You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr5.c 62 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__2 = 2;
  489. static integer c__1 = 1;
  490. static integer c__3 = 3;
  491. /* > \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CLAQR5 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, */
  510. /* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, */
  511. /* WV, LDWV, NH, WH, LDWH ) */
  512. /* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
  513. /* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
  514. /* LOGICAL WANTT, WANTZ */
  515. /* COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), */
  516. /* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLAQR5 called by CLAQR0 performs a */
  523. /* > single small-bulge multi-shift QR sweep. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] WANTT */
  528. /* > \verbatim */
  529. /* > WANTT is LOGICAL */
  530. /* > WANTT = .true. if the triangular Schur factor */
  531. /* > is being computed. WANTT is set to .false. otherwise. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] WANTZ */
  535. /* > \verbatim */
  536. /* > WANTZ is LOGICAL */
  537. /* > WANTZ = .true. if the unitary Schur factor is being */
  538. /* > computed. WANTZ is set to .false. otherwise. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] KACC22 */
  542. /* > \verbatim */
  543. /* > KACC22 is INTEGER with value 0, 1, or 2. */
  544. /* > Specifies the computation mode of far-from-diagonal */
  545. /* > orthogonal updates. */
  546. /* > = 0: CLAQR5 does not accumulate reflections and does not */
  547. /* > use matrix-matrix multiply to update far-from-diagonal */
  548. /* > matrix entries. */
  549. /* > = 1: CLAQR5 accumulates reflections and uses matrix-matrix */
  550. /* > multiply to update the far-from-diagonal matrix entries. */
  551. /* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
  552. /* > the 2-by-2 structure during matrix multiplications, but */
  553. /* > this is no longer supported. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] N */
  557. /* > \verbatim */
  558. /* > N is INTEGER */
  559. /* > N is the order of the Hessenberg matrix H upon which this */
  560. /* > subroutine operates. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] KTOP */
  564. /* > \verbatim */
  565. /* > KTOP is INTEGER */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] KBOT */
  569. /* > \verbatim */
  570. /* > KBOT is INTEGER */
  571. /* > These are the first and last rows and columns of an */
  572. /* > isolated diagonal block upon which the QR sweep is to be */
  573. /* > applied. It is assumed without a check that */
  574. /* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
  575. /* > and */
  576. /* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] NSHFTS */
  580. /* > \verbatim */
  581. /* > NSHFTS is INTEGER */
  582. /* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
  583. /* > must be positive and even. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] S */
  587. /* > \verbatim */
  588. /* > S is COMPLEX array, dimension (NSHFTS) */
  589. /* > S contains the shifts of origin that define the multi- */
  590. /* > shift QR sweep. On output S may be reordered. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] H */
  594. /* > \verbatim */
  595. /* > H is COMPLEX array, dimension (LDH,N) */
  596. /* > On input H contains a Hessenberg matrix. On output a */
  597. /* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
  598. /* > to the isolated diagonal block in rows and columns KTOP */
  599. /* > through KBOT. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDH */
  603. /* > \verbatim */
  604. /* > LDH is INTEGER */
  605. /* > LDH is the leading dimension of H just as declared in the */
  606. /* > calling procedure. LDH >= MAX(1,N). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] ILOZ */
  610. /* > \verbatim */
  611. /* > ILOZ is INTEGER */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] IHIZ */
  615. /* > \verbatim */
  616. /* > IHIZ is INTEGER */
  617. /* > Specify the rows of Z to which transformations must be */
  618. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] Z */
  622. /* > \verbatim */
  623. /* > Z is COMPLEX array, dimension (LDZ,IHIZ) */
  624. /* > If WANTZ = .TRUE., then the QR Sweep unitary */
  625. /* > similarity transformation is accumulated into */
  626. /* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  627. /* > If WANTZ = .FALSE., then Z is unreferenced. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] LDZ */
  631. /* > \verbatim */
  632. /* > LDZ is INTEGER */
  633. /* > LDA is the leading dimension of Z just as declared in */
  634. /* > the calling procedure. LDZ >= N. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] V */
  638. /* > \verbatim */
  639. /* > V is COMPLEX array, dimension (LDV,NSHFTS/2) */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDV */
  643. /* > \verbatim */
  644. /* > LDV is INTEGER */
  645. /* > LDV is the leading dimension of V as declared in the */
  646. /* > calling procedure. LDV >= 3. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] U */
  650. /* > \verbatim */
  651. /* > U is COMPLEX array, dimension (LDU,2*NSHFTS) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDU */
  655. /* > \verbatim */
  656. /* > LDU is INTEGER */
  657. /* > LDU is the leading dimension of U just as declared in the */
  658. /* > in the calling subroutine. LDU >= 2*NSHFTS. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] NV */
  662. /* > \verbatim */
  663. /* > NV is INTEGER */
  664. /* > NV is the number of rows in WV agailable for workspace. */
  665. /* > NV >= 1. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] WV */
  669. /* > \verbatim */
  670. /* > WV is COMPLEX array, dimension (LDWV,2*NSHFTS) */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDWV */
  674. /* > \verbatim */
  675. /* > LDWV is INTEGER */
  676. /* > LDWV is the leading dimension of WV as declared in the */
  677. /* > in the calling subroutine. LDWV >= NV. */
  678. /* > \endverbatim */
  679. /* > \param[in] NH */
  680. /* > \verbatim */
  681. /* > NH is INTEGER */
  682. /* > NH is the number of columns in array WH available for */
