You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stgsna.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b19 = 1.f;
  488. static real c_b21 = 0.f;
  489. static integer c__2 = 2;
  490. static logical c_false = FALSE_;
  491. static integer c__3 = 3;
  492. /* > \brief \b STGSNA */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download STGSNA + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsna.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsna.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsna.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE STGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, */
  511. /* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, */
  512. /* IWORK, INFO ) */
  513. /* CHARACTER HOWMNY, JOB */
  514. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N */
  515. /* LOGICAL SELECT( * ) */
  516. /* INTEGER IWORK( * ) */
  517. /* REAL A( LDA, * ), B( LDB, * ), DIF( * ), S( * ), */
  518. /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > STGSNA estimates reciprocal condition numbers for specified */
  525. /* > eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
  526. /* > generalized real Schur canonical form (or of any matrix pair */
  527. /* > (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where */
  528. /* > Z**T denotes the transpose of Z. */
  529. /* > */
  530. /* > (A, B) must be in generalized real Schur form (as returned by SGGES), */
  531. /* > i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
  532. /* > blocks. B is upper triangular. */
  533. /* > */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] JOB */
  538. /* > \verbatim */
  539. /* > JOB is CHARACTER*1 */
  540. /* > Specifies whether condition numbers are required for */
  541. /* > eigenvalues (S) or eigenvectors (DIF): */
  542. /* > = 'E': for eigenvalues only (S); */
  543. /* > = 'V': for eigenvectors only (DIF); */
  544. /* > = 'B': for both eigenvalues and eigenvectors (S and DIF). */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] HOWMNY */
  548. /* > \verbatim */
  549. /* > HOWMNY is CHARACTER*1 */
  550. /* > = 'A': compute condition numbers for all eigenpairs; */
  551. /* > = 'S': compute condition numbers for selected eigenpairs */
  552. /* > specified by the array SELECT. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] SELECT */
  556. /* > \verbatim */
  557. /* > SELECT is LOGICAL array, dimension (N) */
  558. /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
  559. /* > condition numbers are required. To select condition numbers */
  560. /* > for the eigenpair corresponding to a real eigenvalue w(j), */
  561. /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
  562. /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
  563. /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
  564. /* > set to .TRUE.. */
  565. /* > If HOWMNY = 'A', SELECT is not referenced. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the square matrix pair (A, B). N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] A */
  575. /* > \verbatim */
  576. /* > A is REAL array, dimension (LDA,N) */
  577. /* > The upper quasi-triangular matrix A in the pair (A,B). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] B */
  587. /* > \verbatim */
  588. /* > B is REAL array, dimension (LDB,N) */
  589. /* > The upper triangular matrix B in the pair (A,B). */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDB */
  593. /* > \verbatim */
  594. /* > LDB is INTEGER */
  595. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] VL */
  599. /* > \verbatim */
  600. /* > VL is REAL array, dimension (LDVL,M) */
  601. /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of */
  602. /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
  603. /* > and SELECT. The eigenvectors must be stored in consecutive */
  604. /* > columns of VL, as returned by STGEVC. */
  605. /* > If JOB = 'V', VL is not referenced. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDVL */
  609. /* > \verbatim */
  610. /* > LDVL is INTEGER */
  611. /* > The leading dimension of the array VL. LDVL >= 1. */
  612. /* > If JOB = 'E' or 'B', LDVL >= N. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] VR */
  616. /* > \verbatim */
  617. /* > VR is REAL array, dimension (LDVR,M) */
