You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetrs_rook.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* > \brief \b ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices usi
  489. ng factorization obtained with one of the bounded diagonal pivoting methods (f2cmax 2 interchanges) */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZHETRS_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDA, LDB, N, NRHS */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX A( LDA, * ), B( LDB, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZHETRS_ROOK solves a system of linear equations A*X = B with a complex */
  518. /* > Hermitian matrix A using the factorization A = U*D*U**H or */
  519. /* > A = L*D*L**H computed by ZHETRF_ROOK. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > Specifies whether the details of the factorization are stored */
  527. /* > as an upper or lower triangular matrix. */
  528. /* > = 'U': Upper triangular, form is A = U*D*U**H; */
  529. /* > = 'L': Lower triangular, form is A = L*D*L**H. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix A. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] NRHS */
  539. /* > \verbatim */
  540. /* > NRHS is INTEGER */
  541. /* > The number of right hand sides, i.e., the number of columns */
  542. /* > of the matrix B. NRHS >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] A */
  546. /* > \verbatim */
  547. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  548. /* > The block diagonal matrix D and the multipliers used to */
  549. /* > obtain the factor U or L as computed by ZHETRF_ROOK. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] LDA */
  553. /* > \verbatim */
  554. /* > LDA is INTEGER */
  555. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] IPIV */
  559. /* > \verbatim */
  560. /* > IPIV is INTEGER array, dimension (N) */
  561. /* > Details of the interchanges and the block structure of D */
  562. /* > as determined by ZHETRF_ROOK. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] B */
  566. /* > \verbatim */
  567. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  568. /* > On entry, the right hand side matrix B. */
  569. /* > On exit, the solution matrix X. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDB */
  573. /* > \verbatim */
  574. /* > LDB is INTEGER */
  575. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[out] INFO */
  579. /* > \verbatim */
  580. /* > INFO is INTEGER */
  581. /* > = 0: successful exit */
  582. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  583. /* > \endverbatim */
  584. /* Authors: */
  585. /* ======== */
  586. /* > \author Univ. of Tennessee */
  587. /* > \author Univ. of California Berkeley */
  588. /* > \author Univ. of Colorado Denver */
  589. /* > \author NAG Ltd. */
  590. /* > \date November 2013 */
  591. /* > \ingroup complex16HEcomputational */
  592. /* > \par Contributors: */
  593. /* ================== */
  594. /* > */
  595. /* > \verbatim */
  596. /* > */
  597. /* > November 2013, Igor Kozachenko, */
  598. /* > Computer Science Division, */
  599. /* > University of California, Berkeley */
  600. /* > */
  601. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  602. /* > School of Mathematics, */
  603. /* > University of Manchester */
  604. /* > */
  605. /* > \endverbatim */
  606. /* ===================================================================== */
  607. /* Subroutine */ int zhetrs_rook_(char *uplo, integer *n, integer *nrhs,
  608. doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *b,
  609. integer *ldb, integer *info)
  610. {
  611. /* System generated locals */
  612. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
  613. doublecomplex z__1, z__2, z__3;
  614. /* Local variables */
  615. doublecomplex akm1k;
  616. integer j, k;
  617. doublereal s;
  618. extern logical lsame_(char *, char *);
  619. doublecomplex denom;
  620. extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
  621. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  622. integer *, doublecomplex *, doublecomplex *, integer *);
  623. logical upper;
  624. extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *,
  625. doublecomplex *, integer *, doublecomplex *, integer *,
