You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clahef_rook.c 59 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static integer c__1 = 1;
  488. /* \brief \b CLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the b
  489. ounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLAHEF_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX A( LDA, * ), W( LDW, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CLAHEF_ROOK computes a partial factorization of a complex Hermitian */
  518. /* > matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting */
  519. /* > method. The partial factorization has the form: */
  520. /* > */
  521. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  522. /* > ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) */
  523. /* > */
  524. /* > A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' */
  525. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  526. /* > */
  527. /* > where the order of D is at most NB. The actual order is returned in */
  528. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  529. /* > Note that U**H denotes the conjugate transpose of U. */
  530. /* > */
  531. /* > CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses */
  532. /* > blocked code (calling Level 3 BLAS) to update the submatrix */
  533. /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > Specifies whether the upper or lower triangular part of the */
  541. /* > Hermitian matrix A is stored: */
  542. /* > = 'U': Upper triangular */
  543. /* > = 'L': Lower triangular */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The order of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NB */
  553. /* > \verbatim */
  554. /* > NB is INTEGER */
  555. /* > The maximum number of columns of the matrix A that should be */
  556. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  557. /* > blocks. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] KB */
  561. /* > \verbatim */
  562. /* > KB is INTEGER */
  563. /* > The number of columns of A that were actually factored. */
  564. /* > KB is either NB-1 or NB, or N if N <= NB. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in,out] A */
  568. /* > \verbatim */
  569. /* > A is COMPLEX array, dimension (LDA,N) */
  570. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  571. /* > n-by-n upper triangular part of A contains the upper */
  572. /* > triangular part of the matrix A, and the strictly lower */
  573. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  574. /* > leading n-by-n lower triangular part of A contains the lower */
  575. /* > triangular part of the matrix A, and the strictly upper */
  576. /* > triangular part of A is not referenced. */
  577. /* > On exit, A contains details of the partial factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > Details of the interchanges and the block structure of D. */
  590. /* > */
  591. /* > If UPLO = 'U': */
  592. /* > Only the last KB elements of IPIV are set. */
  593. /* > */
  594. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  595. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  596. /* > */
  597. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  598. /* > columns k and -IPIV(k) were interchanged and rows and */
  599. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  600. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  601. /* > */
  602. /* > If UPLO = 'L': */
  603. /* > Only the first KB elements of IPIV are set. */
  604. /* > */
  605. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  606. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  607. /* > */
  608. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  609. /* > columns k and -IPIV(k) were interchanged and rows and */
  610. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  611. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] W */
  615. /* > \verbatim */
