You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeev.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  490. ices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGEEV + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeev.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeev.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeev.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, */
  509. /* WORK, LWORK, RWORK, INFO ) */
  510. /* CHARACTER JOBVL, JOBVR */
  511. /* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N */
  512. /* REAL RWORK( * ) */
  513. /* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
  514. /* $ W( * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */
  521. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  522. /* > */
  523. /* > The right eigenvector v(j) of A satisfies */
  524. /* > A * v(j) = lambda(j) * v(j) */
  525. /* > where lambda(j) is its eigenvalue. */
  526. /* > The left eigenvector u(j) of A satisfies */
  527. /* > u(j)**H * A = lambda(j) * u(j)**H */
  528. /* > where u(j)**H denotes the conjugate transpose of u(j). */
  529. /* > */
  530. /* > The computed eigenvectors are normalized to have Euclidean norm */
  531. /* > equal to 1 and largest component real. */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] JOBVL */
  536. /* > \verbatim */
  537. /* > JOBVL is CHARACTER*1 */
  538. /* > = 'N': left eigenvectors of A are not computed; */
  539. /* > = 'V': left eigenvectors of are computed. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] JOBVR */
  543. /* > \verbatim */
  544. /* > JOBVR is CHARACTER*1 */
  545. /* > = 'N': right eigenvectors of A are not computed; */
  546. /* > = 'V': right eigenvectors of A are computed. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] N */
  550. /* > \verbatim */
  551. /* > N is INTEGER */
  552. /* > The order of the matrix A. N >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in,out] A */
  556. /* > \verbatim */
  557. /* > A is COMPLEX array, dimension (LDA,N) */
  558. /* > On entry, the N-by-N matrix A. */
  559. /* > On exit, A has been overwritten. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] LDA */
  563. /* > \verbatim */
  564. /* > LDA is INTEGER */
  565. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[out] W */
  569. /* > \verbatim */
  570. /* > W is COMPLEX array, dimension (N) */
  571. /* > W contains the computed eigenvalues. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[out] VL */
  575. /* > \verbatim */
  576. /* > VL is COMPLEX array, dimension (LDVL,N) */
  577. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  578. /* > after another in the columns of VL, in the same order */
  579. /* > as their eigenvalues. */
  580. /* > If JOBVL = 'N', VL is not referenced. */
  581. /* > u(j) = VL(:,j), the j-th column of VL. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDVL */
  585. /* > \verbatim */
  586. /* > LDVL is INTEGER */
  587. /* > The leading dimension of the array VL. LDVL >= 1; if */
  588. /* > JOBVL = 'V', LDVL >= N. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] VR */
  592. /* > \verbatim */
  593. /* > VR is COMPLEX array, dimension (LDVR,N) */
  594. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  595. /* > after another in the columns of VR, in the same order */
  596. /* > as their eigenvalues. */
  597. /* > If JOBVR = 'N', VR is not referenced. */
  598. /* > v(j) = VR(:,j), the j-th column of VR. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDVR */
  602. /* > \verbatim */
  603. /* > LDVR is INTEGER */
  604. /* > The leading dimension of the array VR. LDVR >= 1; if */
  605. /* > JOBVR = 'V', LDVR >= N. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] WORK */
  609. /* > \verbatim */
  610. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  611. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LWORK */
  615. /* > \verbatim */
  616. /* > LWORK is INTEGER */
  617. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  618. /* > For good performance, LWORK must generally be larger. */
  619. /* > */
  620. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  621. /* > only calculates the optimal size of the WORK array, returns */
  622. /* > this value as the first entry of the WORK array, and no error */
  623. /* > message related to LWORK is issued by XERBLA. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] RWORK */
  627. /* > \verbatim */
  628. /* > RWORK is REAL array, dimension (2*N) */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] INFO */
  632. /* > \verbatim */
  633. /* > INFO is INTEGER */
  634. /* > = 0: successful exit */
