You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsyl.c 52 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static logical c_false = FALSE_;
  488. static integer c__2 = 2;
  489. static doublereal c_b26 = 1.;
  490. static doublereal c_b30 = 0.;
  491. static logical c_true = TRUE_;
  492. /* > \brief \b DTRSYL */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DTRSYL + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsyl.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsyl.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsyl.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  511. /* LDC, SCALE, INFO ) */
  512. /* CHARACTER TRANA, TRANB */
  513. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  514. /* DOUBLE PRECISION SCALE */
  515. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DTRSYL solves the real Sylvester matrix equation: */
  522. /* > */
  523. /* > op(A)*X + X*op(B) = scale*C or */
  524. /* > op(A)*X - X*op(B) = scale*C, */
  525. /* > */
  526. /* > where op(A) = A or A**T, and A and B are both upper quasi- */
  527. /* > triangular. A is M-by-M and B is N-by-N; the right hand side C and */
  528. /* > the solution X are M-by-N; and scale is an output scale factor, set */
  529. /* > <= 1 to avoid overflow in X. */
  530. /* > */
  531. /* > A and B must be in Schur canonical form (as returned by DHSEQR), that */
  532. /* > is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; */
  533. /* > each 2-by-2 diagonal block has its diagonal elements equal and its */
  534. /* > off-diagonal elements of opposite sign. */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] TRANA */
  539. /* > \verbatim */
  540. /* > TRANA is CHARACTER*1 */
  541. /* > Specifies the option op(A): */
  542. /* > = 'N': op(A) = A (No transpose) */
  543. /* > = 'T': op(A) = A**T (Transpose) */
  544. /* > = 'C': op(A) = A**H (Conjugate transpose = Transpose) */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] TRANB */
  548. /* > \verbatim */
  549. /* > TRANB is CHARACTER*1 */
  550. /* > Specifies the option op(B): */
  551. /* > = 'N': op(B) = B (No transpose) */
  552. /* > = 'T': op(B) = B**T (Transpose) */
  553. /* > = 'C': op(B) = B**H (Conjugate transpose = Transpose) */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] ISGN */
  557. /* > \verbatim */
  558. /* > ISGN is INTEGER */
  559. /* > Specifies the sign in the equation: */
  560. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  561. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The order of the matrix A, and the number of rows in the */
  568. /* > matrices X and C. M >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] N */
  572. /* > \verbatim */
  573. /* > N is INTEGER */
  574. /* > The order of the matrix B, and the number of columns in the */
  575. /* > matrices X and C. N >= 0. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] A */
  579. /* > \verbatim */
  580. /* > A is DOUBLE PRECISION array, dimension (LDA,M) */
  581. /* > The upper quasi-triangular matrix A, in Schur canonical form. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDA */
  585. /* > \verbatim */
  586. /* > LDA is INTEGER */
  587. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] B */
  591. /* > \verbatim */
  592. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  593. /* > The upper quasi-triangular matrix B, in Schur canonical form. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDB */
  597. /* > \verbatim */
  598. /* > LDB is INTEGER */
  599. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] C */
  603. /* > \verbatim */
  604. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  605. /* > On entry, the M-by-N right hand side matrix C. */
  606. /* > On exit, C is overwritten by the solution matrix X. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDC */
  610. /* > \verbatim */
  611. /* > LDC is INTEGER */
  612. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] SCALE */
  616. /* > \verbatim */
  617. /* > SCALE is DOUBLE PRECISION */
  618. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] INFO */
  622. /* > \verbatim */
  623. /* > INFO is INTEGER */
  624. /* > = 0: successful exit */
  625. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  626. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  627. /* > values were used to solve the equation (but the matrices */
  628. /* > A and B are unchanged). */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date December 2016 */
  637. /* > \ingroup doubleSYcomputational */
  638. /* ===================================================================== */
  639. /* Subroutine */ int dtrsyl_(char *trana, char *tranb, integer *isgn, integer
  640. *m, integer *n, doublereal *a, integer *lda, doublereal *b, integer *
  641. ldb, doublereal *c__, integer *ldc, doublereal *scale, integer *info)
  642. {