  626. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  627. integer *, doublecomplex *, integer *);
  628. doublecomplex ak, bk;
  629. integer kp;
  630. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  631. integer *, doublereal *, doublecomplex *, integer *), zlacgv_(
  632. integer *, doublecomplex *, integer *);
  633. doublecomplex akm1, bkm1;
  634. /* -- LAPACK computational routine (version 3.5.0) -- */
  635. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  636. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  637. /* November 2013 */
  638. /* ===================================================================== */
  639. /* Parameter adjustments */
  640. a_dim1 = *lda;
  641. a_offset = 1 + a_dim1 * 1;
  642. a -= a_offset;
  643. --ipiv;
  644. b_dim1 = *ldb;
  645. b_offset = 1 + b_dim1 * 1;
  646. b -= b_offset;
  647. /* Function Body */
  648. *info = 0;
  649. upper = lsame_(uplo, "U");
  650. if (! upper && ! lsame_(uplo, "L")) {
  651. *info = -1;
  652. } else if (*n < 0) {
  653. *info = -2;
  654. } else if (*nrhs < 0) {
  655. *info = -3;
  656. } else if (*lda < f2cmax(1,*n)) {
  657. *info = -5;
  658. } else if (*ldb < f2cmax(1,*n)) {
  659. *info = -8;
  660. }
  661. if (*info != 0) {
  662. i__1 = -(*info);
  663. xerbla_("ZHETRS_ROOK", &i__1, (ftnlen)11);
  664. return 0;
  665. }
  666. /* Quick return if possible */
  667. if (*n == 0 || *nrhs == 0) {
  668. return 0;
  669. }
  670. if (upper) {
  671. /* Solve A*X = B, where A = U*D*U**H. */
  672. /* First solve U*D*X = B, overwriting B with X. */
  673. /* K is the main loop index, decreasing from N to 1 in steps of */
  674. /* 1 or 2, depending on the size of the diagonal blocks. */
  675. k = *n;
  676. L10:
  677. /* If K < 1, exit from loop. */
  678. if (k < 1) {
  679. goto L30;
  680. }
  681. if (ipiv[k] > 0) {
  682. /* 1 x 1 diagonal block */
  683. /* Interchange rows K and IPIV(K). */
  684. kp = ipiv[k];
  685. if (kp != k) {
  686. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  687. }
  688. /* Multiply by inv(U(K)), where U(K) is the transformation */
  689. /* stored in column K of A. */
  690. i__1 = k - 1;
  691. z__1.r = -1., z__1.i = 0.;
  692. zgeru_(&i__1, nrhs, &z__1, &a[k * a_dim1 + 1], &c__1, &b[k +
  693. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  694. /* Multiply by the inverse of the diagonal block. */
  695. i__1 = k + k * a_dim1;
  696. s = 1. / a[i__1].r;
  697. zdscal_(nrhs, &s, &b[k + b_dim1], ldb);
  698. --k;
  699. } else {
  700. /* 2 x 2 diagonal block */
  701. /* Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1) */
  702. kp = -ipiv[k];
  703. if (kp != k) {
  704. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  705. }
  706. kp = -ipiv[k - 1];
  707. if (kp != k - 1) {
  708. zswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  709. }
  710. /* Multiply by inv(U(K)), where U(K) is the transformation */
  711. /* stored in columns K-1 and K of A. */
  712. i__1 = k - 2;
  713. z__1.r = -1., z__1.i = 0.;
  714. zgeru_(&i__1, nrhs, &z__1, &a[k * a_dim1 + 1], &c__1, &b[k +
  715. b_dim1], ldb, &b[b_dim1 + 1], ldb);
  716. i__1 = k - 2;
  717. z__1.r = -1., z__1.i = 0.;
  718. zgeru_(&i__1, nrhs, &z__1, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k
  719. - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
  720. /* Multiply by the inverse of the diagonal block. */
  721. i__1 = k - 1 + k * a_dim1;
  722. akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
  723. z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &akm1k);
  724. akm1.r = z__1.r, akm1.i = z__1.i;
  725. d_cnjg(&z__2, &akm1k);
  726. z_div(&z__1, &a[k + k * a_dim1], &z__2);
  727. ak.r = z__1.r, ak.i = z__1.i;
  728. z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
  729. akm1.i * ak.r;
  730. z__1.r = z__2.r - 1., z__1.i = z__2.i + 0.;
  731. denom.r = z__1.r, denom.i = z__1.i;
  732. i__1 = *nrhs;
  733. for (j = 1; j <= i__1; ++j) {
  734. z_div(&z__1, &b[k - 1 + j * b_dim1], &akm1k);
  735. bkm1.r = z__1.r, bkm1.i = z__1.i;
  736. d_cnjg(&z__2, &akm1k);
  737. z_div(&z__1, &b[k + j * b_dim1], &z__2);
  738. bk.r = z__1.r, bk.i = z__1.i;
  739. i__2 = k - 1 + j * b_dim1;
  740. z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