  635. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  636. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  637. /* > eigenvalues, and no eigenvectors have been computed; */
  638. /* > elements i+1:N of W contain eigenvalues which have */
  639. /* > converged. */
  640. /* > \endverbatim */
  641. /* Authors: */
  642. /* ======== */
  643. /* > \author Univ. of Tennessee */
  644. /* > \author Univ. of California Berkeley */
  645. /* > \author Univ. of Colorado Denver */
  646. /* > \author NAG Ltd. */
  647. /* > \date June 2016 */
  648. /* @generated from zgeev.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
  649. /* > \ingroup complexGEeigen */
  650. /* ===================================================================== */
  651. /* Subroutine */ int cgeev_(char *jobvl, char *jobvr, integer *n, complex *a,
  652. integer *lda, complex *w, complex *vl, integer *ldvl, complex *vr,
  653. integer *ldvr, complex *work, integer *lwork, real *rwork, integer *
  654. info)
  655. {
  656. /* System generated locals */
  657. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  658. i__2, i__3;
  659. real r__1, r__2;
  660. complex q__1, q__2;
  661. /* Local variables */
  662. integer ibal;
  663. char side[1];
  664. real anrm;
  665. integer ierr, itau, iwrk, nout, i__, k;
  666. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  667. integer *);
  668. extern logical lsame_(char *, char *);
  669. extern real scnrm2_(integer *, complex *, integer *);
  670. extern /* Subroutine */ int cgebak_(char *, char *, integer *, integer *,
  671. integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
  672. integer *, integer *, real *, integer *), slabad_(real *,
  673. real *);
  674. logical scalea;
  675. extern real clange_(char *, integer *, integer *, complex *, integer *,
  676. real *);
  677. real cscale;
  678. extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *,
  679. complex *, integer *, complex *, complex *, integer *, integer *),
  680. clascl_(char *, integer *, integer *, real *, real *, integer *,
  681. integer *, complex *, integer *, integer *);
  682. extern real slamch_(char *);
  683. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  684. *), clacpy_(char *, integer *, integer *, complex *, integer *,
  685. complex *, integer *), xerbla_(char *, integer *, ftnlen);
  686. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  687. integer *, integer *, ftnlen, ftnlen);
  688. logical select[1];
  689. real bignum;
  690. extern integer isamax_(integer *, real *, integer *);
  691. extern /* Subroutine */ int chseqr_(char *, char *, integer *, integer *,
  692. integer *, complex *, integer *, complex *, complex *, integer *,
  693. complex *, integer *, integer *), cunghr_(integer
  694. *, integer *, integer *, complex *, integer *, complex *, complex
  695. *, integer *, integer *);
  696. integer minwrk, maxwrk;
  697. logical wantvl;
  698. real smlnum;
  699. integer hswork, irwork;
  700. logical lquery, wantvr;
  701. extern /* Subroutine */ int ctrevc3_(char *, char *, logical *, integer *,
  702. complex *, integer *, complex *, integer *, complex *, integer *,
  703. integer *, integer *, complex *, integer *, real *, integer *,
  704. integer *);
  705. integer ihi;
  706. real scl;
  707. integer ilo;
  708. real dum[1], eps;
  709. complex tmp;
  710. integer lwork_trevc__;
  711. /* -- LAPACK driver routine (version 3.7.0) -- */
  712. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  713. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  714. /* June 2016 */
  715. /* ===================================================================== */
  716. /* Test the input arguments */
  717. /* Parameter adjustments */
  718. a_dim1 = *lda;
  719. a_offset = 1 + a_dim1 * 1;
  720. a -= a_offset;
  721. --w;
  722. vl_dim1 = *ldvl;
  723. vl_offset = 1 + vl_dim1 * 1;
  724. vl -= vl_offset;
  725. vr_dim1 = *ldvr;
  726. vr_offset = 1 + vr_dim1 * 1;
  727. vr -= vr_offset;
  728. --work;
  729. --rwork;
  730. /* Function Body */
  731. *info = 0;
  732. lquery = *lwork == -1;
  733. wantvl = lsame_(jobvl, "V");
  734. wantvr = lsame_(jobvr, "V");
  735. if (! wantvl && ! lsame_(jobvl, "N")) {
  736. *info = -1;
  737. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  738. *info = -2;
  739. } else if (*n < 0) {
  740. *info = -3;
  741. } else if (*lda < f2cmax(1,*n)) {
  742. *info = -5;
  743. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  744. *info = -8;
  745. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  746. *info = -10;
  747. }
  748. /* Compute workspace */
  749. /* (Note: Comments in the code beginning "Workspace:" describe the */
  750. /* minimal amount of workspace needed at that point in the code, */
  751. /* as well as the preferred amount for good performance. */
