /* L30: */
  1139. }
  1140. iwork = il + *m * ldwork;
  1141. /* Multiply B by right singular vectors of L in WORK(IL) */
  1142. /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  1143. /* (RWorkspace: none) */
  1144. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  1145. cgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[
  1146. b_offset], ldb, &c_b1, &work[iwork], ldb);
  1147. clacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  1148. } else if (*nrhs > 1) {
  1149. chunk = (*lwork - iwork + 1) / *m;
  1150. i__2 = *nrhs;
  1151. i__1 = chunk;
  1152. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1153. i__1) {
  1154. /* Computing MIN */
  1155. i__3 = *nrhs - i__ + 1;
  1156. bl = f2cmin(i__3,chunk);
  1157. cgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[
  1158. i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
  1159. clacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  1160. , ldb);
  1161. /* L40: */
  1162. }
  1163. } else {
  1164. cgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], &
  1165. c__1, &c_b1, &work[iwork], &c__1);
  1166. ccopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  1167. }
  1168. /* Zero out below first M rows of B */
  1169. i__1 = *n - *m;
  1170. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1171. iwork = itau + *m;
  1172. /* Multiply transpose(Q) by B */
  1173. /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
  1174. /* (RWorkspace: none) */
  1175. i__1 = *lwork - iwork + 1;
  1176. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1177. b_offset], ldb, &work[iwork], &i__1, info);
  1178. } else {
  1179. /* Path 2 - remaining underdetermined cases */
  1180. ie = 1;
  1181. itauq = 1;
  1182. itaup = itauq + *m;
  1183. iwork = itaup + *m;
  1184. /* Bidiagonalize A */
  1185. /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
  1186. /* (RWorkspace: need N) */
  1187. i__1 = *lwork - iwork + 1;
  1188. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1189. &work[itaup], &work[iwork], &i__1, info);
  1190. /* Multiply B by transpose of left bidiagonalizing vectors */
  1191. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1192. /* (RWorkspace: none) */
  1193. i__1 = *lwork - iwork + 1;
  1194. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1195. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  1196. /* Generate right bidiagonalizing vectors in A */
  1197. /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
  1198. /* (RWorkspace: none) */
  1199. i__1 = *lwork - iwork + 1;
  1200. cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  1201. iwork], &i__1, info);
  1202. irwork = ie + *m;
  1203. /* Perform bidiagonal QR iteration, */
  1204. /* computing right singular vectors of A in A and */
  1205. /* multiplying B by transpose of left singular vectors */
  1206. /* (CWorkspace: none) */
  1207. /* (RWorkspace: need BDSPAC) */
  1208. cbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset],
  1209. lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1210. if (*info != 0) {
  1211. goto L70;
  1212. }
  1213. /* Multiply B by reciprocals of singular values */
  1214. /* Computing MAX */
  1215. r__1 = *rcond * s[1];
  1216. thr = f2cmax(r__1,sfmin);
  1217. if (*rcond < 0.f) {
  1218. /* Computing MAX */
  1219. r__1 = eps * s[1];
  1220. thr = f2cmax(r__1,sfmin);
  1221. }
  1222. *rank = 0;
  1223. i__1 = *m;
  1224. for (i__ = 1; i__ <= i__1; ++i__) {
  1225. if (s[i__] > thr) {
  1226. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1227. ++(*rank);
  1228. } else {
  1229. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1230. ldb);
  1231. }
  1232. /* L50: */
  1233. }
  1234. /* Multiply B by right singular vectors of A */
  1235. /* (CWorkspace: need N, prefer N*NRHS) */
  1236. /* (RWorkspace: none) */
  1237. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1238. cgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[
  1239. b_offset], ldb, &c_b1, &work[1], ldb);
  1240. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  1241. } else if (*nrhs > 1) {
  1242. chunk = *lwork / *n;
  1243. i__1 = *nrhs;
  1244. i__2 = chunk;
  1245. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1246. i__2) {
  1247. /* Computing MIN */
  1248. i__3 = *nrhs - i__ + 1;
  1249. bl = f2cmin(i__3,chunk);
  1250. cgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[
  1251. i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1252. clacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  1253. ldb);
  1254. /* L60: */
  1255. }
  1256. } else {
  1257. cgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], &
  1258. c__1, &c_b1, &work[1], &c__1);
  1259. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1260. }
  1261. }
  1262. }
  1263. /* Undo scaling */
  1264. if (iascl == 1) {
  1265. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1266. info);
  1267. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1268. minmn, info);
  1269. } else if (iascl == 2) {
  1270. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1271. info);
  1272. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1273. minmn, info);
  1274. }
  1275. if (ibscl == 1) {
  1276. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1277. info);
  1278. } else if (ibscl == 2) {
  1279. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1280. info);
  1281. }
  1282. L70:
  1283. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1284. return 0;
  1285. /* End of CGELSS */
  1286. } /* cgelss_ */