  741. bkm1.i + ak.i * bkm1.r;
  742. z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
  743. z_div(&z__1, &z__2, &denom);
  744. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  745. i__2 = k + j * b_dim1;
  746. z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
  747. bk.i + akm1.i * bk.r;
  748. z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
  749. z_div(&z__1, &z__2, &denom);
  750. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  751. /* L20: */
  752. }
  753. k += -2;
  754. }
  755. goto L10;
  756. L30:
  757. /* Next solve U**H *X = B, overwriting B with X. */
  758. /* K is the main loop index, increasing from 1 to N in steps of */
  759. /* 1 or 2, depending on the size of the diagonal blocks. */
  760. k = 1;
  761. L40:
  762. /* If K > N, exit from loop. */
  763. if (k > *n) {
  764. goto L50;
  765. }
  766. if (ipiv[k] > 0) {
  767. /* 1 x 1 diagonal block */
  768. /* Multiply by inv(U**H(K)), where U(K) is the transformation */
  769. /* stored in column K of A. */
  770. if (k > 1) {
  771. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  772. i__1 = k - 1;
  773. z__1.r = -1., z__1.i = 0.;
  774. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
  775. , ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
  776. b_dim1], ldb);
  777. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  778. }
  779. /* Interchange rows K and IPIV(K). */
  780. kp = ipiv[k];
  781. if (kp != k) {
  782. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  783. }
  784. ++k;
  785. } else {
  786. /* 2 x 2 diagonal block */
  787. /* Multiply by inv(U**H(K+1)), where U(K+1) is the transformation */
  788. /* stored in columns K and K+1 of A. */
  789. if (k > 1) {
  790. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  791. i__1 = k - 1;
  792. z__1.r = -1., z__1.i = 0.;
  793. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
  794. , ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
  795. b_dim1], ldb);
  796. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  797. zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
  798. i__1 = k - 1;
  799. z__1.r = -1., z__1.i = 0.;
  800. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
  801. , ldb, &a[(k + 1) * a_dim1 + 1], &c__1, &c_b1, &b[k +
  802. 1 + b_dim1], ldb);
  803. zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
  804. }
  805. /* Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1) */
  806. kp = -ipiv[k];
  807. if (kp != k) {
  808. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  809. }
  810. kp = -ipiv[k + 1];
  811. if (kp != k + 1) {
  812. zswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  813. }
  814. k += 2;
  815. }
  816. goto L40;
  817. L50:
  818. ;
  819. } else {
  820. /* Solve A*X = B, where A = L*D*L**H. */
  821. /* First solve L*D*X = B, overwriting B with X. */
  822. /* K is the main loop index, increasing from 1 to N in steps of */
  823. /* 1 or 2, depending on the size of the diagonal blocks. */
  824. k = 1;
  825. L60:
  826. /* If K > N, exit from loop. */
  827. if (k > *n) {
  828. goto L80;
  829. }
  830. if (ipiv[k] > 0) {
  831. /* 1 x 1 diagonal block */
  832. /* Interchange rows K and IPIV(K). */
  833. kp = ipiv[k];
  834. if (kp != k) {
  835. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  836. }
  837. /* Multiply by inv(L(K)), where L(K) is the transformation */
  838. /* stored in column K of A. */
  839. if (k < *n) {
  840. i__1 = *n - k;
  841. z__1.r = -1., z__1.i = 0.;
  842. zgeru_(&i__1, nrhs, &z__1, &a[k + 1 + k * a_dim1], &c__1, &b[
  843. k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
  844. }
  845. /* Multiply by the inverse of the diagonal block. */
  846. i__1 = k + k * a_dim1;
  847. s = 1. / a[i__1].r;
  848. zdscal_(nrhs, &s, &b[k + b_dim1], ldb);
  849. ++k;
  850. } else {
  851. /* 2 x 2 diagonal block */
  852. /* Interchange rows K and -IPIV(K), then K+1 and -IPIV(K+1) */
  853. kp = -ipiv[k];
  854. if (kp != k) {
  855. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  856. }
  857. kp = -ipiv[k + 1];
  858. if (kp != k + 1) {
  859. zswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  860. }
  861. /* Multiply by inv(L(K)), where L(K) is the transformation */