  752. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  753. /* workspace. NB refers to the optimal block size for the */
  754. /* immediately following subroutine, as returned by ILAENV. */
  755. /* HSWORK refers to the workspace preferred by CHSEQR, as */
  756. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  757. /* the worst case.) */
  758. if (*info == 0) {
  759. if (*n == 0) {
  760. minwrk = 1;
  761. maxwrk = 1;
  762. } else {
  763. maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
  764. c__0, (ftnlen)6, (ftnlen)1);
  765. minwrk = *n << 1;
  766. if (wantvl) {
  767. /* Computing MAX */
  768. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  769. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  770. maxwrk = f2cmax(i__1,i__2);
  771. ctrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  772. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  773. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  774. lwork_trevc__ = (integer) work[1].r;
  775. /* Computing MAX */
  776. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  777. maxwrk = f2cmax(i__1,i__2);
  778. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
  779. vl_offset], ldvl, &work[1], &c_n1, info);
  780. } else if (wantvr) {
  781. /* Computing MAX */
  782. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  783. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  784. maxwrk = f2cmax(i__1,i__2);
  785. ctrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  786. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  787. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  788. lwork_trevc__ = (integer) work[1].r;
  789. /* Computing MAX */
  790. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  791. maxwrk = f2cmax(i__1,i__2);
  792. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  793. vr_offset], ldvr, &work[1], &c_n1, info);
  794. } else {
  795. chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  796. vr_offset], ldvr, &work[1], &c_n1, info);
  797. }
  798. hswork = (integer) work[1].r;
  799. /* Computing MAX */
  800. i__1 = f2cmax(maxwrk,hswork);
  801. maxwrk = f2cmax(i__1,minwrk);
  802. }
  803. work[1].r = (real) maxwrk, work[1].i = 0.f;
  804. if (*lwork < minwrk && ! lquery) {
  805. *info = -12;
  806. }
  807. }
  808. if (*info != 0) {
  809. i__1 = -(*info);
  810. xerbla_("CGEEV ", &i__1, (ftnlen)6);
  811. return 0;
  812. } else if (lquery) {
  813. return 0;
  814. }
  815. /* Quick return if possible */
  816. if (*n == 0) {
  817. return 0;
  818. }
  819. /* Get machine constants */
  820. eps = slamch_("P");
  821. smlnum = slamch_("S");
  822. bignum = 1.f / smlnum;
  823. slabad_(&smlnum, &bignum);
  824. smlnum = sqrt(smlnum) / eps;
  825. bignum = 1.f / smlnum;
  826. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  827. anrm = clange_("M", n, n, &a[a_offset], lda, dum);
  828. scalea = FALSE_;
  829. if (anrm > 0.f && anrm < smlnum) {
  830. scalea = TRUE_;
  831. cscale = smlnum;
  832. } else if (anrm > bignum) {
  833. scalea = TRUE_;
  834. cscale = bignum;
  835. }
  836. if (scalea) {
  837. clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  838. ierr);
  839. }
  840. /* Balance the matrix */
  841. /* (CWorkspace: none) */
  842. /* (RWorkspace: need N) */
  843. ibal = 1;
  844. cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
  845. /* Reduce to upper Hessenberg form */
  846. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  847. /* (RWorkspace: none) */
  848. itau = 1;
  849. iwrk = itau + *n;
  850. i__1 = *lwork - iwrk + 1;
  851. cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  852. &ierr);
  853. if (wantvl) {
  854. /* Want left eigenvectors */
  855. /* Copy Householder vectors to VL */
  856. *(unsigned char *)side = 'L';
  857. clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  858. ;
  859. /* Generate unitary matrix in VL */
  860. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  861. /* (RWorkspace: none) */
  862. i__1 = *lwork - iwrk + 1;
  863. cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
  864. &i__1, &ierr);
  865. /* Perform QR iteration, accumulating Schur vectors in VL */
  866. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  867. /* (RWorkspace: none) */
  868. iwrk = itau;
  869. i__1 = *lwork - iwrk + 1;
  870. chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[
  871. vl_offset], ldvl, &work[iwrk], &i__1, info);
  872. if (wantvr) {
  873. /* Want left and right eigenvectors */
  874. /* Copy Schur vectors to VR */
  875. *(unsigned char *)side = 'B';
  876. clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  877. }
  878. } else if (wantvr) {
  879. /* Want right eigenvectors */