  616. /* > W is COMPLEX array, dimension (LDW,NB) */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDW */
  620. /* > \verbatim */
  621. /* > LDW is INTEGER */
  622. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  630. /* > has been completed, but the block diagonal matrix D is */
  631. /* > exactly singular. */
  632. /* > \endverbatim */
  633. /* Authors: */
  634. /* ======== */
  635. /* > \author Univ. of Tennessee */
  636. /* > \author Univ. of California Berkeley */
  637. /* > \author Univ. of Colorado Denver */
  638. /* > \author NAG Ltd. */
  639. /* > \date November 2013 */
  640. /* > \ingroup complexHEcomputational */
  641. /* > \par Contributors: */
  642. /* ================== */
  643. /* > */
  644. /* > \verbatim */
  645. /* > */
  646. /* > November 2013, Igor Kozachenko, */
  647. /* > Computer Science Division, */
  648. /* > University of California, Berkeley */
  649. /* > */
  650. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  651. /* > School of Mathematics, */
  652. /* > University of Manchester */
  653. /* > \endverbatim */
  654. /* ===================================================================== */
  655. /* Subroutine */ int clahef_rook_(char *uplo, integer *n, integer *nb,
  656. integer *kb, complex *a, integer *lda, integer *ipiv, complex *w,
  657. integer *ldw, integer *info)
  658. {
  659. /* System generated locals */
  660. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  661. real r__1, r__2;
  662. complex q__1, q__2, q__3, q__4, q__5;
  663. /* Local variables */
  664. logical done;
  665. integer imax, jmax, j, k, p;
  666. real t, alpha;
  667. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  668. integer *, complex *, complex *, integer *, complex *, integer *,
  669. complex *, complex *, integer *);
  670. extern logical lsame_(char *, char *);
  671. extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
  672. , complex *, integer *, complex *, integer *, complex *, complex *
  673. , integer *);
  674. real sfmin;
  675. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  676. complex *, integer *);
  677. integer itemp;
  678. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  679. complex *, integer *);
  680. integer kstep;
  681. real stemp, r1;
  682. complex d11, d21, d22;
  683. integer jb, ii, jj, kk, kp;
  684. real absakk;
  685. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);
  686. integer kw;
  687. extern integer icamax_(integer *, complex *, integer *);
  688. extern real slamch_(char *);
  689. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  690. *);
  691. real colmax;
  692. integer jp1, jp2;
  693. real rowmax;
  694. integer kkw;
  695. /* -- LAPACK computational routine (version 3.5.0) -- */
  696. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  697. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  698. /* November 2013 */
  699. /* ===================================================================== */
  700. /* Parameter adjustments */
  701. a_dim1 = *lda;
  702. a_offset = 1 + a_dim1 * 1;
  703. a -= a_offset;
  704. --ipiv;
  705. w_dim1 = *ldw;
  706. w_offset = 1 + w_dim1 * 1;
  707. w -= w_offset;
  708. /* Function Body */
  709. *info = 0;
  710. /* Initialize ALPHA for use in choosing pivot block size. */
  711. alpha = (sqrt(17.f) + 1.f) / 8.f;
  712. /* Compute machine safe minimum */
  713. sfmin = slamch_("S");
  714. if (lsame_(uplo, "U")) {
  715. /* Factorize the trailing columns of A using the upper triangle */
  716. /* of A and working backwards, and compute the matrix W = U12*D */
  717. /* for use in updating A11 (note that conjg(W) is actually stored) */
  718. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  719. k = *n;
  720. L10:
  721. /* KW is the column of W which corresponds to column K of A */
  722. kw = *nb + k - *n;
  723. /* Exit from loop */
  724. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  725. goto L30;
  726. }
  727. kstep = 1;