  683. /* > workspace. NH >= 1. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] WH */
  687. /* > \verbatim */
  688. /* > WH is COMPLEX array, dimension (LDWH,NH) */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LDWH */
  692. /* > \verbatim */
  693. /* > LDWH is INTEGER */
  694. /* > Leading dimension of WH just as declared in the */
  695. /* > calling procedure. LDWH >= 2*NSHFTS. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* Authors: */
  699. /* ======== */
  700. /* > \author Univ. of Tennessee */
  701. /* > \author Univ. of California Berkeley */
  702. /* > \author Univ. of Colorado Denver */
  703. /* > \author NAG Ltd. */
  704. /* > \date January 2021 */
  705. /* > \ingroup complexOTHERauxiliary */
  706. /* > \par Contributors: */
  707. /* ================== */
  708. /* > */
  709. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  710. /* > University of Kansas, USA */
  711. /* > */
  712. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
  713. /* > */
  714. /* > Thijs Steel, Department of Computer science, */
  715. /* > KU Leuven, Belgium */
  716. /* > \par References: */
  717. /* ================ */
  718. /* > */
  719. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  720. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  721. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  722. /* > 929--947, 2002. */
  723. /* > */
  724. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
  725. /* > chains of bulges in multishift QR algorithms. */
  726. /* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
  727. /* > */
  728. /* ===================================================================== */
  729. /* Subroutine */ int claqr5_(logical *wantt, logical *wantz, integer *kacc22,
  730. integer *n, integer *ktop, integer *kbot, integer *nshfts, complex *s,
  731. complex *h__, integer *ldh, integer *iloz, integer *ihiz, complex *
  732. z__, integer *ldz, complex *v, integer *ldv, complex *u, integer *ldu,
  733. integer *nv, complex *wv, integer *ldwv, integer *nh, complex *wh,
  734. integer *ldwh)
  735. {
  736. /* System generated locals */
  737. integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
  738. wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
  739. i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11;
  740. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
  741. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  742. /* Local variables */
  743. complex beta;
  744. logical bmp22;
  745. integer jcol, jlen, jbot, mbot, jtop, jrow, mtop, j, k, m;
  746. complex alpha;
  747. logical accum;
  748. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  749. integer *, complex *, complex *, integer *, complex *, integer *,
  750. complex *, complex *, integer *);
  751. integer ndcol, incol, krcol, nbmps, i2, k1, i4;
  752. extern /* Subroutine */ int claqr1_(integer *, complex *, integer *,
  753. complex *, complex *, complex *);
  754. real h11, h12, h21, h22;
  755. integer m22;
  756. extern /* Subroutine */ int slabad_(real *, real *), clarfg_(integer *,
  757. complex *, complex *, integer *, complex *);
  758. integer ns, nu;
  759. extern real slamch_(char *);
  760. complex vt[3];
  761. extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
  762. *, integer *, complex *, integer *), claset_(char *,
  763. integer *, integer *, complex *, complex *, complex *, integer *);
  764. real safmin, safmax;
  765. complex refsum;
  766. real smlnum, scl;
  767. integer kdu, kms;
  768. real ulp;
  769. real tst1, tst2;
  770. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  771. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  772. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  773. /* June 2016 */
  774. /* ================================================================ */
  775. /* ==== If there are no shifts, then there is nothing to do. ==== */
  776. /* Parameter adjustments */
  777. --s;
  778. h_dim1 = *ldh;
  779. h_offset = 1 + h_dim1 * 1;
  780. h__ -= h_offset;
  781. z_dim1 = *ldz;
  782. z_offset = 1 + z_dim1 * 1;
  783. z__ -= z_offset;
  784. v_dim1 = *ldv;
  785. v_offset = 1 + v_dim1 * 1;
  786. v -= v_offset;
  787. u_dim1 = *ldu;
  788. u_offset = 1 + u_dim1 * 1;
  789. u -= u_offset;
  790. wv_dim1 = *ldwv;
  791. wv_offset = 1 + wv_dim1 * 1;
  792. wv -= wv_offset;
  793. wh_dim1 = *ldwh;
  794. wh_offset = 1 + wh_dim1 * 1;
  795. wh -= wh_offset;
  796. /* Function Body */
  797. if (*nshfts < 2) {
  798. return 0;
  799. }
  800. /* ==== If the active block is empty or 1-by-1, then there */
  801. /* . is nothing to do. ==== */
  802. if (*ktop >= *kbot) {
  803. return 0;
  804. }
  805. /* ==== NSHFTS is supposed to be even, but if it is odd, */
  806. /* . then simply reduce it by one. ==== */
  807. ns = *nshfts - *nshfts % 2;
  808. /* ==== Machine constants for deflation ==== */
  809. safmin = slamch_("SAFE MINIMUM");
  810. safmax = 1.f / safmin;
  811. slabad_(&safmin, &safmax);
  812. ulp = slamch_("PRECISION");
  813. smlnum = safmin * ((real) (*n) / ulp);
  814. /* ==== Use accumulated reflections to update far-from-diagonal */
  815. /* . entries ? ==== */
  816. accum = *kacc22 == 1 || *kacc22 == 2;
  817. /* ==== clear trash ==== */
  818. if (*ktop + 2 <= *kbot) {
  819. i__1 = *ktop + 2 + *ktop * h_dim1;
  820. h__[i__1].r = 0.f, h__[i__1].i = 0.f;
  821. }
  822. /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
  823. nbmps = ns / 2;
  824. /* ==== KDU = width of slab ==== */
  825. kdu = nbmps << 2;
  826. /* ==== Create and chase chains of NBMPS bulges ==== */
  827. i__1 = *kbot - 2;
  828. i__2 = nbmps << 1;
  829. for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
  830. i__1; incol += i__2) {
  831. /* JTOP = Index from which updates from the right start. */
  832. if (accum) {
  833. jtop = f2cmax(*ktop,incol);
  834. } else if (*wantt) {
  835. jtop = 1;
  836. } else {
  837. jtop = *ktop;
  838. }
  839. ndcol = incol + kdu;
  840. if (accum) {
  841. claset_("ALL", &kdu, &kdu, &c_b1, &c_b2, &u[u_offset], ldu);
  842. }
  843. /* ==== Near-the-diagonal bulge chase. The following loop */
  844. /* . performs the near-the-diagonal part of a small bulge */