  643. /* System generated locals */
  644. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  645. i__3, i__4;
  646. doublereal d__1, d__2;
  647. /* Local variables */
  648. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  649. integer *);
  650. integer ierr;
  651. doublereal smin, suml, sumr;
  652. integer j, k, l;
  653. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  654. integer *);
  655. doublereal x[4] /* was [2][2] */;
  656. extern logical lsame_(char *, char *);
  657. integer knext, lnext, k1, k2, l1, l2;
  658. doublereal xnorm;
  659. extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *,
  660. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  661. doublereal *, doublereal *, integer *, doublereal *, doublereal *
  662. , doublereal *, integer *, doublereal *, doublereal *, integer *),
  663. dlasy2_(logical *, logical *, integer *, integer *, integer *,
  664. doublereal *, integer *, doublereal *, integer *, doublereal *,
  665. integer *, doublereal *, doublereal *, integer *, doublereal *,
  666. integer *);
  667. doublereal a11, db;
  668. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
  669. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  670. integer *, doublereal *, integer *, doublereal *);
  671. doublereal scaloc;
  672. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  673. doublereal bignum;
  674. logical notrna, notrnb;
  675. doublereal smlnum, da11, vec[4] /* was [2][2] */, dum[1], eps, sgn;
  676. /* -- LAPACK computational routine (version 3.7.0) -- */
  677. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  678. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  679. /* December 2016 */
  680. /* ===================================================================== */
  681. /* Decode and Test input parameters */
  682. /* Parameter adjustments */
  683. a_dim1 = *lda;
  684. a_offset = 1 + a_dim1 * 1;
  685. a -= a_offset;
  686. b_dim1 = *ldb;
  687. b_offset = 1 + b_dim1 * 1;
  688. b -= b_offset;
  689. c_dim1 = *ldc;
  690. c_offset = 1 + c_dim1 * 1;
  691. c__ -= c_offset;
  692. /* Function Body */
  693. notrna = lsame_(trana, "N");
  694. notrnb = lsame_(tranb, "N");
  695. *info = 0;
  696. if (! notrna && ! lsame_(trana, "T") && ! lsame_(
  697. trana, "C")) {
  698. *info = -1;
  699. } else if (! notrnb && ! lsame_(tranb, "T") && !
  700. lsame_(tranb, "C")) {
  701. *info = -2;
  702. } else if (*isgn != 1 && *isgn != -1) {
  703. *info = -3;
  704. } else if (*m < 0) {
  705. *info = -4;
  706. } else if (*n < 0) {
  707. *info = -5;
  708. } else if (*lda < f2cmax(1,*m)) {
  709. *info = -7;
  710. } else if (*ldb < f2cmax(1,*n)) {
  711. *info = -9;
  712. } else if (*ldc < f2cmax(1,*m)) {
  713. *info = -11;
  714. }
  715. if (*info != 0) {
  716. i__1 = -(*info);
  717. xerbla_("DTRSYL", &i__1, (ftnlen)6);
  718. return 0;
  719. }
  720. /* Quick return if possible */
  721. *scale = 1.;
  722. if (*m == 0 || *n == 0) {
  723. return 0;
  724. }
  725. /* Set constants to control overflow */
  726. eps = dlamch_("P");
  727. smlnum = dlamch_("S");
  728. bignum = 1. / smlnum;
  729. dlabad_(&smlnum, &bignum);
  730. smlnum = smlnum * (doublereal) (*m * *n) / eps;
  731. bignum = 1. / smlnum;
  732. /* Computing MAX */
  733. d__1 = smlnum, d__2 = eps * dlange_("M", m, m, &a[a_offset], lda, dum), d__1 = f2cmax(d__1,d__2), d__2 = eps * dlange_("M", n, n,
  734. &b[b_offset], ldb, dum);
  735. smin = f2cmax(d__1,d__2);
  736. sgn = (doublereal) (*isgn);
  737. if (notrna && notrnb) {
  738. /* Solve A*X + ISGN*X*B = scale*C. */
  739. /* The (K,L)th block of X is determined starting from */
  740. /* bottom-left corner column by column by */
  741. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  742. /* Where */
  743. /* M L-1 */
  744. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
  745. /* I=K+1 J=1 */
  746. /* Start column loop (index = L) */
  747. /* L1 (L2) : column index of the first (first) row of X(K,L). */
  748. lnext = 1;
  749. i__1 = *n;
  750. for (l = 1; l <= i__1; ++l) {
  751. if (l < lnext) {
  752. goto L60;
  753. }
  754. if (l == *n) {
  755. l1 = l;
  756. l2 = l;
  757. } else {
  758. if (b[l + 1 + l * b_dim1] != 0.) {
  759. l1 = l;
  760. l2 = l + 1;
  761. lnext = l + 2;
  762. } else {
  763. l1 = l;
  764. l2 = l;
  765. lnext = l + 1;
  766. }
  767. }
  768. /* Start row loop (index = K) */
  769. /* K1 (K2): row index of the first (last) row of X(K,L). */
  770. knext = *m;
  771. for (k = *m; k >= 1; --k) {
  772. if (k > knext) {
  773. goto L50;
  774. }
  775. if (k == 1) {
  776. k1 = k;
  777. k2 = k;
  778. } else {
  779. if (a[k + (k - 1) * a_dim1] != 0.) {
  780. k1 = k - 1;
  781. k2 = k;
  782. knext = k - 2;
  783. } else {
  784. k1 = k;
  785. k2 = k;
  786. knext = k - 1;
  787. }
  788. }
  789. if (l1 == l2 && k1 == k2) {
  790. i__2 = *m - k1;
  791. /* Computing MIN */