  862. /* stored in columns K and K+1 of A. */
  863. if (k < *n - 1) {
  864. i__1 = *n - k - 1;
  865. z__1.r = -1., z__1.i = 0.;
  866. zgeru_(&i__1, nrhs, &z__1, &a[k + 2 + k * a_dim1], &c__1, &b[
  867. k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
  868. i__1 = *n - k - 1;
  869. z__1.r = -1., z__1.i = 0.;
  870. zgeru_(&i__1, nrhs, &z__1, &a[k + 2 + (k + 1) * a_dim1], &
  871. c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1],
  872. ldb);
  873. }
  874. /* Multiply by the inverse of the diagonal block. */
  875. i__1 = k + 1 + k * a_dim1;
  876. akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
  877. d_cnjg(&z__2, &akm1k);
  878. z_div(&z__1, &a[k + k * a_dim1], &z__2);
  879. akm1.r = z__1.r, akm1.i = z__1.i;
  880. z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &akm1k);
  881. ak.r = z__1.r, ak.i = z__1.i;
  882. z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
  883. akm1.i * ak.r;
  884. z__1.r = z__2.r - 1., z__1.i = z__2.i + 0.;
  885. denom.r = z__1.r, denom.i = z__1.i;
  886. i__1 = *nrhs;
  887. for (j = 1; j <= i__1; ++j) {
  888. d_cnjg(&z__2, &akm1k);
  889. z_div(&z__1, &b[k + j * b_dim1], &z__2);
  890. bkm1.r = z__1.r, bkm1.i = z__1.i;
  891. z_div(&z__1, &b[k + 1 + j * b_dim1], &akm1k);
  892. bk.r = z__1.r, bk.i = z__1.i;
  893. i__2 = k + j * b_dim1;
  894. z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
  895. bkm1.i + ak.i * bkm1.r;
  896. z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
  897. z_div(&z__1, &z__2, &denom);
  898. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  899. i__2 = k + 1 + j * b_dim1;
  900. z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
  901. bk.i + akm1.i * bk.r;
  902. z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
  903. z_div(&z__1, &z__2, &denom);
  904. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  905. /* L70: */
  906. }
  907. k += 2;
  908. }
  909. goto L60;
  910. L80:
  911. /* Next solve L**H *X = B, overwriting B with X. */
  912. /* K is the main loop index, decreasing from N to 1 in steps of */
  913. /* 1 or 2, depending on the size of the diagonal blocks. */
  914. k = *n;
  915. L90:
  916. /* If K < 1, exit from loop. */
  917. if (k < 1) {
  918. goto L100;
  919. }
  920. if (ipiv[k] > 0) {
  921. /* 1 x 1 diagonal block */
  922. /* Multiply by inv(L**H(K)), where L(K) is the transformation */
  923. /* stored in column K of A. */
  924. if (k < *n) {
  925. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  926. i__1 = *n - k;
  927. z__1.r = -1., z__1.i = 0.;
  928. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
  929. b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
  930. b[k + b_dim1], ldb);
  931. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  932. }
  933. /* Interchange rows K and IPIV(K). */
  934. kp = ipiv[k];
  935. if (kp != k) {
  936. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  937. }
  938. --k;
  939. } else {
  940. /* 2 x 2 diagonal block */
  941. /* Multiply by inv(L**H(K-1)), where L(K-1) is the transformation */
  942. /* stored in columns K-1 and K of A. */
  943. if (k < *n) {
  944. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  945. i__1 = *n - k;
  946. z__1.r = -1., z__1.i = 0.;
  947. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
  948. b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
  949. b[k + b_dim1], ldb);
  950. zlacgv_(nrhs, &b[k + b_dim1], ldb);
  951. zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
  952. i__1 = *n - k;
  953. z__1.r = -1., z__1.i = 0.;
  954. zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
  955. b_dim1], ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &
  956. c_b1, &b[k - 1 + b_dim1], ldb);
  957. zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
  958. }
  959. /* Interchange rows K and -IPIV(K), then K-1 and -IPIV(K-1) */
  960. kp = -ipiv[k];
  961. if (kp != k) {
  962. zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
  963. }
  964. kp = -ipiv[k - 1];
  965. if (kp != k - 1) {
  966. zswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
  967. }
  968. k += -2;
  969. }
  970. goto L90;
  971. L100:
  972. ;
  973. }
  974. return 0;
  975. /* End of ZHETRS_ROOK */
  976. } /* zhetrs_rook__ */