  845. /* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
  846. /* . chunk extends from column INCOL to column NDCOL */
  847. /* . (including both column INCOL and column NDCOL). The */
  848. /* . following loop chases a 2*NBMPS+1 column long chain of */
  849. /* . NBMPS bulges 2*NBMPS columns to the right. (INCOL */
  850. /* . may be less than KTOP and and NDCOL may be greater than */
  851. /* . KBOT indicating phantom columns from which to chase */
  852. /* . bulges before they are actually introduced or to which */
  853. /* . to chase bulges beyond column KBOT.) ==== */
  854. /* Computing MIN */
  855. i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
  856. i__3 = f2cmin(i__4,i__5);
  857. for (krcol = incol; krcol <= i__3; ++krcol) {
  858. /* ==== Bulges number MTOP to MBOT are active double implicit */
  859. /* . shift bulges. There may or may not also be small */
  860. /* . 2-by-2 bulge, if there is room. The inactive bulges */
  861. /* . (if any) must wait until the active bulges have moved */
  862. /* . down the diagonal to make room. The phantom matrix */
  863. /* . paradigm described above helps keep track. ==== */
  864. /* Computing MAX */
  865. i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
  866. mtop = f2cmax(i__4,i__5);
  867. /* Computing MIN */
  868. i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
  869. mbot = f2cmin(i__4,i__5);
  870. m22 = mbot + 1;
  871. bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
  872. /* ==== Generate reflections to chase the chain right */
  873. /* . one column. (The minimum value of K is KTOP-1.) ==== */
  874. if (bmp22) {
  875. /* ==== Special case: 2-by-2 reflection at bottom treated */
  876. /* . separately ==== */
  877. k = krcol + (m22 - 1 << 1);
  878. if (k == *ktop - 1) {
  879. claqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &s[(
  880. m22 << 1) - 1], &s[m22 * 2], &v[m22 * v_dim1 + 1])
  881. ;
  882. i__4 = m22 * v_dim1 + 1;
  883. beta.r = v[i__4].r, beta.i = v[i__4].i;
  884. clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  885. * v_dim1 + 1]);
  886. } else {
  887. i__4 = k + 1 + k * h_dim1;
  888. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  889. i__4 = m22 * v_dim1 + 2;
  890. i__5 = k + 2 + k * h_dim1;
  891. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  892. clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  893. * v_dim1 + 1]);
  894. i__4 = k + 1 + k * h_dim1;
  895. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  896. i__4 = k + 2 + k * h_dim1;
  897. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  898. }
  899. /* ==== Perform update from right within */
  900. /* . computational window. ==== */
  901. /* Computing MIN */
  902. i__5 = *kbot, i__6 = k + 3;
  903. i__4 = f2cmin(i__5,i__6);
  904. for (j = jtop; j <= i__4; ++j) {
  905. i__5 = m22 * v_dim1 + 1;
  906. i__6 = j + (k + 1) * h_dim1;
  907. i__7 = m22 * v_dim1 + 2;
  908. i__8 = j + (k + 2) * h_dim1;
  909. q__3.r = v[i__7].r * h__[i__8].r - v[i__7].i * h__[i__8]
  910. .i, q__3.i = v[i__7].r * h__[i__8].i + v[i__7].i *
  911. h__[i__8].r;
  912. q__2.r = h__[i__6].r + q__3.r, q__2.i = h__[i__6].i +
  913. q__3.i;
  914. q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
  915. v[i__5].r * q__2.i + v[i__5].i * q__2.r;
  916. refsum.r = q__1.r, refsum.i = q__1.i;
  917. i__5 = j + (k + 1) * h_dim1;
  918. i__6 = j + (k + 1) * h_dim1;
  919. q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
  920. refsum.i;
  921. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  922. i__5 = j + (k + 2) * h_dim1;
  923. i__6 = j + (k + 2) * h_dim1;
  924. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  925. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  926. refsum.r * q__3.i + refsum.i * q__3.r;
  927. q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
  928. q__2.i;
  929. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  930. /* L30: */
  931. }
  932. /* ==== Perform update from left within */
  933. /* . computational window. ==== */
  934. if (accum) {
  935. jbot = f2cmin(ndcol,*kbot);
  936. } else if (*wantt) {
  937. jbot = *n;
  938. } else {
  939. jbot = *kbot;
  940. }
  941. i__4 = jbot;
  942. for (j = k + 1; j <= i__4; ++j) {
  943. r_cnjg(&q__2, &v[m22 * v_dim1 + 1]);
  944. i__5 = k + 1 + j * h_dim1;
  945. r_cnjg(&q__5, &v[m22 * v_dim1 + 2]);
  946. i__6 = k + 2 + j * h_dim1;
  947. q__4.r = q__5.r * h__[i__6].r - q__5.i * h__[i__6].i,
  948. q__4.i = q__5.r * h__[i__6].i + q__5.i * h__[i__6]
  949. .r;
  950. q__3.r = h__[i__5].r + q__4.r, q__3.i = h__[i__5].i +
  951. q__4.i;
  952. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  953. q__2.r * q__3.i + q__2.i * q__3.r;
  954. refsum.r = q__1.r, refsum.i = q__1.i;
  955. i__5 = k + 1 + j * h_dim1;
  956. i__6 = k + 1 + j * h_dim1;
  957. q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
  958. refsum.i;
  959. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  960. i__5 = k + 2 + j * h_dim1;
  961. i__6 = k + 2 + j * h_dim1;
  962. i__7 = m22 * v_dim1 + 2;
  963. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i,
  964. q__2.i = refsum.r * v[i__7].i + refsum.i * v[i__7]
  965. .r;
  966. q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
  967. q__2.i;
  968. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  969. /* L40: */
  970. }
  971. /* ==== The following convergence test requires that */
  972. /* . the tradition small-compared-to-nearby-diagonals */
  973. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  974. /* . criteria both be satisfied. The latter improves */
  975. /* . accuracy in some examples. Falling back on an */
  976. /* . alternate convergence criterion when TST1 or TST2 */
  977. /* . is zero (as done here) is traditional but probably */
  978. /* . unnecessary. ==== */
  979. if (k >= *ktop) {
  980. i__4 = k + 1 + k * h_dim1;
  981. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
  982. i__4 = k + k * h_dim1;
  983. i__5 = k + 1 + (k + 1) * h_dim1;
  984. tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  985. r_imag(&h__[k + k * h_dim1]), abs(r__2)) + ((
  986. r__3 = h__[i__5].r, abs(r__3)) + (r__4 =
  987. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  988. r__4)));
  989. if (tst1 == 0.f) {