  792. i__3 = k1 + 1;
  793. /* Computing MIN */
  794. i__4 = k1 + 1;
  795. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  796. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  797. i__2 = l1 - 1;
  798. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  799. b_dim1 + 1], &c__1);
  800. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  801. scaloc = 1.;
  802. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  803. da11 = abs(a11);
  804. if (da11 <= smin) {
  805. a11 = smin;
  806. da11 = smin;
  807. *info = 1;
  808. }
  809. db = abs(vec[0]);
  810. if (da11 < 1. && db > 1.) {
  811. if (db > bignum * da11) {
  812. scaloc = 1. / db;
  813. }
  814. }
  815. x[0] = vec[0] * scaloc / a11;
  816. if (scaloc != 1.) {
  817. i__2 = *n;
  818. for (j = 1; j <= i__2; ++j) {
  819. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  820. /* L10: */
  821. }
  822. *scale *= scaloc;
  823. }
  824. c__[k1 + l1 * c_dim1] = x[0];
  825. } else if (l1 == l2 && k1 != k2) {
  826. i__2 = *m - k2;
  827. /* Computing MIN */
  828. i__3 = k2 + 1;
  829. /* Computing MIN */
  830. i__4 = k2 + 1;
  831. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  832. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  833. i__2 = l1 - 1;
  834. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  835. b_dim1 + 1], &c__1);
  836. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  837. i__2 = *m - k2;
  838. /* Computing MIN */
  839. i__3 = k2 + 1;
  840. /* Computing MIN */
  841. i__4 = k2 + 1;
  842. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  843. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  844. i__2 = l1 - 1;
  845. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  846. b_dim1 + 1], &c__1);
  847. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  848. d__1 = -sgn * b[l1 + l1 * b_dim1];
  849. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  850. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  851. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  852. if (ierr != 0) {
  853. *info = 1;
  854. }
  855. if (scaloc != 1.) {
  856. i__2 = *n;
  857. for (j = 1; j <= i__2; ++j) {
  858. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  859. /* L20: */
  860. }
  861. *scale *= scaloc;
  862. }
  863. c__[k1 + l1 * c_dim1] = x[0];
  864. c__[k2 + l1 * c_dim1] = x[1];
  865. } else if (l1 != l2 && k1 == k2) {
  866. i__2 = *m - k1;
  867. /* Computing MIN */
  868. i__3 = k1 + 1;
  869. /* Computing MIN */
  870. i__4 = k1 + 1;
  871. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  872. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  873. i__2 = l1 - 1;
  874. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  875. b_dim1 + 1], &c__1);
  876. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  877. sumr));
  878. i__2 = *m - k1;
  879. /* Computing MIN */
  880. i__3 = k1 + 1;
  881. /* Computing MIN */
  882. i__4 = k1 + 1;
  883. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  884. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  885. i__2 = l1 - 1;
  886. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  887. b_dim1 + 1], &c__1);
  888. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  889. sumr));
  890. d__1 = -sgn * a[k1 + k1 * a_dim1];
  891. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  892. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  893. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  894. if (ierr != 0) {
  895. *info = 1;
  896. }
  897. if (scaloc != 1.) {
  898. i__2 = *n;
  899. for (j = 1; j <= i__2; ++j) {
  900. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  901. /* L30: */
  902. }
  903. *scale *= scaloc;
  904. }
  905. c__[k1 + l1 * c_dim1] = x[0];
  906. c__[k1 + l2 * c_dim1] = x[1];
  907. } else if (l1 != l2 && k1 != k2) {
  908. i__2 = *m - k2;
  909. /* Computing MIN */
  910. i__3 = k2 + 1;
  911. /* Computing MIN */
  912. i__4 = k2 + 1;
  913. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  914. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  915. i__2 = l1 - 1;
  916. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
  917. b_dim1 + 1], &c__1);
  918. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  919. i__2 = *m - k2;
  920. /* Computing MIN */
  921. i__3 = k2 + 1;
  922. /* Computing MIN */
  923. i__4 = k2 + 1;
  924. suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
  925. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  926. i__2 = l1 - 1;
  927. sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
  928. b_dim1 + 1], &c__1);
  929. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  930. i__2 = *m - k2;
  931. /* Computing MIN */
  932. i__3 = k2 + 1;
  933. /* Computing MIN */
  934. i__4 = k2 + 1;
  935. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  936. c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
  937. i__2 = l1 - 1;