  728. p = k;
  729. /* Copy column K of A to column KW of W and update it */
  730. if (k > 1) {
  731. i__1 = k - 1;
  732. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &
  733. c__1);
  734. }
  735. i__1 = k + kw * w_dim1;
  736. i__2 = k + k * a_dim1;
  737. r__1 = a[i__2].r;
  738. w[i__1].r = r__1, w[i__1].i = 0.f;
  739. if (k < *n) {
  740. i__1 = *n - k;
  741. q__1.r = -1.f, q__1.i = 0.f;
  742. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) * a_dim1 + 1],
  743. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw *
  744. w_dim1 + 1], &c__1);
  745. i__1 = k + kw * w_dim1;
  746. i__2 = k + kw * w_dim1;
  747. r__1 = w[i__2].r;
  748. w[i__1].r = r__1, w[i__1].i = 0.f;
  749. }
  750. /* Determine rows and columns to be interchanged and whether */
  751. /* a 1-by-1 or 2-by-2 pivot block will be used */
  752. i__1 = k + kw * w_dim1;
  753. absakk = (r__1 = w[i__1].r, abs(r__1));
  754. /* IMAX is the row-index of the largest off-diagonal element in */
  755. /* column K, and COLMAX is its absolute value. */
  756. /* Determine both COLMAX and IMAX. */
  757. if (k > 1) {
  758. i__1 = k - 1;
  759. imax = icamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  760. i__1 = imax + kw * w_dim1;
  761. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  762. kw * w_dim1]), abs(r__2));
  763. } else {
  764. colmax = 0.f;
  765. }
  766. if (f2cmax(absakk,colmax) == 0.f) {
  767. /* Column K is zero or underflow: set INFO and continue */
  768. if (*info == 0) {
  769. *info = k;
  770. }
  771. kp = k;
  772. i__1 = k + k * a_dim1;
  773. i__2 = k + kw * w_dim1;
  774. r__1 = w[i__2].r;
  775. a[i__1].r = r__1, a[i__1].i = 0.f;
  776. if (k > 1) {
  777. i__1 = k - 1;
  778. ccopy_(&i__1, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1],
  779. &c__1);
  780. }
  781. } else {
  782. /* ============================================================ */
  783. /* BEGIN pivot search */
  784. /* Case(1) */
  785. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  786. /* (used to handle NaN and Inf) */
  787. if (! (absakk < alpha * colmax)) {
  788. /* no interchange, use 1-by-1 pivot block */
  789. kp = k;
  790. } else {
  791. /* Lop until pivot found */
  792. done = FALSE_;
  793. L12:
  794. /* BEGIN pivot search loop body */
  795. /* Copy column IMAX to column KW-1 of W and update it */
  796. if (imax > 1) {
  797. i__1 = imax - 1;
  798. ccopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  799. w_dim1 + 1], &c__1);
  800. }
  801. i__1 = imax + (kw - 1) * w_dim1;
  802. i__2 = imax + imax * a_dim1;
  803. r__1 = a[i__2].r;
  804. w[i__1].r = r__1, w[i__1].i = 0.f;
  805. i__1 = k - imax;
  806. ccopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  807. 1 + (kw - 1) * w_dim1], &c__1);
  808. i__1 = k - imax;
  809. clacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1);
  810. if (k < *n) {
  811. i__1 = *n - k;
  812. q__1.r = -1.f, q__1.i = 0.f;
  813. cgemv_("No transpose", &k, &i__1, &q__1, &a[(k + 1) *
  814. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  815. ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  816. i__1 = imax + (kw - 1) * w_dim1;
  817. i__2 = imax + (kw - 1) * w_dim1;
  818. r__1 = w[i__2].r;
  819. w[i__1].r = r__1, w[i__1].i = 0.f;
  820. }
  821. /* JMAX is the column-index of the largest off-diagonal */
  822. /* element in row IMAX, and ROWMAX is its absolute value. */
  823. /* Determine both ROWMAX and JMAX. */
  824. if (imax != k) {
  825. i__1 = k - imax;
  826. jmax = imax + icamax_(&i__1, &w[imax + 1 + (kw - 1) *
  827. w_dim1], &c__1);
  828. i__1 = jmax + (kw - 1) * w_dim1;
  829. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  830. w[jmax + (kw - 1) * w_dim1]), abs(r__2));
  831. } else {
  832. rowmax = 0.f;
  833. }
  834. if (imax > 1) {
  835. i__1 = imax - 1;
  836. itemp = icamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  837. i__1 = itemp + (kw - 1) * w_dim1;