  990. if (k >= *ktop + 1) {
  991. i__4 = k + (k - 1) * h_dim1;
  992. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  993. r__2 = r_imag(&h__[k + (k - 1) *
  994. h_dim1]), abs(r__2));
  995. }
  996. if (k >= *ktop + 2) {
  997. i__4 = k + (k - 2) * h_dim1;
  998. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  999. r__2 = r_imag(&h__[k + (k - 2) *
  1000. h_dim1]), abs(r__2));
  1001. }
  1002. if (k >= *ktop + 3) {
  1003. i__4 = k + (k - 3) * h_dim1;
  1004. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1005. r__2 = r_imag(&h__[k + (k - 3) *
  1006. h_dim1]), abs(r__2));
  1007. }
  1008. if (k <= *kbot - 2) {
  1009. i__4 = k + 2 + (k + 1) * h_dim1;
  1010. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1011. r__2 = r_imag(&h__[k + 2 + (k + 1) *
  1012. h_dim1]), abs(r__2));
  1013. }
  1014. if (k <= *kbot - 3) {
  1015. i__4 = k + 3 + (k + 1) * h_dim1;
  1016. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1017. r__2 = r_imag(&h__[k + 3 + (k + 1) *
  1018. h_dim1]), abs(r__2));
  1019. }
  1020. if (k <= *kbot - 4) {
  1021. i__4 = k + 4 + (k + 1) * h_dim1;
  1022. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1023. r__2 = r_imag(&h__[k + 4 + (k + 1) *
  1024. h_dim1]), abs(r__2));
  1025. }
  1026. }
  1027. i__4 = k + 1 + k * h_dim1;
  1028. /* Computing MAX */
  1029. r__3 = smlnum, r__4 = ulp * tst1;
  1030. if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
  1031. h__[k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(
  1032. r__3,r__4)) {
  1033. /* Computing MAX */
  1034. i__4 = k + 1 + k * h_dim1;
  1035. i__5 = k + (k + 1) * h_dim1;
  1036. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1037. r_imag(&h__[k + 1 + k * h_dim1]), abs(
  1038. r__2)), r__6 = (r__3 = h__[i__5].r, abs(
  1039. r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
  1040. h_dim1]), abs(r__4));
  1041. h12 = f2cmax(r__5,r__6);
  1042. /* Computing MIN */
  1043. i__4 = k + 1 + k * h_dim1;
  1044. i__5 = k + (k + 1) * h_dim1;
  1045. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1046. r_imag(&h__[k + 1 + k * h_dim1]), abs(
  1047. r__2)), r__6 = (r__3 = h__[i__5].r, abs(
  1048. r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
  1049. h_dim1]), abs(r__4));
  1050. h21 = f2cmin(r__5,r__6);
  1051. i__4 = k + k * h_dim1;
  1052. i__5 = k + 1 + (k + 1) * h_dim1;
  1053. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
  1054. i__4].i - h__[i__5].i;
  1055. q__1.r = q__2.r, q__1.i = q__2.i;
  1056. /* Computing MAX */
  1057. i__6 = k + 1 + (k + 1) * h_dim1;
  1058. r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
  1059. r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1060. abs(r__2)), r__6 = (r__3 = q__1.r, abs(
  1061. r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
  1062. ;
  1063. h11 = f2cmax(r__5,r__6);
  1064. i__4 = k + k * h_dim1;
  1065. i__5 = k + 1 + (k + 1) * h_dim1;
  1066. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
  1067. i__4].i - h__[i__5].i;
  1068. q__1.r = q__2.r, q__1.i = q__2.i;
  1069. /* Computing MIN */
  1070. i__6 = k + 1 + (k + 1) * h_dim1;
  1071. r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
  1072. r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1073. abs(r__2)), r__6 = (r__3 = q__1.r, abs(
  1074. r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
  1075. ;
  1076. h22 = f2cmin(r__5,r__6);
  1077. scl = h11 + h12;
  1078. tst2 = h22 * (h11 / scl);
  1079. /* Computing MAX */
  1080. r__1 = smlnum, r__2 = ulp * tst2;
  1081. if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,
  1082. r__2)) {
  1083. i__4 = k + 1 + k * h_dim1;
  1084. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1085. }
  1086. }
  1087. }
  1088. }
  1089. /* ==== Accumulate orthogonal transformations. ==== */
  1090. if (accum) {
  1091. kms = k - incol;
  1092. /* Computing MAX */
  1093. i__4 = 1, i__5 = *ktop - incol;
  1094. i__6 = kdu;
  1095. for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
  1096. i__4 = m22 * v_dim1 + 1;
  1097. i__5 = j + (kms + 1) * u_dim1;
  1098. i__7 = m22 * v_dim1 + 2;
  1099. i__8 = j + (kms + 2) * u_dim1;
  1100. q__3.r = v[i__7].r * u[i__8].r - v[i__7].i * u[i__8]
  1101. .i, q__3.i = v[i__7].r * u[i__8].i + v[i__7]
  1102. .i * u[i__8].r;
  1103. q__2.r = u[i__5].r + q__3.r, q__2.i = u[i__5].i +
  1104. q__3.i;
  1105. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1106. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1107. q__2.r;
  1108. refsum.r = q__1.r, refsum.i = q__1.i;
  1109. i__4 = j + (kms + 1) * u_dim1;
  1110. i__5 = j + (kms + 1) * u_dim1;
  1111. q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
  1112. refsum.i;
  1113. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1114. i__4 = j + (kms + 2) * u_dim1;
  1115. i__5 = j + (kms + 2) * u_dim1;
  1116. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  1117. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1118. q__2.i = refsum.r * q__3.i + refsum.i *
  1119. q__3.r;
  1120. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1121. q__2.i;
  1122. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1123. /* L50: */
  1124. }
  1125. } else if (*wantz) {
  1126. i__6 = *ihiz;
  1127. for (j = *iloz; j <= i__6; ++j) {
  1128. i__4 = m22 * v_dim1 + 1;
  1129. i__5 = j + (k + 1) * z_dim1;
  1130. i__7 = m22 * v_dim1 + 2;
  1131. i__8 = j + (k + 2) * z_dim1;
  1132. q__3.r = v[i__7].r * z__[i__8].r - v[i__7].i * z__[
  1133. i__8].i, q__3.i = v[i__7].r * z__[i__8].i + v[
  1134. i__7].i * z__[i__8].r;
  1135. q__2.r = z__[i__5].r + q__3.r, q__2.i = z__[i__5].i +
  1136. q__3.i;
  1137. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1138. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1139. q__2.r;
  1140. refsum.r = q__1.r, refsum.i = q__1.i;
  1141. i__4 = j + (k + 1) * z_dim1;
  1142. i__5 = j + (k + 1) * z_dim1;
  1143. q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
  1144. - refsum.i;
  1145. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1146. i__4 = j + (k + 2) * z_dim1;
  1147. i__5 = j + (k + 2) * z_dim1;
  1148. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  1149. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1150. q__2.i = refsum.r * q__3.i + refsum.i *
  1151. q__3.r;