  938. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
  939. b_dim1 + 1], &c__1);
  940. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  941. i__2 = *m - k2;
  942. /* Computing MIN */
  943. i__3 = k2 + 1;
  944. /* Computing MIN */
  945. i__4 = k2 + 1;
  946. suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
  947. c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
  948. i__2 = l1 - 1;
  949. sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l2 *
  950. b_dim1 + 1], &c__1);
  951. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  952. dlasy2_(&c_false, &c_false, isgn, &c__2, &c__2, &a[k1 +
  953. k1 * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec,
  954. &c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  955. if (ierr != 0) {
  956. *info = 1;
  957. }
  958. if (scaloc != 1.) {
  959. i__2 = *n;
  960. for (j = 1; j <= i__2; ++j) {
  961. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  962. /* L40: */
  963. }
  964. *scale *= scaloc;
  965. }
  966. c__[k1 + l1 * c_dim1] = x[0];
  967. c__[k1 + l2 * c_dim1] = x[2];
  968. c__[k2 + l1 * c_dim1] = x[1];
  969. c__[k2 + l2 * c_dim1] = x[3];
  970. }
  971. L50:
  972. ;
  973. }
  974. L60:
  975. ;
  976. }
  977. } else if (! notrna && notrnb) {
  978. /* Solve A**T *X + ISGN*X*B = scale*C. */
  979. /* The (K,L)th block of X is determined starting from */
  980. /* upper-left corner column by column by */
  981. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  982. /* Where */
  983. /* K-1 T L-1 */
  984. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
  985. /* I=1 J=1 */
  986. /* Start column loop (index = L) */
  987. /* L1 (L2): column index of the first (last) row of X(K,L) */
  988. lnext = 1;
  989. i__1 = *n;
  990. for (l = 1; l <= i__1; ++l) {
  991. if (l < lnext) {
  992. goto L120;
  993. }
  994. if (l == *n) {
  995. l1 = l;
  996. l2 = l;
  997. } else {
  998. if (b[l + 1 + l * b_dim1] != 0.) {
  999. l1 = l;
  1000. l2 = l + 1;
  1001. lnext = l + 2;
  1002. } else {
  1003. l1 = l;
  1004. l2 = l;
  1005. lnext = l + 1;
  1006. }
  1007. }
  1008. /* Start row loop (index = K) */
  1009. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1010. knext = 1;
  1011. i__2 = *m;
  1012. for (k = 1; k <= i__2; ++k) {
  1013. if (k < knext) {
  1014. goto L110;
  1015. }
  1016. if (k == *m) {
  1017. k1 = k;
  1018. k2 = k;
  1019. } else {
  1020. if (a[k + 1 + k * a_dim1] != 0.) {
  1021. k1 = k;
  1022. k2 = k + 1;
  1023. knext = k + 2;
  1024. } else {
  1025. k1 = k;
  1026. k2 = k;
  1027. knext = k + 1;
  1028. }
  1029. }
  1030. if (l1 == l2 && k1 == k2) {
  1031. i__3 = k1 - 1;
  1032. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1033. c_dim1 + 1], &c__1);
  1034. i__3 = l1 - 1;
  1035. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1036. b_dim1 + 1], &c__1);
  1037. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1038. scaloc = 1.;
  1039. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1040. da11 = abs(a11);
  1041. if (da11 <= smin) {
  1042. a11 = smin;
  1043. da11 = smin;
  1044. *info = 1;
  1045. }
  1046. db = abs(vec[0]);
  1047. if (da11 < 1. && db > 1.) {
  1048. if (db > bignum * da11) {
  1049. scaloc = 1. / db;
  1050. }
  1051. }
  1052. x[0] = vec[0] * scaloc / a11;
  1053. if (scaloc != 1.) {
  1054. i__3 = *n;
  1055. for (j = 1; j <= i__3; ++j) {
  1056. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1057. /* L70: */
  1058. }
  1059. *scale *= scaloc;
  1060. }
  1061. c__[k1 + l1 * c_dim1] = x[0];
  1062. } else if (l1 == l2 && k1 != k2) {
  1063. i__3 = k1 - 1;
  1064. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1065. c_dim1 + 1], &c__1);
  1066. i__3 = l1 - 1;
  1067. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1068. b_dim1 + 1], &c__1);
  1069. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1070. i__3 = k1 - 1;
  1071. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1072. c_dim1 + 1], &c__1);
  1073. i__3 = l1 - 1;
  1074. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1075. b_dim1 + 1], &c__1);
  1076. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1077. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1078. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1079. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1080. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1081. if (ierr != 0) {
  1082. *info = 1;
  1083. }
  1084. if (scaloc != 1.) {
  1085. i__3 = *n;
  1086. for (j = 1; j <= i__3; ++j) {
  1087. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1088. /* L80: */
  1089. }
  1090. *scale *= scaloc;
  1091. }
  1092. c__[k1 + l1 * c_dim1] = x[0];
  1093. c__[k2 + l1 * c_dim1] = x[1];
  1094. } else if (l1 != l2 && k1 == k2) {
  1095. i__3 = k1 - 1;
  1096. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1097. c_dim1 + 1], &c__1);
  1098. i__3 = l1 - 1;