  838. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  839. itemp + (kw - 1) * w_dim1]), abs(r__2));
  840. if (stemp > rowmax) {
  841. rowmax = stemp;
  842. jmax = itemp;
  843. }
  844. }
  845. /* Case(2) */
  846. /* Equivalent to testing for */
  847. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  848. /* (used to handle NaN and Inf) */
  849. i__1 = imax + (kw - 1) * w_dim1;
  850. if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
  851. /* interchange rows and columns K and IMAX, */
  852. /* use 1-by-1 pivot block */
  853. kp = imax;
  854. /* copy column KW-1 of W to column KW of W */
  855. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  856. w_dim1 + 1], &c__1);
  857. done = TRUE_;
  858. /* Case(3) */
  859. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  860. /* (used to handle NaN and Inf) */
  861. } else if (p == jmax || rowmax <= colmax) {
  862. /* interchange rows and columns K-1 and IMAX, */
  863. /* use 2-by-2 pivot block */
  864. kp = imax;
  865. kstep = 2;
  866. done = TRUE_;
  867. /* Case(4) */
  868. } else {
  869. /* Pivot not found: set params and repeat */
  870. p = imax;
  871. colmax = rowmax;
  872. imax = jmax;
  873. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  874. ccopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  875. w_dim1 + 1], &c__1);
  876. }
  877. /* END pivot search loop body */
  878. if (! done) {
  879. goto L12;
  880. }
  881. }
  882. /* END pivot search */
  883. /* ============================================================ */
  884. /* KK is the column of A where pivoting step stopped */
  885. kk = k - kstep + 1;
  886. /* KKW is the column of W which corresponds to column KK of A */
  887. kkw = *nb + kk - *n;
  888. /* Interchange rows and columns P and K. */
  889. /* Updated column P is already stored in column KW of W. */
  890. if (kstep == 2 && p != k) {
  891. /* Copy non-updated column K to column P of submatrix A */
  892. /* at step K. No need to copy element into columns */
  893. /* K and K-1 of A for 2-by-2 pivot, since these columns */
  894. /* will be later overwritten. */
  895. i__1 = p + p * a_dim1;
  896. i__2 = k + k * a_dim1;
  897. r__1 = a[i__2].r;
  898. a[i__1].r = r__1, a[i__1].i = 0.f;
  899. i__1 = k - 1 - p;
  900. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) *
  901. a_dim1], lda);
  902. i__1 = k - 1 - p;
  903. clacgv_(&i__1, &a[p + (p + 1) * a_dim1], lda);
  904. if (p > 1) {
  905. i__1 = p - 1;
  906. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  907. 1], &c__1);
  908. }
  909. /* Interchange rows K and P in the last K+1 to N columns of A */
  910. /* (columns K and K-1 of A for 2-by-2 pivot will be */
  911. /* later overwritten). Interchange rows K and P */
  912. /* in last KKW to NB columns of W. */
  913. if (k < *n) {
  914. i__1 = *n - k;
  915. cswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  916. 1) * a_dim1], lda);
  917. }
  918. i__1 = *n - kk + 1;
  919. cswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
  920. ldw);
  921. }
  922. /* Interchange rows and columns KP and KK. */
  923. /* Updated column KP is already stored in column KKW of W. */
  924. if (kp != kk) {
  925. /* Copy non-updated column KK to column KP of submatrix A */
  926. /* at step K. No need to copy element into column K */
  927. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  928. /* will be later overwritten. */
  929. i__1 = kp + kp * a_dim1;
  930. i__2 = kk + kk * a_dim1;
  931. r__1 = a[i__2].r;
  932. a[i__1].r = r__1, a[i__1].i = 0.f;
  933. i__1 = kk - 1 - kp;
  934. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  935. 1) * a_dim1], lda);
  936. i__1 = kk - 1 - kp;
  937. clacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda);
  938. if (kp > 1) {
  939. i__1 = kp - 1;
  940. ccopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  941. + 1], &c__1);
  942. }
  943. /* Interchange rows KK and KP in last K+1 to N columns of A */