  1152. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1153. q__2.i;
  1154. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1155. /* L60: */
  1156. }
  1157. }
  1158. }
  1159. /* ==== Normal case: Chain of 3-by-3 reflections ==== */
  1160. i__6 = mtop;
  1161. for (m = mbot; m >= i__6; --m) {
  1162. k = krcol + (m - 1 << 1);
  1163. if (k == *ktop - 1) {
  1164. claqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &s[(m <<
  1165. 1) - 1], &s[m * 2], &v[m * v_dim1 + 1]);
  1166. i__4 = m * v_dim1 + 1;
  1167. alpha.r = v[i__4].r, alpha.i = v[i__4].i;
  1168. clarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
  1169. v_dim1 + 1]);
  1170. } else {
  1171. /* ==== Perform delayed transformation of row below */
  1172. /* . Mth bulge. Exploit fact that first two elements */
  1173. /* . of row are actually zero. ==== */
  1174. i__4 = m * v_dim1 + 1;
  1175. i__5 = m * v_dim1 + 3;
  1176. q__2.r = v[i__4].r * v[i__5].r - v[i__4].i * v[i__5].i,
  1177. q__2.i = v[i__4].r * v[i__5].i + v[i__4].i * v[
  1178. i__5].r;
  1179. i__7 = k + 3 + (k + 2) * h_dim1;
  1180. q__1.r = q__2.r * h__[i__7].r - q__2.i * h__[i__7].i,
  1181. q__1.i = q__2.r * h__[i__7].i + q__2.i * h__[i__7]
  1182. .r;
  1183. refsum.r = q__1.r, refsum.i = q__1.i;
  1184. i__4 = k + 3 + k * h_dim1;
  1185. q__1.r = -refsum.r, q__1.i = -refsum.i;
  1186. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1187. i__4 = k + 3 + (k + 1) * h_dim1;
  1188. q__2.r = -refsum.r, q__2.i = -refsum.i;
  1189. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1190. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1191. q__2.r * q__3.i + q__2.i * q__3.r;
  1192. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1193. i__4 = k + 3 + (k + 2) * h_dim1;
  1194. i__5 = k + 3 + (k + 2) * h_dim1;
  1195. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1196. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1197. refsum.r * q__3.i + refsum.i * q__3.r;
  1198. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1199. q__2.i;
  1200. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1201. /* ==== Calculate reflection to move */
  1202. /* . Mth bulge one step. ==== */
  1203. i__4 = k + 1 + k * h_dim1;
  1204. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  1205. i__4 = m * v_dim1 + 2;
  1206. i__5 = k + 2 + k * h_dim1;
  1207. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1208. i__4 = m * v_dim1 + 3;
  1209. i__5 = k + 3 + k * h_dim1;
  1210. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1211. clarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
  1212. v_dim1 + 1]);
  1213. /* ==== A Bulge may collapse because of vigilant */
  1214. /* . deflation or destructive underflow. In the */
  1215. /* . underflow case, try the two-small-subdiagonals */
  1216. /* . trick to try to reinflate the bulge. ==== */
  1217. i__4 = k + 3 + k * h_dim1;
  1218. i__5 = k + 3 + (k + 1) * h_dim1;
  1219. i__7 = k + 3 + (k + 2) * h_dim1;
  1220. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f || (h__[i__5]
  1221. .r != 0.f || h__[i__5].i != 0.f) || h__[i__7].r ==
  1222. 0.f && h__[i__7].i == 0.f) {
  1223. /* ==== Typical case: not collapsed (yet). ==== */
  1224. i__4 = k + 1 + k * h_dim1;
  1225. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1226. i__4 = k + 2 + k * h_dim1;
  1227. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1228. i__4 = k + 3 + k * h_dim1;
  1229. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1230. } else {
  1231. /* ==== Atypical case: collapsed. Attempt to */
  1232. /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
  1233. /* . If the fill resulting from the new */
  1234. /* . reflector is too large, then abandon it. */
  1235. /* . Otherwise, use the new one. ==== */
  1236. claqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
  1237. s[(m << 1) - 1], &s[m * 2], vt);
  1238. alpha.r = vt[0].r, alpha.i = vt[0].i;
  1239. clarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
  1240. r_cnjg(&q__2, vt);
  1241. i__4 = k + 1 + k * h_dim1;
  1242. r_cnjg(&q__5, &vt[1]);
  1243. i__5 = k + 2 + k * h_dim1;
  1244. q__4.r = q__5.r * h__[i__5].r - q__5.i * h__[i__5].i,
  1245. q__4.i = q__5.r * h__[i__5].i + q__5.i * h__[
  1246. i__5].r;
  1247. q__3.r = h__[i__4].r + q__4.r, q__3.i = h__[i__4].i +
  1248. q__4.i;
  1249. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1250. q__2.r * q__3.i + q__2.i * q__3.r;
  1251. refsum.r = q__1.r, refsum.i = q__1.i;
  1252. i__4 = k + 2 + k * h_dim1;
  1253. q__3.r = refsum.r * vt[1].r - refsum.i * vt[1].i,
  1254. q__3.i = refsum.r * vt[1].i + refsum.i * vt[1]
  1255. .r;
  1256. q__2.r = h__[i__4].r - q__3.r, q__2.i = h__[i__4].i -
  1257. q__3.i;
  1258. q__1.r = q__2.r, q__1.i = q__2.i;
  1259. q__5.r = refsum.r * vt[2].r - refsum.i * vt[2].i,
  1260. q__5.i = refsum.r * vt[2].i + refsum.i * vt[2]
  1261. .r;
  1262. q__4.r = q__5.r, q__4.i = q__5.i;
  1263. i__5 = k + k * h_dim1;
  1264. i__7 = k + 1 + (k + 1) * h_dim1;
  1265. i__8 = k + 2 + (k + 2) * h_dim1;
  1266. if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1)
  1267. , abs(r__2)) + ((r__3 = q__4.r, abs(r__3)) + (
  1268. r__4 = r_imag(&q__4), abs(r__4))) > ulp * ((
  1269. r__5 = h__[i__5].r, abs(r__5)) + (r__6 =
  1270. r_imag(&h__[k + k * h_dim1]), abs(r__6)) + ((
  1271. r__7 = h__[i__7].r, abs(r__7)) + (r__8 =
  1272. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1273. r__8))) + ((r__9 = h__[i__8].r, abs(r__9)) + (
  1274. r__10 = r_imag(&h__[k + 2 + (k + 2) * h_dim1])
  1275. , abs(r__10))))) {
  1276. /* ==== Starting a new bulge here would */
  1277. /* . create non-negligible fill. Use */
  1278. /* . the old one with trepidation. ==== */
  1279. i__4 = k + 1 + k * h_dim1;
  1280. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1281. i__4 = k + 2 + k * h_dim1;
  1282. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1283. i__4 = k + 3 + k * h_dim1;
  1284. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1285. } else {
  1286. /* ==== Starting a new bulge here would */
  1287. /* . create only negligible fill. */
  1288. /* . Replace the old reflector with */
  1289. /* . the new one. ==== */
  1290. i__4 = k + 1 + k * h_dim1;
  1291. i__5 = k + 1 + k * h_dim1;
  1292. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[