  880. /* Copy Householder vectors to VR */
  881. *(unsigned char *)side = 'R';
  882. clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  883. ;
  884. /* Generate unitary matrix in VR */
  885. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  886. /* (RWorkspace: none) */
  887. i__1 = *lwork - iwrk + 1;
  888. cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
  889. &i__1, &ierr);
  890. /* Perform QR iteration, accumulating Schur vectors in VR */
  891. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  892. /* (RWorkspace: none) */
  893. iwrk = itau;
  894. i__1 = *lwork - iwrk + 1;
  895. chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
  896. vr_offset], ldvr, &work[iwrk], &i__1, info);
  897. } else {
  898. /* Compute eigenvalues only */
  899. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  900. /* (RWorkspace: none) */
  901. iwrk = itau;
  902. i__1 = *lwork - iwrk + 1;
  903. chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
  904. vr_offset], ldvr, &work[iwrk], &i__1, info);
  905. }
  906. /* If INFO .NE. 0 from CHSEQR, then quit */
  907. if (*info != 0) {
  908. goto L50;
  909. }
  910. if (wantvl || wantvr) {
  911. /* Compute left and/or right eigenvectors */
  912. /* (CWorkspace: need 2*N, prefer N + 2*N*NB) */
  913. /* (RWorkspace: need 2*N) */
  914. irwork = ibal + *n;
  915. i__1 = *lwork - iwrk + 1;
  916. ctrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  917. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  918. rwork[irwork], n, &ierr);
  919. }
  920. if (wantvl) {
  921. /* Undo balancing of left eigenvectors */
  922. /* (CWorkspace: none) */
  923. /* (RWorkspace: need N) */
  924. cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset],
  925. ldvl, &ierr);
  926. /* Normalize left eigenvectors and make largest component real */
  927. i__1 = *n;
  928. for (i__ = 1; i__ <= i__1; ++i__) {
  929. scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  930. csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  931. i__2 = *n;
  932. for (k = 1; k <= i__2; ++k) {
  933. i__3 = k + i__ * vl_dim1;
  934. /* Computing 2nd power */
  935. r__1 = vl[i__3].r;
  936. /* Computing 2nd power */
  937. r__2 = r_imag(&vl[k + i__ * vl_dim1]);
  938. rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
  939. /* L10: */
  940. }
  941. k = isamax_(n, &rwork[irwork], &c__1);
  942. r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
  943. r__1 = sqrt(rwork[irwork + k - 1]);
  944. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  945. tmp.r = q__1.r, tmp.i = q__1.i;
  946. cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
  947. i__2 = k + i__ * vl_dim1;
  948. i__3 = k + i__ * vl_dim1;
  949. r__1 = vl[i__3].r;
  950. q__1.r = r__1, q__1.i = 0.f;
  951. vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
  952. /* L20: */
  953. }
  954. }
  955. if (wantvr) {
  956. /* Undo balancing of right eigenvectors */
  957. /* (CWorkspace: none) */
  958. /* (RWorkspace: need N) */
  959. cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset],
  960. ldvr, &ierr);
  961. /* Normalize right eigenvectors and make largest component real */
  962. i__1 = *n;
  963. for (i__ = 1; i__ <= i__1; ++i__) {
  964. scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  965. csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  966. i__2 = *n;
  967. for (k = 1; k <= i__2; ++k) {
  968. i__3 = k + i__ * vr_dim1;
  969. /* Computing 2nd power */
  970. r__1 = vr[i__3].r;
  971. /* Computing 2nd power */
  972. r__2 = r_imag(&vr[k + i__ * vr_dim1]);
  973. rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
  974. /* L30: */
  975. }
  976. k = isamax_(n, &rwork[irwork], &c__1);
  977. r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
  978. r__1 = sqrt(rwork[irwork + k - 1]);
  979. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  980. tmp.r = q__1.r, tmp.i = q__1.i;
  981. cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
  982. i__2 = k + i__ * vr_dim1;
  983. i__3 = k + i__ * vr_dim1;
  984. r__1 = vr[i__3].r;
  985. q__1.r = r__1, q__1.i = 0.f;
  986. vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
  987. /* L40: */
  988. }
  989. }
  990. /* Undo scaling if necessary */
  991. L50:
  992. if (scalea) {
  993. i__1 = *n - *info;
  994. /* Computing MAX */
  995. i__3 = *n - *info;
  996. i__2 = f2cmax(i__3,1);
  997. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
  998. , &i__2, &ierr);
  999. if (*info > 0) {
  1000. i__1 = ilo - 1;
  1001. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
  1002. &ierr);
  1003. }
  1004. }
  1005. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1006. return 0;
  1007. /* End of CGEEV */
  1008. } /* cgeev_ */