  1099. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1100. b_dim1 + 1], &c__1);
  1101. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1102. sumr));
  1103. i__3 = k1 - 1;
  1104. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1105. c_dim1 + 1], &c__1);
  1106. i__3 = l1 - 1;
  1107. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1108. b_dim1 + 1], &c__1);
  1109. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1110. sumr));
  1111. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1112. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
  1113. b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1114. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1115. if (ierr != 0) {
  1116. *info = 1;
  1117. }
  1118. if (scaloc != 1.) {
  1119. i__3 = *n;
  1120. for (j = 1; j <= i__3; ++j) {
  1121. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1122. /* L90: */
  1123. }
  1124. *scale *= scaloc;
  1125. }
  1126. c__[k1 + l1 * c_dim1] = x[0];
  1127. c__[k1 + l2 * c_dim1] = x[1];
  1128. } else if (l1 != l2 && k1 != k2) {
  1129. i__3 = k1 - 1;
  1130. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1131. c_dim1 + 1], &c__1);
  1132. i__3 = l1 - 1;
  1133. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
  1134. b_dim1 + 1], &c__1);
  1135. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1136. i__3 = k1 - 1;
  1137. suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1138. c_dim1 + 1], &c__1);
  1139. i__3 = l1 - 1;
  1140. sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
  1141. b_dim1 + 1], &c__1);
  1142. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1143. i__3 = k1 - 1;
  1144. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1145. c_dim1 + 1], &c__1);
  1146. i__3 = l1 - 1;
  1147. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
  1148. b_dim1 + 1], &c__1);
  1149. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1150. i__3 = k1 - 1;
  1151. suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1152. c_dim1 + 1], &c__1);
  1153. i__3 = l1 - 1;
  1154. sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l2 *
  1155. b_dim1 + 1], &c__1);
  1156. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1157. dlasy2_(&c_true, &c_false, isgn, &c__2, &c__2, &a[k1 + k1
  1158. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1159. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1160. if (ierr != 0) {
  1161. *info = 1;
  1162. }
  1163. if (scaloc != 1.) {
  1164. i__3 = *n;
  1165. for (j = 1; j <= i__3; ++j) {
  1166. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1167. /* L100: */
  1168. }
  1169. *scale *= scaloc;
  1170. }
  1171. c__[k1 + l1 * c_dim1] = x[0];
  1172. c__[k1 + l2 * c_dim1] = x[2];
  1173. c__[k2 + l1 * c_dim1] = x[1];
  1174. c__[k2 + l2 * c_dim1] = x[3];
  1175. }
  1176. L110:
  1177. ;
  1178. }
  1179. L120:
  1180. ;
  1181. }
  1182. } else if (! notrna && ! notrnb) {
  1183. /* Solve A**T*X + ISGN*X*B**T = scale*C. */
  1184. /* The (K,L)th block of X is determined starting from */
  1185. /* top-right corner column by column by */
  1186. /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1187. /* Where */
  1188. /* K-1 N */
  1189. /* R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1190. /* I=1 J=L+1 */
  1191. /* Start column loop (index = L) */
  1192. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1193. lnext = *n;
  1194. for (l = *n; l >= 1; --l) {
  1195. if (l > lnext) {
  1196. goto L180;
  1197. }
  1198. if (l == 1) {
  1199. l1 = l;
  1200. l2 = l;
  1201. } else {
  1202. if (b[l + (l - 1) * b_dim1] != 0.) {
  1203. l1 = l - 1;
  1204. l2 = l;
  1205. lnext = l - 2;
  1206. } else {
  1207. l1 = l;
  1208. l2 = l;
  1209. lnext = l - 1;
  1210. }
  1211. }
  1212. /* Start row loop (index = K) */
  1213. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1214. knext = 1;
  1215. i__1 = *m;
  1216. for (k = 1; k <= i__1; ++k) {
  1217. if (k < knext) {
  1218. goto L170;
  1219. }
  1220. if (k == *m) {
  1221. k1 = k;
  1222. k2 = k;
  1223. } else {
  1224. if (a[k + 1 + k * a_dim1] != 0.) {
  1225. k1 = k;
  1226. k2 = k + 1;
  1227. knext = k + 2;
  1228. } else {
  1229. k1 = k;
  1230. k2 = k;
  1231. knext = k + 1;
  1232. }
  1233. }
  1234. if (l1 == l2 && k1 == k2) {
  1235. i__2 = k1 - 1;
  1236. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1237. c_dim1 + 1], &c__1);
  1238. i__2 = *n - l1;
  1239. /* Computing MIN */
  1240. i__3 = l1 + 1;
  1241. /* Computing MIN */
  1242. i__4 = l1 + 1;
  1243. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1244. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1245. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1246. scaloc = 1.;
  1247. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1248. da11 = abs(a11);
  1249. if (da11 <= smin) {
  1250. a11 = smin;
  1251. da11 = smin;
  1252. *info = 1;
  1253. }
  1254. db = abs(vec[0]);