  944. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  945. /* later overwritten). Interchange rows KK and KP */
  946. /* in last KKW to NB columns of W. */
  947. if (k < *n) {
  948. i__1 = *n - k;
  949. cswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  950. + 1) * a_dim1], lda);
  951. }
  952. i__1 = *n - kk + 1;
  953. cswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  954. w_dim1], ldw);
  955. }
  956. if (kstep == 1) {
  957. /* 1-by-1 pivot block D(k): column kw of W now holds */
  958. /* W(kw) = U(k)*D(k), */
  959. /* where U(k) is the k-th column of U */
  960. /* (1) Store subdiag. elements of column U(k) */
  961. /* and 1-by-1 block D(k) in column k of A. */
  962. /* (NOTE: Diagonal element U(k,k) is a UNIT element */
  963. /* and not stored) */
  964. /* A(k,k) := D(k,k) = W(k,kw) */
  965. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  966. /* (NOTE: No need to use for Hermitian matrix */
  967. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  968. /* element D(k,k) from W (potentially saves only one load)) */
  969. ccopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  970. c__1);
  971. if (k > 1) {
  972. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  973. /* since that was ensured earlier in pivot search: */
  974. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  975. /* Handle division by a small number */
  976. i__1 = k + k * a_dim1;
  977. t = a[i__1].r;
  978. if (abs(t) >= sfmin) {
  979. r1 = 1.f / t;
  980. i__1 = k - 1;
  981. csscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  982. } else {
  983. i__1 = k - 1;
  984. for (ii = 1; ii <= i__1; ++ii) {
  985. i__2 = ii + k * a_dim1;
  986. i__3 = ii + k * a_dim1;
  987. q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
  988. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  989. /* L14: */
  990. }
  991. }
  992. /* (2) Conjugate column W(kw) */
  993. i__1 = k - 1;
  994. clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  995. }
  996. } else {
  997. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  998. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  999. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1000. /* of U */
  1001. /* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  1002. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  1003. /* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  1004. /* block and not stored) */
  1005. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  1006. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  1007. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  1008. if (k > 2) {
  1009. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1010. /* block D, so that each column contains 1, to reduce the */
  1011. /* number of FLOPS when we multiply panel */
  1012. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1013. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1014. /* ( d21 d22 ) */
  1015. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1016. /* ( (-d21) ( d11 ) ) */
  1017. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1018. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1019. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1020. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1021. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1022. /* ( ( -1 ) ( D22 ) ) */
  1023. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1024. /* ( ( -1 ) ( D22 ) ) */
  1025. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1026. /* ( ( -1 ) ( D22 ) ) */
  1027. /* Handle division by a small number. (NOTE: order of */
  1028. /* operations is important) */
  1029. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1030. /* ( (( -1 ) ) (( D22 ) ) ), */
  1031. /* where D11 = d22/d21, */
  1032. /* D22 = d11/conj(d21), */
  1033. /* D21 = d21, */
  1034. /* T = 1/(D22*D11-1). */
  1035. /* (NOTE: No need to check for division by ZERO, */