  618. /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of */
  619. /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
  620. /* > and SELECT. The eigenvectors must be stored in consecutive */
  621. /* > columns ov VR, as returned by STGEVC. */
  622. /* > If JOB = 'V', VR is not referenced. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] LDVR */
  626. /* > \verbatim */
  627. /* > LDVR is INTEGER */
  628. /* > The leading dimension of the array VR. LDVR >= 1. */
  629. /* > If JOB = 'E' or 'B', LDVR >= N. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] S */
  633. /* > \verbatim */
  634. /* > S is REAL array, dimension (MM) */
  635. /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
  636. /* > selected eigenvalues, stored in consecutive elements of the */
  637. /* > array. For a complex conjugate pair of eigenvalues two */
  638. /* > consecutive elements of S are set to the same value. Thus */
  639. /* > S(j), DIF(j), and the j-th columns of VL and VR all */
  640. /* > correspond to the same eigenpair (but not in general the */
  641. /* > j-th eigenpair, unless all eigenpairs are selected). */
  642. /* > If JOB = 'V', S is not referenced. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[out] DIF */
  646. /* > \verbatim */
  647. /* > DIF is REAL array, dimension (MM) */
  648. /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
  649. /* > numbers of the selected eigenvectors, stored in consecutive */
  650. /* > elements of the array. For a complex eigenvector two */
  651. /* > consecutive elements of DIF are set to the same value. If */
  652. /* > the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
  653. /* > is set to 0; this can only occur when the true value would be */
  654. /* > very small anyway. */
  655. /* > If JOB = 'E', DIF is not referenced. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[in] MM */
  659. /* > \verbatim */
  660. /* > MM is INTEGER */
  661. /* > The number of elements in the arrays S and DIF. MM >= M. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[out] M */
  665. /* > \verbatim */
  666. /* > M is INTEGER */
  667. /* > The number of elements of the arrays S and DIF used to store */
  668. /* > the specified condition numbers; for each selected real */
  669. /* > eigenvalue one element is used, and for each selected complex */
  670. /* > conjugate pair of eigenvalues, two elements are used. */
  671. /* > If HOWMNY = 'A', M is set to N. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] WORK */
  675. /* > \verbatim */
  676. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  677. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  678. /* > \endverbatim */
  679. /* > */
  680. /* > \param[in] LWORK */
  681. /* > \verbatim */
  682. /* > LWORK is INTEGER */
  683. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
  684. /* > If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
  685. /* > */
  686. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  687. /* > only calculates the optimal size of the WORK array, returns */
  688. /* > this value as the first entry of the WORK array, and no error */
  689. /* > message related to LWORK is issued by XERBLA. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[out] IWORK */
  693. /* > \verbatim */
  694. /* > IWORK is INTEGER array, dimension (N + 6) */
  695. /* > If JOB = 'E', IWORK is not referenced. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[out] INFO */
  699. /* > \verbatim */
  700. /* > INFO is INTEGER */
  701. /* > =0: Successful exit */
  702. /* > <0: If INFO = -i, the i-th argument had an illegal value */
  703. /* > \endverbatim */
  704. /* Authors: */
  705. /* ======== */
  706. /* > \author Univ. of Tennessee */
  707. /* > \author Univ. of California Berkeley */
  708. /* > \author Univ. of Colorado Denver */
  709. /* > \author NAG Ltd. */
  710. /* > \date December 2016 */
  711. /* > \ingroup realOTHERcomputational */
  712. /* > \par Further Details: */
  713. /* ===================== */
  714. /* > */
  715. /* > \verbatim */
  716. /* > */
  717. /* > The reciprocal of the condition number of a generalized eigenvalue */
  718. /* > w = (a, b) is defined as */
  719. /* > */
  720. /* > S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v)) */
  721. /* > */