  1255. if (da11 < 1. && db > 1.) {
  1256. if (db > bignum * da11) {
  1257. scaloc = 1. / db;
  1258. }
  1259. }
  1260. x[0] = vec[0] * scaloc / a11;
  1261. if (scaloc != 1.) {
  1262. i__2 = *n;
  1263. for (j = 1; j <= i__2; ++j) {
  1264. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1265. /* L130: */
  1266. }
  1267. *scale *= scaloc;
  1268. }
  1269. c__[k1 + l1 * c_dim1] = x[0];
  1270. } else if (l1 == l2 && k1 != k2) {
  1271. i__2 = k1 - 1;
  1272. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1273. c_dim1 + 1], &c__1);
  1274. i__2 = *n - l2;
  1275. /* Computing MIN */
  1276. i__3 = l2 + 1;
  1277. /* Computing MIN */
  1278. i__4 = l2 + 1;
  1279. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1280. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1281. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1282. i__2 = k1 - 1;
  1283. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1284. c_dim1 + 1], &c__1);
  1285. i__2 = *n - l2;
  1286. /* Computing MIN */
  1287. i__3 = l2 + 1;
  1288. /* Computing MIN */
  1289. i__4 = l2 + 1;
  1290. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1291. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1292. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1293. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1294. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
  1295. a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1296. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1297. if (ierr != 0) {
  1298. *info = 1;
  1299. }
  1300. if (scaloc != 1.) {
  1301. i__2 = *n;
  1302. for (j = 1; j <= i__2; ++j) {
  1303. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1304. /* L140: */
  1305. }
  1306. *scale *= scaloc;
  1307. }
  1308. c__[k1 + l1 * c_dim1] = x[0];
  1309. c__[k2 + l1 * c_dim1] = x[1];
  1310. } else if (l1 != l2 && k1 == k2) {
  1311. i__2 = k1 - 1;
  1312. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1313. c_dim1 + 1], &c__1);
  1314. i__2 = *n - l2;
  1315. /* Computing MIN */
  1316. i__3 = l2 + 1;
  1317. /* Computing MIN */
  1318. i__4 = l2 + 1;
  1319. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1320. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1321. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1322. sumr));
  1323. i__2 = k1 - 1;
  1324. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1325. c_dim1 + 1], &c__1);
  1326. i__2 = *n - l2;
  1327. /* Computing MIN */
  1328. i__3 = l2 + 1;
  1329. /* Computing MIN */
  1330. i__4 = l2 + 1;
  1331. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1332. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1333. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1334. sumr));
  1335. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1336. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1337. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1338. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1339. if (ierr != 0) {
  1340. *info = 1;
  1341. }
  1342. if (scaloc != 1.) {
  1343. i__2 = *n;
  1344. for (j = 1; j <= i__2; ++j) {
  1345. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1346. /* L150: */
  1347. }
  1348. *scale *= scaloc;
  1349. }
  1350. c__[k1 + l1 * c_dim1] = x[0];
  1351. c__[k1 + l2 * c_dim1] = x[1];
  1352. } else if (l1 != l2 && k1 != k2) {
  1353. i__2 = k1 - 1;
  1354. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
  1355. c_dim1 + 1], &c__1);
  1356. i__2 = *n - l2;
  1357. /* Computing MIN */
  1358. i__3 = l2 + 1;
  1359. /* Computing MIN */
  1360. i__4 = l2 + 1;
  1361. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1362. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1363. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1364. i__2 = k1 - 1;
  1365. suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
  1366. c_dim1 + 1], &c__1);
  1367. i__2 = *n - l2;
  1368. /* Computing MIN */
  1369. i__3 = l2 + 1;
  1370. /* Computing MIN */
  1371. i__4 = l2 + 1;
  1372. sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
  1373. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1374. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1375. i__2 = k1 - 1;
  1376. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
  1377. c_dim1 + 1], &c__1);
  1378. i__2 = *n - l2;
  1379. /* Computing MIN */
  1380. i__3 = l2 + 1;
  1381. /* Computing MIN */
  1382. i__4 = l2 + 1;
  1383. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1384. &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
  1385. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1386. i__2 = k1 - 1;
  1387. suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
  1388. c_dim1 + 1], &c__1);
  1389. i__2 = *n - l2;
  1390. /* Computing MIN */
  1391. i__3 = l2 + 1;
  1392. /* Computing MIN */
  1393. i__4 = l2 + 1;
  1394. sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