  1036. /* since that was ensured earlier in pivot search: */
  1037. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1038. /* since |d21| should be larger than |d11| and |d22|; */
  1039. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1040. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1041. i__1 = k - 1 + kw * w_dim1;
  1042. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1043. r_cnjg(&q__2, &d21);
  1044. c_div(&q__1, &w[k + kw * w_dim1], &q__2);
  1045. d11.r = q__1.r, d11.i = q__1.i;
  1046. c_div(&q__1, &w[k - 1 + (kw - 1) * w_dim1], &d21);
  1047. d22.r = q__1.r, d22.i = q__1.i;
  1048. q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
  1049. d22.i + d11.i * d22.r;
  1050. t = 1.f / (q__1.r - 1.f);
  1051. /* Update elements in columns A(k-1) and A(k) as */
  1052. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  1053. /* of D**(-1) */
  1054. i__1 = k - 2;
  1055. for (j = 1; j <= i__1; ++j) {
  1056. i__2 = j + (k - 1) * a_dim1;
  1057. i__3 = j + (kw - 1) * w_dim1;
  1058. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1059. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1060. .r;
  1061. i__4 = j + kw * w_dim1;
  1062. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1063. .i;
  1064. c_div(&q__2, &q__3, &d21);
  1065. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1066. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1067. i__2 = j + k * a_dim1;
  1068. i__3 = j + kw * w_dim1;
  1069. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1070. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1071. .r;
  1072. i__4 = j + (kw - 1) * w_dim1;
  1073. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1074. .i;
  1075. r_cnjg(&q__5, &d21);
  1076. c_div(&q__2, &q__3, &q__5);
  1077. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1078. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1079. /* L20: */
  1080. }
  1081. }
  1082. /* Copy D(k) to A */
  1083. i__1 = k - 1 + (k - 1) * a_dim1;
  1084. i__2 = k - 1 + (kw - 1) * w_dim1;
  1085. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1086. i__1 = k - 1 + k * a_dim1;
  1087. i__2 = k - 1 + kw * w_dim1;
  1088. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1089. i__1 = k + k * a_dim1;
  1090. i__2 = k + kw * w_dim1;
  1091. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1092. /* (2) Conjugate columns W(kw) and W(kw-1) */
  1093. i__1 = k - 1;
  1094. clacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  1095. i__1 = k - 2;
  1096. clacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  1097. }
  1098. }
  1099. /* Store details of the interchanges in IPIV */
  1100. if (kstep == 1) {
  1101. ipiv[k] = kp;
  1102. } else {
  1103. ipiv[k] = -p;
  1104. ipiv[k - 1] = -kp;
  1105. }
  1106. /* Decrease K and return to the start of the main loop */
  1107. k -= kstep;
  1108. goto L10;
  1109. L30:
  1110. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  1111. /* A11 := A11 - U12*D*U12**H = A11 - U12*W**H */
  1112. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1113. /* actually stored) */
  1114. i__1 = -(*nb);
  1115. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  1116. i__1) {
  1117. /* Computing MIN */
  1118. i__2 = *nb, i__3 = k - j + 1;
  1119. jb = f2cmin(i__2,i__3);
  1120. /* Update the upper triangle of the diagonal block */
  1121. i__2 = j + jb - 1;
  1122. for (jj = j; jj <= i__2; ++jj) {
  1123. i__3 = jj + jj * a_dim1;
  1124. i__4 = jj + jj * a_dim1;
  1125. r__1 = a[i__4].r;
  1126. a[i__3].r = r__1, a[i__3].i = 0.f;
  1127. i__3 = jj - j + 1;
  1128. i__4 = *n - k;
  1129. q__1.r = -1.f, q__1.i = 0.f;
  1130. cgemv_("No transpose", &i__3, &i__4, &q__1, &a[j + (k + 1) *
  1131. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1,
  1132. &a[j + jj * a_dim1], &c__1);
  1133. i__3 = jj + jj * a_dim1;
  1134. i__4 = jj + jj * a_dim1;
  1135. r__1 = a[i__4].r;
  1136. a[i__3].r = r__1, a[i__3].i = 0.f;