  722. /* > where u and v are the left and right eigenvectors of (A, B) */
  723. /* > corresponding to w; |z| denotes the absolute value of the complex */
  724. /* > number, and norm(u) denotes the 2-norm of the vector u. */
  725. /* > The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv) */
  726. /* > of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
  727. /* > singular and S(I) = -1 is returned. */
  728. /* > */
  729. /* > An approximate error bound on the chordal distance between the i-th */
  730. /* > computed generalized eigenvalue w and the corresponding exact */
  731. /* > eigenvalue lambda is */
  732. /* > */
  733. /* > chord(w, lambda) <= EPS * norm(A, B) / S(I) */
  734. /* > */
  735. /* > where EPS is the machine precision. */
  736. /* > */
  737. /* > The reciprocal of the condition number DIF(i) of right eigenvector u */
  738. /* > and left eigenvector v corresponding to the generalized eigenvalue w */
  739. /* > is defined as follows: */
  740. /* > */
  741. /* > a) If the i-th eigenvalue w = (a,b) is real */
  742. /* > */
  743. /* > Suppose U and V are orthogonal transformations such that */
  744. /* > */
  745. /* > U**T*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */
  746. /* > ( 0 S22 ),( 0 T22 ) n-1 */
  747. /* > 1 n-1 1 n-1 */
  748. /* > */
  749. /* > Then the reciprocal condition number DIF(i) is */
  750. /* > */
  751. /* > Difl((a, b), (S22, T22)) = sigma-f2cmin( Zl ), */
  752. /* > */
  753. /* > where sigma-f2cmin(Zl) denotes the smallest singular value of the */
  754. /* > 2(n-1)-by-2(n-1) matrix */
  755. /* > */
  756. /* > Zl = [ kron(a, In-1) -kron(1, S22) ] */
  757. /* > [ kron(b, In-1) -kron(1, T22) ] . */
  758. /* > */
  759. /* > Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
  760. /* > Kronecker product between the matrices X and Y. */
  761. /* > */
  762. /* > Note that if the default method for computing DIF(i) is wanted */
  763. /* > (see SLATDF), then the parameter DIFDRI (see below) should be */
  764. /* > changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). */
  765. /* > See STGSYL for more details. */
  766. /* > */
  767. /* > b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
  768. /* > */
  769. /* > Suppose U and V are orthogonal transformations such that */
  770. /* > */
  771. /* > U**T*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */
  772. /* > ( 0 S22 ),( 0 T22) n-2 */
  773. /* > 2 n-2 2 n-2 */
  774. /* > */
  775. /* > and (S11, T11) corresponds to the complex conjugate eigenvalue */
  776. /* > pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
  777. /* > that */
  778. /* > */
  779. /* > U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 ) */
  780. /* > ( 0 s22 ) ( 0 t22 ) */
  781. /* > */
  782. /* > where the generalized eigenvalues w = s11/t11 and */
  783. /* > conjg(w) = s22/t22. */
  784. /* > */
  785. /* > Then the reciprocal condition number DIF(i) is bounded by */
  786. /* > */
  787. /* > f2cmin( d1, f2cmax( 1, |real(s11)/real(s22)| )*d2 ) */
  788. /* > */
  789. /* > where, d1 = Difl((s11, t11), (s22, t22)) = sigma-f2cmin(Z1), where */
  790. /* > Z1 is the complex 2-by-2 matrix */
  791. /* > */
  792. /* > Z1 = [ s11 -s22 ] */
  793. /* > [ t11 -t22 ], */
  794. /* > */
  795. /* > This is done by computing (using real arithmetic) the */
  796. /* > roots of the characteristical polynomial det(Z1**T * Z1 - lambda I), */
  797. /* > where Z1**T denotes the transpose of Z1 and det(X) denotes */
  798. /* > the determinant of X. */
  799. /* > */
  800. /* > and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
  801. /* > upper bound on sigma-f2cmin(Z2), where Z2 is (2n-2)-by-(2n-2) */
  802. /* > */
  803. /* > Z2 = [ kron(S11**T, In-2) -kron(I2, S22) ] */
  804. /* > [ kron(T11**T, In-2) -kron(I2, T22) ] */
  805. /* > */
  806. /* > Note that if the default method for computing DIF is wanted (see */
  807. /* > SLATDF), then the parameter DIFDRI (see below) should be changed */
  808. /* > from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL */
  809. /* > for more details. */
  810. /* > */
  811. /* > For each eigenvalue/vector specified by SELECT, DIF stores a */
  812. /* > Frobenius norm-based estimate of Difl. */
  813. /* > */
  814. /* > An approximate error bound for the i-th computed eigenvector VL(i) or */
  815. /* > VR(i) is given by */