  1395. &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
  1396. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1397. dlasy2_(&c_true, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 *
  1398. a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1399. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1400. if (ierr != 0) {
  1401. *info = 1;
  1402. }
  1403. if (scaloc != 1.) {
  1404. i__2 = *n;
  1405. for (j = 1; j <= i__2; ++j) {
  1406. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1407. /* L160: */
  1408. }
  1409. *scale *= scaloc;
  1410. }
  1411. c__[k1 + l1 * c_dim1] = x[0];
  1412. c__[k1 + l2 * c_dim1] = x[2];
  1413. c__[k2 + l1 * c_dim1] = x[1];
  1414. c__[k2 + l2 * c_dim1] = x[3];
  1415. }
  1416. L170:
  1417. ;
  1418. }
  1419. L180:
  1420. ;
  1421. }
  1422. } else if (notrna && ! notrnb) {
  1423. /* Solve A*X + ISGN*X*B**T = scale*C. */
  1424. /* The (K,L)th block of X is determined starting from */
  1425. /* bottom-right corner column by column by */
  1426. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
  1427. /* Where */
  1428. /* M N */
  1429. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
  1430. /* I=K+1 J=L+1 */
  1431. /* Start column loop (index = L) */
  1432. /* L1 (L2): column index of the first (last) row of X(K,L) */
  1433. lnext = *n;
  1434. for (l = *n; l >= 1; --l) {
  1435. if (l > lnext) {
  1436. goto L240;
  1437. }
  1438. if (l == 1) {
  1439. l1 = l;
  1440. l2 = l;
  1441. } else {
  1442. if (b[l + (l - 1) * b_dim1] != 0.) {
  1443. l1 = l - 1;
  1444. l2 = l;
  1445. lnext = l - 2;
  1446. } else {
  1447. l1 = l;
  1448. l2 = l;
  1449. lnext = l - 1;
  1450. }
  1451. }
  1452. /* Start row loop (index = K) */
  1453. /* K1 (K2): row index of the first (last) row of X(K,L) */
  1454. knext = *m;
  1455. for (k = *m; k >= 1; --k) {
  1456. if (k > knext) {
  1457. goto L230;
  1458. }
  1459. if (k == 1) {
  1460. k1 = k;
  1461. k2 = k;
  1462. } else {
  1463. if (a[k + (k - 1) * a_dim1] != 0.) {
  1464. k1 = k - 1;
  1465. k2 = k;
  1466. knext = k - 2;
  1467. } else {
  1468. k1 = k;
  1469. k2 = k;
  1470. knext = k - 1;
  1471. }
  1472. }
  1473. if (l1 == l2 && k1 == k2) {
  1474. i__1 = *m - k1;
  1475. /* Computing MIN */
  1476. i__2 = k1 + 1;
  1477. /* Computing MIN */
  1478. i__3 = k1 + 1;
  1479. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1480. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1481. i__1 = *n - l1;
  1482. /* Computing MIN */
  1483. i__2 = l1 + 1;
  1484. /* Computing MIN */
  1485. i__3 = l1 + 1;
  1486. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1487. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1488. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1489. scaloc = 1.;
  1490. a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
  1491. da11 = abs(a11);
  1492. if (da11 <= smin) {
  1493. a11 = smin;
  1494. da11 = smin;
  1495. *info = 1;
  1496. }
  1497. db = abs(vec[0]);
  1498. if (da11 < 1. && db > 1.) {
  1499. if (db > bignum * da11) {
  1500. scaloc = 1. / db;
  1501. }
  1502. }
  1503. x[0] = vec[0] * scaloc / a11;
  1504. if (scaloc != 1.) {
  1505. i__1 = *n;
  1506. for (j = 1; j <= i__1; ++j) {
  1507. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1508. /* L190: */
  1509. }
  1510. *scale *= scaloc;
  1511. }
  1512. c__[k1 + l1 * c_dim1] = x[0];
  1513. } else if (l1 == l2 && k1 != k2) {
  1514. i__1 = *m - k2;
  1515. /* Computing MIN */
  1516. i__2 = k2 + 1;
  1517. /* Computing MIN */
  1518. i__3 = k2 + 1;
  1519. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1520. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1521. i__1 = *n - l2;
  1522. /* Computing MIN */
  1523. i__2 = l2 + 1;
  1524. /* Computing MIN */
  1525. i__3 = l2 + 1;
  1526. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1527. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1528. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1529. i__1 = *m - k2;
  1530. /* Computing MIN */
  1531. i__2 = k2 + 1;
  1532. /* Computing MIN */
  1533. i__3 = k2 + 1;
  1534. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1535. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1536. i__1 = *n - l2;
  1537. /* Computing MIN */
  1538. i__2 = l2 + 1;
  1539. /* Computing MIN */
  1540. i__3 = l2 + 1;
  1541. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1542. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1543. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1544. d__1 = -sgn * b[l1 + l1 * b_dim1];
  1545. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
  1546. * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
  1547. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1548. if (ierr != 0) {
  1549. *info = 1;
  1550. }
  1551. if (scaloc != 1.) {
  1552. i__1 = *n;
  1553. for (j = 1; j <= i__1; ++j) {
  1554. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1555. /* L200: */