  1137. /* L40: */
  1138. }
  1139. /* Update the rectangular superdiagonal block */
  1140. if (j >= 2) {
  1141. i__2 = j - 1;
  1142. i__3 = *n - k;
  1143. q__1.r = -1.f, q__1.i = 0.f;
  1144. cgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &q__1,
  1145. &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) *
  1146. w_dim1], ldw, &c_b1, &a[j * a_dim1 + 1], lda);
  1147. }
  1148. /* L50: */
  1149. }
  1150. /* Put U12 in standard form by partially undoing the interchanges */
  1151. /* in of rows in columns k+1:n looping backwards from k+1 to n */
  1152. j = k + 1;
  1153. L60:
  1154. /* Undo the interchanges (if any) of rows J and JP2 */
  1155. /* (or J and JP2, and J+1 and JP1) at each step J */
  1156. kstep = 1;
  1157. jp1 = 1;
  1158. /* (Here, J is a diagonal index) */
  1159. jj = j;
  1160. jp2 = ipiv[j];
  1161. if (jp2 < 0) {
  1162. jp2 = -jp2;
  1163. /* (Here, J is a diagonal index) */
  1164. ++j;
  1165. jp1 = -ipiv[j];
  1166. kstep = 2;
  1167. }
  1168. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  1169. /* of the rows to swap back doesn't include diagonal element) */
  1170. ++j;
  1171. if (jp2 != jj && j <= *n) {
  1172. i__1 = *n - j + 1;
  1173. cswap_(&i__1, &a[jp2 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1174. ;
  1175. }
  1176. ++jj;
  1177. if (kstep == 2 && jp1 != jj && j <= *n) {
  1178. i__1 = *n - j + 1;
  1179. cswap_(&i__1, &a[jp1 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
  1180. ;
  1181. }
  1182. if (j < *n) {
  1183. goto L60;
  1184. }
  1185. /* Set KB to the number of columns factorized */
  1186. *kb = *n - k;
  1187. } else {
  1188. /* Factorize the leading columns of A using the lower triangle */
  1189. /* of A and working forwards, and compute the matrix W = L21*D */
  1190. /* for use in updating A22 (note that conjg(W) is actually stored) */
  1191. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  1192. k = 1;
  1193. L70:
  1194. /* Exit from loop */
  1195. if (k >= *nb && *nb < *n || k > *n) {
  1196. goto L90;
  1197. }
  1198. kstep = 1;
  1199. p = k;
  1200. /* Copy column K of A to column K of W and update column K of W */
  1201. i__1 = k + k * w_dim1;
  1202. i__2 = k + k * a_dim1;
  1203. r__1 = a[i__2].r;
  1204. w[i__1].r = r__1, w[i__1].i = 0.f;
  1205. if (k < *n) {
  1206. i__1 = *n - k;
  1207. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k *
  1208. w_dim1], &c__1);
  1209. }
  1210. if (k > 1) {
  1211. i__1 = *n - k + 1;
  1212. i__2 = k - 1;
  1213. q__1.r = -1.f, q__1.i = 0.f;
  1214. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1], lda, &
  1215. w[k + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1);
  1216. i__1 = k + k * w_dim1;
  1217. i__2 = k + k * w_dim1;
  1218. r__1 = w[i__2].r;
  1219. w[i__1].r = r__1, w[i__1].i = 0.f;
  1220. }
  1221. /* Determine rows and columns to be interchanged and whether */
  1222. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1223. i__1 = k + k * w_dim1;
  1224. absakk = (r__1 = w[i__1].r, abs(r__1));
  1225. /* IMAX is the row-index of the largest off-diagonal element in */
  1226. /* column K, and COLMAX is its absolute value. */
  1227. /* Determine both COLMAX and IMAX. */
  1228. if (k < *n) {
  1229. i__1 = *n - k;
  1230. imax = k + icamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1231. i__1 = imax + k * w_dim1;
  1232. colmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[imax +
  1233. k * w_dim1]), abs(r__2));
  1234. } else {
  1235. colmax = 0.f;
  1236. }
  1237. if (f2cmax(absakk,colmax) == 0.f) {
  1238. /* Column K is zero or underflow: set INFO and continue */
  1239. if (*info == 0) {
  1240. *info = k;
  1241. }
  1242. kp = k;
  1243. i__1 = k + k * a_dim1;
  1244. i__2 = k + k * w_dim1;
  1245. r__1 = w[i__2].r;
  1246. a[i__1].r = r__1, a[i__1].i = 0.f;
  1247. if (k < *n) {
  1248. i__1 = *n - k;
  1249. ccopy_(&i__1, &w[k + 1 + k * w_dim1], &c__1, &a[k + 1 + k *