  816. /* > */
  817. /* > EPS * norm(A, B) / DIF(i). */
  818. /* > */
  819. /* > See ref. [2-3] for more details and further references. */
  820. /* > \endverbatim */
  821. /* > \par Contributors: */
  822. /* ================== */
  823. /* > */
  824. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  825. /* > Umea University, S-901 87 Umea, Sweden. */
  826. /* > \par References: */
  827. /* ================ */
  828. /* > */
  829. /* > \verbatim */
  830. /* > */
  831. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  832. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  833. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  834. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  835. /* > */
  836. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  837. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  838. /* > Estimation: Theory, Algorithms and Software, */
  839. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  840. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  841. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  842. /* > */
  843. /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
  844. /* > for Solving the Generalized Sylvester Equation and Estimating the */
  845. /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
  846. /* > Department of Computing Science, Umea University, S-901 87 Umea, */
  847. /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
  848. /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
  849. /* > No 1, 1996. */
  850. /* > \endverbatim */
  851. /* > */
  852. /* ===================================================================== */
  853. /* Subroutine */ int stgsna_(char *job, char *howmny, logical *select,
  854. integer *n, real *a, integer *lda, real *b, integer *ldb, real *vl,
  855. integer *ldvl, real *vr, integer *ldvr, real *s, real *dif, integer *
  856. mm, integer *m, real *work, integer *lwork, integer *iwork, integer *
  857. info)
  858. {
  859. /* System generated locals */
  860. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  861. vr_offset, i__1, i__2;
  862. real r__1, r__2;
  863. /* Local variables */
  864. real beta, cond;
  865. logical pair;
  866. integer ierr;
  867. real uhav, uhbv;
  868. integer ifst;
  869. real lnrm;
  870. extern real sdot_(integer *, real *, integer *, real *, integer *);
  871. integer ilst;
  872. real rnrm;
  873. extern /* Subroutine */ int slag2_(real *, integer *, real *, integer *,
  874. real *, real *, real *, real *, real *, real *);
  875. extern real snrm2_(integer *, real *, integer *);
  876. real root1, root2;
  877. integer i__, k;
  878. real scale;
  879. extern logical lsame_(char *, char *);
  880. real uhavi, uhbvi;
  881. extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
  882. real *, integer *, real *, integer *, real *, real *, integer *);
  883. real tmpii, c1, c2;
  884. integer lwmin;
  885. logical wants;
  886. real tmpir;
  887. integer n1, n2;
  888. real tmpri, dummy[1], tmprr;
  889. extern real slapy2_(real *, real *);
  890. real dummy1[1];
  891. integer ks;
  892. real alphai;
  893. integer iz;
  894. real alphar;
  895. extern real slamch_(char *);
  896. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  897. logical wantbh, wantdf;
  898. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  899. integer *, real *, integer *), stgexc_(logical *, logical
  900. *, integer *, real *, integer *, real *, integer *, real *,
  901. integer *, real *, integer *, integer *, integer *, real *,
  902. integer *, integer *);
  903. logical somcon;
  904. real alprqt, smlnum;
  905. logical lquery;
  906. extern /* Subroutine */ int stgsyl_(char *, integer *, integer *, integer
  907. *, real *, integer *, real *, integer *, real *, integer *, real *
  908. , integer *, real *, integer *, real *, integer *, real *, real *,
  909. real *, integer *, integer *, integer *);
  910. real eps;
  911. /* -- LAPACK computational routine (version 3.7.0) -- */
  912. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  913. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  914. /* December 2016 */
  915. /* ===================================================================== */
  916. /* Decode and test the input parameters */
  917. /* Parameter adjustments */