  1293. i__5].i - refsum.i;
  1294. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1295. i__4 = k + 2 + k * h_dim1;
  1296. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1297. i__4 = k + 3 + k * h_dim1;
  1298. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1299. i__4 = m * v_dim1 + 1;
  1300. v[i__4].r = vt[0].r, v[i__4].i = vt[0].i;
  1301. i__4 = m * v_dim1 + 2;
  1302. v[i__4].r = vt[1].r, v[i__4].i = vt[1].i;
  1303. i__4 = m * v_dim1 + 3;
  1304. v[i__4].r = vt[2].r, v[i__4].i = vt[2].i;
  1305. }
  1306. }
  1307. }
  1308. /* ==== Apply reflection from the right and */
  1309. /* . the first column of update from the left. */
  1310. /* . These updates are required for the vigilant */
  1311. /* . deflation check. We still delay most of the */
  1312. /* . updates from the left for efficiency. ==== */
  1313. /* Computing MIN */
  1314. i__5 = *kbot, i__7 = k + 3;
  1315. i__4 = f2cmin(i__5,i__7);
  1316. for (j = jtop; j <= i__4; ++j) {
  1317. i__5 = m * v_dim1 + 1;
  1318. i__7 = j + (k + 1) * h_dim1;
  1319. i__8 = m * v_dim1 + 2;
  1320. i__9 = j + (k + 2) * h_dim1;
  1321. q__4.r = v[i__8].r * h__[i__9].r - v[i__8].i * h__[i__9]
  1322. .i, q__4.i = v[i__8].r * h__[i__9].i + v[i__8].i *
  1323. h__[i__9].r;
  1324. q__3.r = h__[i__7].r + q__4.r, q__3.i = h__[i__7].i +
  1325. q__4.i;
  1326. i__10 = m * v_dim1 + 3;
  1327. i__11 = j + (k + 3) * h_dim1;
  1328. q__5.r = v[i__10].r * h__[i__11].r - v[i__10].i * h__[
  1329. i__11].i, q__5.i = v[i__10].r * h__[i__11].i + v[
  1330. i__10].i * h__[i__11].r;
  1331. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1332. q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
  1333. v[i__5].r * q__2.i + v[i__5].i * q__2.r;
  1334. refsum.r = q__1.r, refsum.i = q__1.i;
  1335. i__5 = j + (k + 1) * h_dim1;
  1336. i__7 = j + (k + 1) * h_dim1;
  1337. q__1.r = h__[i__7].r - refsum.r, q__1.i = h__[i__7].i -
  1338. refsum.i;
  1339. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1340. i__5 = j + (k + 2) * h_dim1;
  1341. i__7 = j + (k + 2) * h_dim1;
  1342. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1343. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1344. refsum.r * q__3.i + refsum.i * q__3.r;
  1345. q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
  1346. q__2.i;
  1347. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1348. i__5 = j + (k + 3) * h_dim1;
  1349. i__7 = j + (k + 3) * h_dim1;
  1350. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1351. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1352. refsum.r * q__3.i + refsum.i * q__3.r;
  1353. q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
  1354. q__2.i;
  1355. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1356. /* L70: */
  1357. }
  1358. /* ==== Perform update from left for subsequent */
  1359. /* . column. ==== */
  1360. r_cnjg(&q__2, &v[m * v_dim1 + 1]);
  1361. i__4 = k + 1 + (k + 1) * h_dim1;
  1362. r_cnjg(&q__6, &v[m * v_dim1 + 2]);
  1363. i__5 = k + 2 + (k + 1) * h_dim1;
  1364. q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i, q__5.i =
  1365. q__6.r * h__[i__5].i + q__6.i * h__[i__5].r;
  1366. q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i + q__5.i;
  1367. r_cnjg(&q__8, &v[m * v_dim1 + 3]);
  1368. i__7 = k + 3 + (k + 1) * h_dim1;
  1369. q__7.r = q__8.r * h__[i__7].r - q__8.i * h__[i__7].i, q__7.i =
  1370. q__8.r * h__[i__7].i + q__8.i * h__[i__7].r;
  1371. q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
  1372. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r *
  1373. q__3.i + q__2.i * q__3.r;
  1374. refsum.r = q__1.r, refsum.i = q__1.i;
  1375. i__4 = k + 1 + (k + 1) * h_dim1;
  1376. i__5 = k + 1 + (k + 1) * h_dim1;
  1377. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
  1378. refsum.i;
  1379. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1380. i__4 = k + 2 + (k + 1) * h_dim1;
  1381. i__5 = k + 2 + (k + 1) * h_dim1;
  1382. i__7 = m * v_dim1 + 2;
  1383. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
  1384. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1385. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
  1386. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1387. i__4 = k + 3 + (k + 1) * h_dim1;
  1388. i__5 = k + 3 + (k + 1) * h_dim1;
  1389. i__7 = m * v_dim1 + 3;
  1390. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
  1391. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1392. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
  1393. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1394. /* ==== The following convergence test requires that */
  1395. /* . the tradition small-compared-to-nearby-diagonals */
  1396. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  1397. /* . criteria both be satisfied. The latter improves */
  1398. /* . accuracy in some examples. Falling back on an */
  1399. /* . alternate convergence criterion when TST1 or TST2 */
  1400. /* . is zero (as done here) is traditional but probably */
  1401. /* . unnecessary. ==== */
  1402. if (k < *ktop) {
  1403. mycycle_();
  1404. }
  1405. i__4 = k + 1 + k * h_dim1;
  1406. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
  1407. i__4 = k + k * h_dim1;
  1408. i__5 = k + 1 + (k + 1) * h_dim1;
  1409. tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
  1410. h__[k + k * h_dim1]), abs(r__2)) + ((r__3 = h__[
  1411. i__5].r, abs(r__3)) + (r__4 = r_imag(&h__[k + 1 +
  1412. (k + 1) * h_dim1]), abs(r__4)));
  1413. if (tst1 == 0.f) {
  1414. if (k >= *ktop + 1) {
  1415. i__4 = k + (k - 1) * h_dim1;
  1416. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1417. r_imag(&h__[k + (k - 1) * h_dim1]), abs(
  1418. r__2));
  1419. }
  1420. if (k >= *ktop + 2) {
  1421. i__4 = k + (k - 2) * h_dim1;
  1422. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1423. r_imag(&h__[k + (k - 2) * h_dim1]), abs(
  1424. r__2));
  1425. }
  1426. if (k >= *ktop + 3) {
  1427. i__4 = k + (k - 3) * h_dim1;
  1428. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1429. r_imag(&h__[k + (k - 3) * h_dim1]), abs(
  1430. r__2));
  1431. }
  1432. if (k <= *kbot - 2) {
  1433. i__4 = k + 2 + (k + 1) * h_dim1;
  1434. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1435. r_imag(&h__[k + 2 + (k + 1) * h_dim1]),
  1436. abs(r__2));