  1556. }
  1557. *scale *= scaloc;
  1558. }
  1559. c__[k1 + l1 * c_dim1] = x[0];
  1560. c__[k2 + l1 * c_dim1] = x[1];
  1561. } else if (l1 != l2 && k1 == k2) {
  1562. i__1 = *m - k1;
  1563. /* Computing MIN */
  1564. i__2 = k1 + 1;
  1565. /* Computing MIN */
  1566. i__3 = k1 + 1;
  1567. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1568. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1569. i__1 = *n - l2;
  1570. /* Computing MIN */
  1571. i__2 = l2 + 1;
  1572. /* Computing MIN */
  1573. i__3 = l2 + 1;
  1574. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1575. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1576. vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
  1577. sumr));
  1578. i__1 = *m - k1;
  1579. /* Computing MIN */
  1580. i__2 = k1 + 1;
  1581. /* Computing MIN */
  1582. i__3 = k1 + 1;
  1583. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1584. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1585. i__1 = *n - l2;
  1586. /* Computing MIN */
  1587. i__2 = l2 + 1;
  1588. /* Computing MIN */
  1589. i__3 = l2 + 1;
  1590. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1591. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1592. vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
  1593. sumr));
  1594. d__1 = -sgn * a[k1 + k1 * a_dim1];
  1595. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
  1596. * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
  1597. &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
  1598. if (ierr != 0) {
  1599. *info = 1;
  1600. }
  1601. if (scaloc != 1.) {
  1602. i__1 = *n;
  1603. for (j = 1; j <= i__1; ++j) {
  1604. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1605. /* L210: */
  1606. }
  1607. *scale *= scaloc;
  1608. }
  1609. c__[k1 + l1 * c_dim1] = x[0];
  1610. c__[k1 + l2 * c_dim1] = x[1];
  1611. } else if (l1 != l2 && k1 != k2) {
  1612. i__1 = *m - k2;
  1613. /* Computing MIN */
  1614. i__2 = k2 + 1;
  1615. /* Computing MIN */
  1616. i__3 = k2 + 1;
  1617. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1618. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1619. i__1 = *n - l2;
  1620. /* Computing MIN */
  1621. i__2 = l2 + 1;
  1622. /* Computing MIN */
  1623. i__3 = l2 + 1;
  1624. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1625. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1626. vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
  1627. i__1 = *m - k2;
  1628. /* Computing MIN */
  1629. i__2 = k2 + 1;
  1630. /* Computing MIN */
  1631. i__3 = k2 + 1;
  1632. suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
  1633. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1634. i__1 = *n - l2;
  1635. /* Computing MIN */
  1636. i__2 = l2 + 1;
  1637. /* Computing MIN */
  1638. i__3 = l2 + 1;
  1639. sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
  1640. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1641. vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
  1642. i__1 = *m - k2;
  1643. /* Computing MIN */
  1644. i__2 = k2 + 1;
  1645. /* Computing MIN */
  1646. i__3 = k2 + 1;
  1647. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1648. c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
  1649. i__1 = *n - l2;
  1650. /* Computing MIN */
  1651. i__2 = l2 + 1;
  1652. /* Computing MIN */
  1653. i__3 = l2 + 1;
  1654. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1655. &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
  1656. vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
  1657. i__1 = *m - k2;
  1658. /* Computing MIN */
  1659. i__2 = k2 + 1;
  1660. /* Computing MIN */
  1661. i__3 = k2 + 1;
  1662. suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
  1663. c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
  1664. i__1 = *n - l2;
  1665. /* Computing MIN */
  1666. i__2 = l2 + 1;
  1667. /* Computing MIN */
  1668. i__3 = l2 + 1;
  1669. sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
  1670. &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
  1671. vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
  1672. dlasy2_(&c_false, &c_true, isgn, &c__2, &c__2, &a[k1 + k1
  1673. * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
  1674. c__2, &scaloc, x, &c__2, &xnorm, &ierr);
  1675. if (ierr != 0) {
  1676. *info = 1;
  1677. }
  1678. if (scaloc != 1.) {
  1679. i__1 = *n;
  1680. for (j = 1; j <= i__1; ++j) {
  1681. dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  1682. /* L220: */
  1683. }
  1684. *scale *= scaloc;
  1685. }
  1686. c__[k1 + l1 * c_dim1] = x[0];
  1687. c__[k1 + l2 * c_dim1] = x[2];
  1688. c__[k2 + l1 * c_dim1] = x[1];
  1689. c__[k2 + l2 * c_dim1] = x[3];
  1690. }
  1691. L230:
  1692. ;
  1693. }
  1694. L240:
  1695. ;
  1696. }
  1697. }
  1698. return 0;
  1699. /* End of DTRSYL */
  1700. } /* dtrsyl_ */