  918. --select;
  919. a_dim1 = *lda;
  920. a_offset = 1 + a_dim1 * 1;
  921. a -= a_offset;
  922. b_dim1 = *ldb;
  923. b_offset = 1 + b_dim1 * 1;
  924. b -= b_offset;
  925. vl_dim1 = *ldvl;
  926. vl_offset = 1 + vl_dim1 * 1;
  927. vl -= vl_offset;
  928. vr_dim1 = *ldvr;
  929. vr_offset = 1 + vr_dim1 * 1;
  930. vr -= vr_offset;
  931. --s;
  932. --dif;
  933. --work;
  934. --iwork;
  935. /* Function Body */
  936. wantbh = lsame_(job, "B");
  937. wants = lsame_(job, "E") || wantbh;
  938. wantdf = lsame_(job, "V") || wantbh;
  939. somcon = lsame_(howmny, "S");
  940. *info = 0;
  941. lquery = *lwork == -1;
  942. if (! wants && ! wantdf) {
  943. *info = -1;
  944. } else if (! lsame_(howmny, "A") && ! somcon) {
  945. *info = -2;
  946. } else if (*n < 0) {
  947. *info = -4;
  948. } else if (*lda < f2cmax(1,*n)) {
  949. *info = -6;
  950. } else if (*ldb < f2cmax(1,*n)) {
  951. *info = -8;
  952. } else if (wants && *ldvl < *n) {
  953. *info = -10;
  954. } else if (wants && *ldvr < *n) {
  955. *info = -12;
  956. } else {
  957. /* Set M to the number of eigenpairs for which condition numbers */
  958. /* are required, and test MM. */
  959. if (somcon) {
  960. *m = 0;
  961. pair = FALSE_;
  962. i__1 = *n;
  963. for (k = 1; k <= i__1; ++k) {
  964. if (pair) {
  965. pair = FALSE_;
  966. } else {
  967. if (k < *n) {
  968. if (a[k + 1 + k * a_dim1] == 0.f) {
  969. if (select[k]) {
  970. ++(*m);
  971. }
  972. } else {
  973. pair = TRUE_;
  974. if (select[k] || select[k + 1]) {
  975. *m += 2;
  976. }
  977. }
  978. } else {
  979. if (select[*n]) {
  980. ++(*m);
  981. }
  982. }
  983. }
  984. /* L10: */
  985. }
  986. } else {
  987. *m = *n;
  988. }
  989. if (*n == 0) {
  990. lwmin = 1;
  991. } else if (lsame_(job, "V") || lsame_(job,
  992. "B")) {
  993. lwmin = (*n << 1) * (*n + 2) + 16;
  994. } else {
  995. lwmin = *n;
  996. }
  997. work[1] = (real) lwmin;
  998. if (*mm < *m) {
  999. *info = -15;
  1000. } else if (*lwork < lwmin && ! lquery) {
  1001. *info = -18;
  1002. }
  1003. }
  1004. if (*info != 0) {
  1005. i__1 = -(*info);
  1006. xerbla_("STGSNA", &i__1, (ftnlen)6);
  1007. return 0;
  1008. } else if (lquery) {
  1009. return 0;
  1010. }
  1011. /* Quick return if possible */
  1012. if (*n == 0) {
  1013. return 0;
  1014. }
  1015. /* Get machine constants */
  1016. eps = slamch_("P");
  1017. smlnum = slamch_("S") / eps;
  1018. ks = 0;
  1019. pair = FALSE_;
  1020. i__1 = *n;
  1021. for (k = 1; k <= i__1; ++k) {
  1022. /* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
  1023. if (pair) {
  1024. pair = FALSE_;
  1025. goto L20;
  1026. } else {
  1027. if (k < *n) {
  1028. pair = a[k + 1 + k * a_dim1] != 0.f;
  1029. }
  1030. }
  1031. /* Determine whether condition numbers are required for the k-th */
  1032. /* eigenpair. */
  1033. if (somcon) {
  1034. if (pair) {
  1035. if (! select[k] && ! select[k + 1]) {
  1036. goto L20;
  1037. }
  1038. } else {
  1039. if (! select[k]) {
  1040. goto L20;
  1041. }
  1042. }
  1043. }
  1044. ++ks;
  1045. if (wants) {
  1046. /* Compute the reciprocal condition number of the k-th */
  1047. /* eigenvalue. */
  1048. if (pair) {
  1049. /* Complex eigenvalue pair. */
  1050. r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  1051. r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
  1052. rnrm = slapy2_(&r__1, &r__2);
  1053. r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  1054. r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
  1055. lnrm = slapy2_(&r__1, &r__2);
  1056. sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
  1057. + 1], &c__1, &c_b21, &work[1], &c__1);
  1058. tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1059. c__1);
  1060. tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1061. &c__1);
  1062. sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) *
  1063. vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
  1064. tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1065. &c__1);
  1066. tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1067. c__1);
  1068. uhav = tmprr + tmpii;
  1069. uhavi = tmpir - tmpri;
  1070. sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
  1071. + 1], &c__1, &c_b21, &work[1], &c__1);
  1072. tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1073. c__1);