  1437. }
  1438. if (k <= *kbot - 3) {
  1439. i__4 = k + 3 + (k + 1) * h_dim1;
  1440. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1441. r_imag(&h__[k + 3 + (k + 1) * h_dim1]),
  1442. abs(r__2));
  1443. }
  1444. if (k <= *kbot - 4) {
  1445. i__4 = k + 4 + (k + 1) * h_dim1;
  1446. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1447. r_imag(&h__[k + 4 + (k + 1) * h_dim1]),
  1448. abs(r__2));
  1449. }
  1450. }
  1451. i__4 = k + 1 + k * h_dim1;
  1452. /* Computing MAX */
  1453. r__3 = smlnum, r__4 = ulp * tst1;
  1454. if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&h__[
  1455. k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(r__3,r__4)
  1456. ) {
  1457. /* Computing MAX */
  1458. i__4 = k + 1 + k * h_dim1;
  1459. i__5 = k + (k + 1) * h_dim1;
  1460. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1461. r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
  1462. r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
  1463. r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
  1464. abs(r__4));
  1465. h12 = f2cmax(r__5,r__6);
  1466. /* Computing MIN */
  1467. i__4 = k + 1 + k * h_dim1;
  1468. i__5 = k + (k + 1) * h_dim1;
  1469. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1470. r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
  1471. r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
  1472. r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
  1473. abs(r__4));
  1474. h21 = f2cmin(r__5,r__6);
  1475. i__4 = k + k * h_dim1;
  1476. i__5 = k + 1 + (k + 1) * h_dim1;
  1477. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
  1478. .i - h__[i__5].i;
  1479. q__1.r = q__2.r, q__1.i = q__2.i;
  1480. /* Computing MAX */
  1481. i__7 = k + 1 + (k + 1) * h_dim1;
  1482. r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
  1483. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1484. r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
  1485. r__4 = r_imag(&q__1), abs(r__4));
  1486. h11 = f2cmax(r__5,r__6);
  1487. i__4 = k + k * h_dim1;
  1488. i__5 = k + 1 + (k + 1) * h_dim1;
  1489. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
  1490. .i - h__[i__5].i;
  1491. q__1.r = q__2.r, q__1.i = q__2.i;
  1492. /* Computing MIN */
  1493. i__7 = k + 1 + (k + 1) * h_dim1;
  1494. r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
  1495. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1496. r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
  1497. r__4 = r_imag(&q__1), abs(r__4));
  1498. h22 = f2cmin(r__5,r__6);
  1499. scl = h11 + h12;
  1500. tst2 = h22 * (h11 / scl);
  1501. /* Computing MAX */
  1502. r__1 = smlnum, r__2 = ulp * tst2;
  1503. if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,r__2)
  1504. ) {
  1505. i__4 = k + 1 + k * h_dim1;
  1506. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1507. }
  1508. }
  1509. }
  1510. /* L80: */
  1511. }
  1512. /* ==== Multiply H by reflections from the left ==== */
  1513. if (accum) {
  1514. jbot = f2cmin(ndcol,*kbot);
  1515. } else if (*wantt) {
  1516. jbot = *n;
  1517. } else {
  1518. jbot = *kbot;
  1519. }
  1520. i__6 = mtop;
  1521. for (m = mbot; m >= i__6; --m) {
  1522. k = krcol + (m - 1 << 1);
  1523. /* Computing MAX */
  1524. i__4 = *ktop, i__5 = krcol + (m << 1);
  1525. i__7 = jbot;
  1526. for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
  1527. r_cnjg(&q__2, &v[m * v_dim1 + 1]);
  1528. i__4 = k + 1 + j * h_dim1;
  1529. r_cnjg(&q__6, &v[m * v_dim1 + 2]);
  1530. i__5 = k + 2 + j * h_dim1;
  1531. q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i,
  1532. q__5.i = q__6.r * h__[i__5].i + q__6.i * h__[i__5]
  1533. .r;
  1534. q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i +
  1535. q__5.i;
  1536. r_cnjg(&q__8, &v[m * v_dim1 + 3]);
  1537. i__8 = k + 3 + j * h_dim1;
  1538. q__7.r = q__8.r * h__[i__8].r - q__8.i * h__[i__8].i,
  1539. q__7.i = q__8.r * h__[i__8].i + q__8.i * h__[i__8]
  1540. .r;
  1541. q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
  1542. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1543. q__2.r * q__3.i + q__2.i * q__3.r;
  1544. refsum.r = q__1.r, refsum.i = q__1.i;
  1545. i__4 = k + 1 + j * h_dim1;
  1546. i__5 = k + 1 + j * h_dim1;
  1547. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
  1548. refsum.i;
  1549. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1550. i__4 = k + 2 + j * h_dim1;
  1551. i__5 = k + 2 + j * h_dim1;
  1552. i__8 = m * v_dim1 + 2;
  1553. q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1554. q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1555. .r;
  1556. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1557. q__2.i;
  1558. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1559. i__4 = k + 3 + j * h_dim1;
  1560. i__5 = k + 3 + j * h_dim1;
  1561. i__8 = m * v_dim1 + 3;
  1562. q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1563. q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1564. .r;
  1565. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1566. q__2.i;
  1567. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1568. /* L90: */
  1569. }
  1570. /* L100: */
  1571. }
  1572. /* ==== Accumulate orthogonal transformations. ==== */
  1573. if (accum) {
  1574. /* ==== Accumulate U. (If needed, update Z later */
  1575. /* . with an efficient matrix-matrix */
  1576. /* . multiply.) ==== */
  1577. i__6 = mtop;
  1578. for (m = mbot; m >= i__6; --m) {
  1579. k = krcol + (m - 1 << 1);
  1580. kms = k - incol;
  1581. /* Computing MAX */
  1582. i__7 = 1, i__4 = *ktop - incol;
  1583. i2 = f2cmax(i__7,i__4);
  1584. /* Computing MAX */
  1585. i__7 = i2, i__4 = kms - (krcol - incol) + 1;
  1586. i2 = f2cmax(i__7,i__4);
  1587. /* Computing MIN */
  1588. i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
  1589. i4 = f2cmin(i__7,i__4);
  1590. i__7 = i4;
  1591. for (j = i2; j <= i__7; ++j) {
  1592. i__4 = m * v_dim1 + 1;
  1593. i__5 = j + (kms + 1) * u_dim1;
  1594. i__8 = m * v_dim1 + 2;
  1595. i__9 = j + (kms + 2) * u_dim1;
  1596. q__4.r = v[i__8].r * u[i__9].r - v[i__8].i * u[i__9]
  1597. .i, q__4.i = v[i__8].r * u[i__9].i + v[i__8]
  1598. .i * u[i__9].r;
  1599. q__3.r = u[i__5].r + q__4.r, q__3.i = u[i__5].i +
  1600. q__4.i;
  1601. i__10 = m * v_dim1 + 3;
  1602. i__11 = j + (kms + 3) * u_dim1;
  1603. q__5.r = v[i__10].r * u[i__11].r - v[i__10].i * u[
  1604. i__11].i, q__5.i = v[i__10].r * u[i__11].i +
  1605. v[i__10].i * u[i__11].r;
  1606. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1607. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1608. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1609. q__2.r;
  1610. refsum.r = q__1.r, refsum.i = q__1.i;
  1611. i__4 = j + (kms + 1) * u_dim1;
  1612. i__5 = j + (kms + 1) * u_dim1;
  1613. q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
  1614. refsum.i;
  1615. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1616. i__4 = j + (kms + 2) * u_dim1;
  1617. i__5 = j + (kms + 2) * u_dim1;
  1618. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1619. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1620. q__2.i = refsum.r * q__3.i + refsum.i *
  1621. q__3.r;
  1622. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1623. q__2.i;
  1624. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1625. i__4 = j + (kms + 3) * u_dim1;
  1626. i__5 = j + (kms + 3) * u_dim1;
  1627. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1628. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1629. q__2.i = refsum.r * q__3.i + refsum.i *
  1630. q__3.r;
  1631. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1632. q__2.i;
  1633. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1634. /* L110: */
  1635. }
  1636. /* L120: */
  1637. }
  1638. } else if (*wantz) {
  1639. /* ==== U is not accumulated, so update Z */
  1640. /* . now by multiplying by reflections */
  1641. /* . from the right. ==== */
  1642. i__6 = mtop;
  1643. for (m = mbot; m >= i__6; --m) {
  1644. k = krcol + (m - 1 << 1);
  1645. i__7 = *ihiz;
  1646. for (j = *iloz; j <= i__7; ++j) {
  1647. i__4 = m * v_dim1 + 1;
  1648. i__5 = j + (k + 1) * z_dim1;
  1649. i__8 = m * v_dim1 + 2;
  1650. i__9 = j + (k + 2) * z_dim1;
  1651. q__4.r = v[i__8].r * z__[i__9].r - v[i__8].i * z__[
  1652. i__9].i, q__4.i = v[i__8].r * z__[i__9].i + v[
  1653. i__8].i * z__[i__9].r;
  1654. q__3.r = z__[i__5].r + q__4.r, q__3.i = z__[i__5].i +
  1655. q__4.i;
  1656. i__10 = m * v_dim1 + 3;
  1657. i__11 = j + (k + 3) * z_dim1;
  1658. q__5.r = v[i__10].r * z__[i__11].r - v[i__10].i * z__[
  1659. i__11].i, q__5.i = v[i__10].r * z__[i__11].i
  1660. + v[i__10].i * z__[i__11].r;
  1661. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1662. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1663. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1664. q__2.r;
  1665. refsum.r = q__1.r, refsum.i = q__1.i;
  1666. i__4 = j + (k + 1) * z_dim1;
  1667. i__5 = j + (k + 1) * z_dim1;
  1668. q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
  1669. - refsum.i;
  1670. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1671. i__4 = j + (k + 2) * z_dim1;
  1672. i__5 = j + (k + 2) * z_dim1;
  1673. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1674. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1675. q__2.i = refsum.r * q__3.i + refsum.i *
  1676. q__3.r;
  1677. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1678. q__2.i;
  1679. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1680. i__4 = j + (k + 3) * z_dim1;
  1681. i__5 = j + (k + 3) * z_dim1;
  1682. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1683. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1684. q__2.i = refsum.r * q__3.i + refsum.i *
  1685. q__3.r;
  1686. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1687. q__2.i;
  1688. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1689. /* L130: */
  1690. }
  1691. /* L140: */
  1692. }
  1693. }
  1694. /* ==== End of near-the-diagonal bulge chase. ==== */
  1695. /* L145: */
  1696. }
  1697. /* ==== Use U (if accumulated) to update far-from-diagonal */
  1698. /* . entries in H. If required, use U to update Z as */
  1699. /* . well. ==== */
  1700. if (accum) {
  1701. if (*wantt) {
  1702. jtop = 1;
  1703. jbot = *n;
  1704. } else {
  1705. jtop = *ktop;
  1706. jbot = *kbot;
  1707. }
  1708. /* Computing MAX */
  1709. i__3 = 1, i__6 = *ktop - incol;
  1710. k1 = f2cmax(i__3,i__6);
  1711. /* Computing MAX */
  1712. i__3 = 0, i__6 = ndcol - *kbot;
  1713. nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
  1714. /* ==== Horizontal Multiply ==== */
  1715. i__3 = jbot;
  1716. i__6 = *nh;
  1717. for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
  1718. <= i__3; jcol += i__6) {
  1719. /* Computing MIN */
  1720. i__7 = *nh, i__4 = jbot - jcol + 1;
  1721. jlen = f2cmin(i__7,i__4);
  1722. cgemm_("C", "N", &nu, &jlen, &nu, &c_b2, &u[k1 + k1 * u_dim1],
  1723. ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b1, &
  1724. wh[wh_offset], ldwh);
  1725. clacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
  1726. k1 + jcol * h_dim1], ldh);
  1727. /* L150: */
  1728. }
  1729. /* ==== Vertical multiply ==== */
  1730. i__6 = f2cmax(*ktop,incol) - 1;
  1731. i__3 = *nv;
  1732. for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
  1733. i__3) {
  1734. /* Computing MIN */
  1735. i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
  1736. jlen = f2cmin(i__7,i__4);
  1737. cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &h__[jrow + (incol +
  1738. k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b1,
  1739. &wv[wv_offset], ldwv);
  1740. clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
  1741. incol + k1) * h_dim1], ldh);
  1742. /* L160: */
  1743. }
  1744. /* ==== Z multiply (also vertical) ==== */
  1745. if (*wantz) {
  1746. i__3 = *ihiz;
  1747. i__6 = *nv;
  1748. for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
  1749. jrow += i__6) {
  1750. /* Computing MIN */
  1751. i__7 = *nv, i__4 = *ihiz - jrow + 1;
  1752. jlen = f2cmin(i__7,i__4);
  1753. cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &z__[jrow + (
  1754. incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
  1755. ldu, &c_b1, &wv[wv_offset], ldwv);
  1756. clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
  1757. jrow + (incol + k1) * z_dim1], ldz);
  1758. /* L170: */
  1759. }
  1760. }
  1761. }
  1762. /* L180: */
  1763. }
  1764. /* ==== End of CLAQR5 ==== */
  1765. return 0;
  1766. } /* claqr5_ */