  1074. tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1075. &c__1);
  1076. sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) *
  1077. vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
  1078. tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1079. &c__1);
  1080. tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1081. c__1);
  1082. uhbv = tmprr + tmpii;
  1083. uhbvi = tmpir - tmpri;
  1084. uhav = slapy2_(&uhav, &uhavi);
  1085. uhbv = slapy2_(&uhbv, &uhbvi);
  1086. cond = slapy2_(&uhav, &uhbv);
  1087. s[ks] = cond / (rnrm * lnrm);
  1088. s[ks + 1] = s[ks];
  1089. } else {
  1090. /* Real eigenvalue. */
  1091. rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  1092. lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  1093. sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
  1094. + 1], &c__1, &c_b21, &work[1], &c__1);
  1095. uhav = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
  1096. ;
  1097. sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
  1098. + 1], &c__1, &c_b21, &work[1], &c__1);
  1099. uhbv = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
  1100. ;
  1101. cond = slapy2_(&uhav, &uhbv);
  1102. if (cond == 0.f) {
  1103. s[ks] = -1.f;
  1104. } else {
  1105. s[ks] = cond / (rnrm * lnrm);
  1106. }
  1107. }
  1108. }
  1109. if (wantdf) {
  1110. if (*n == 1) {
  1111. dif[ks] = slapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
  1112. goto L20;
  1113. }
  1114. /* Estimate the reciprocal condition number of the k-th */
  1115. /* eigenvectors. */
  1116. if (pair) {
  1117. /* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */
  1118. /* Compute the eigenvalue(s) at position K. */
  1119. work[1] = a[k + k * a_dim1];
  1120. work[2] = a[k + 1 + k * a_dim1];
  1121. work[3] = a[k + (k + 1) * a_dim1];
  1122. work[4] = a[k + 1 + (k + 1) * a_dim1];
  1123. work[5] = b[k + k * b_dim1];
  1124. work[6] = b[k + 1 + k * b_dim1];
  1125. work[7] = b[k + (k + 1) * b_dim1];
  1126. work[8] = b[k + 1 + (k + 1) * b_dim1];
  1127. r__1 = smlnum * eps;
  1128. slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta, dummy1,
  1129. &alphar, dummy, &alphai);
  1130. alprqt = 1.f;
  1131. c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.f;
  1132. c2 = beta * 4.f * beta * alphai * alphai;
  1133. root1 = c1 + sqrt(c1 * c1 - c2 * 4.f);
  1134. root2 = c2 / root1;
  1135. root1 /= 2.f;
  1136. /* Computing MIN */
  1137. r__1 = sqrt(root1), r__2 = sqrt(root2);
  1138. cond = f2cmin(r__1,r__2);
  1139. }
  1140. /* Copy the matrix (A, B) to the array WORK and swap the */
  1141. /* diagonal block beginning at A(k,k) to the (1,1) position. */
  1142. slacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
  1143. slacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
  1144. ifst = k;
  1145. ilst = 1;
  1146. i__2 = *lwork - (*n << 1) * *n;
  1147. stgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
  1148. dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
  1149. n << 1) + 1], &i__2, &ierr);
  1150. if (ierr > 0) {
  1151. /* Ill-conditioned problem - swap rejected. */
  1152. dif[ks] = 0.f;
  1153. } else {
  1154. /* Reordering successful, solve generalized Sylvester */
  1155. /* equation for R and L, */
  1156. /* A22 * R - L * A11 = A12 */
  1157. /* B22 * R - L * B11 = B12, */
  1158. /* and compute estimate of Difl((A11,B11), (A22, B22)). */
  1159. n1 = 1;
  1160. if (work[2] != 0.f) {
  1161. n1 = 2;
  1162. }
  1163. n2 = *n - n1;
  1164. if (n2 == 0) {
  1165. dif[ks] = cond;
  1166. } else {
  1167. i__ = *n * *n + 1;
  1168. iz = (*n << 1) * *n + 1;
  1169. i__2 = *lwork - (*n << 1) * *n;
  1170. stgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
  1171. &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
  1172. + i__], n, &work[i__], n, &work[n1 + i__], n, &
  1173. scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1],
  1174. &ierr);
  1175. if (pair) {
  1176. /* Computing MIN */
  1177. r__1 = f2cmax(1.f,alprqt) * dif[ks];
  1178. dif[ks] = f2cmin(r__1,cond);
  1179. }
  1180. }
  1181. }
  1182. if (pair) {
  1183. dif[ks + 1] = dif[ks];
  1184. }
  1185. }
  1186. if (pair) {
  1187. ++ks;
  1188. }
  1189. L20:
  1190. ;
  1191. }
  1192. work[1] = (real) lwmin;
  1193. return 0;
  1194. /* End of STGSNA */
  1195. } /* stgsna_ */