  1250. a_dim1], &c__1);
  1251. }
  1252. } else {
  1253. /* ============================================================ */
  1254. /* BEGIN pivot search */
  1255. /* Case(1) */
  1256. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1257. /* (used to handle NaN and Inf) */
  1258. if (! (absakk < alpha * colmax)) {
  1259. /* no interchange, use 1-by-1 pivot block */
  1260. kp = k;
  1261. } else {
  1262. done = FALSE_;
  1263. /* Loop until pivot found */
  1264. L72:
  1265. /* BEGIN pivot search loop body */
  1266. /* Copy column IMAX to column k+1 of W and update it */
  1267. i__1 = imax - k;
  1268. ccopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  1269. w_dim1], &c__1);
  1270. i__1 = imax - k;
  1271. clacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1);
  1272. i__1 = imax + (k + 1) * w_dim1;
  1273. i__2 = imax + imax * a_dim1;
  1274. r__1 = a[i__2].r;
  1275. w[i__1].r = r__1, w[i__1].i = 0.f;
  1276. if (imax < *n) {
  1277. i__1 = *n - imax;
  1278. ccopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[
  1279. imax + 1 + (k + 1) * w_dim1], &c__1);
  1280. }
  1281. if (k > 1) {
  1282. i__1 = *n - k + 1;
  1283. i__2 = k - 1;
  1284. q__1.r = -1.f, q__1.i = 0.f;
  1285. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[k + a_dim1]
  1286. , lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k +
  1287. 1) * w_dim1], &c__1);
  1288. i__1 = imax + (k + 1) * w_dim1;
  1289. i__2 = imax + (k + 1) * w_dim1;
  1290. r__1 = w[i__2].r;
  1291. w[i__1].r = r__1, w[i__1].i = 0.f;
  1292. }
  1293. /* JMAX is the column-index of the largest off-diagonal */
  1294. /* element in row IMAX, and ROWMAX is its absolute value. */
  1295. /* Determine both ROWMAX and JMAX. */
  1296. if (imax != k) {
  1297. i__1 = imax - k;
  1298. jmax = k - 1 + icamax_(&i__1, &w[k + (k + 1) * w_dim1], &
  1299. c__1);
  1300. i__1 = jmax + (k + 1) * w_dim1;
  1301. rowmax = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1302. w[jmax + (k + 1) * w_dim1]), abs(r__2));
  1303. } else {
  1304. rowmax = 0.f;
  1305. }
  1306. if (imax < *n) {
  1307. i__1 = *n - imax;
  1308. itemp = imax + icamax_(&i__1, &w[imax + 1 + (k + 1) *
  1309. w_dim1], &c__1);
  1310. i__1 = itemp + (k + 1) * w_dim1;
  1311. stemp = (r__1 = w[i__1].r, abs(r__1)) + (r__2 = r_imag(&w[
  1312. itemp + (k + 1) * w_dim1]), abs(r__2));
  1313. if (stemp > rowmax) {
  1314. rowmax = stemp;
  1315. jmax = itemp;
  1316. }
  1317. }
  1318. /* Case(2) */
  1319. /* Equivalent to testing for */
  1320. /* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX */
  1321. /* (used to handle NaN and Inf) */
  1322. i__1 = imax + (k + 1) * w_dim1;
  1323. if (! ((r__1 = w[i__1].r, abs(r__1)) < alpha * rowmax)) {
  1324. /* interchange rows and columns K and IMAX, */
  1325. /* use 1-by-1 pivot block */
  1326. kp = imax;
  1327. /* copy column K+1 of W to column K of W */
  1328. i__1 = *n - k + 1;
  1329. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1330. w_dim1], &c__1);
  1331. done = TRUE_;
  1332. /* Case(3) */
  1333. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1334. /* (used to handle NaN and Inf) */
  1335. } else if (p == jmax || rowmax <= colmax) {
  1336. /* interchange rows and columns K+1 and IMAX, */
  1337. /* use 2-by-2 pivot block */
  1338. kp = imax;
  1339. kstep = 2;
  1340. done = TRUE_;
  1341. /* Case(4) */
  1342. } else {
  1343. /* Pivot not found: set params and repeat */
  1344. p = imax;
  1345. colmax = rowmax;
  1346. imax = jmax;
  1347. /* Copy updated JMAXth (next IMAXth) column to Kth of W */
  1348. i__1 = *n - k + 1;
  1349. ccopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1350. w_dim1], &c__1);
  1351. }
  1352. /* End pivot search loop body */
  1353. if (! done) {
  1354. goto L72;
  1355. }
  1356. }
  1357. /* END pivot search */
  1358. /* ============================================================ */
  1359. /* KK is the column of A where pivoting step stopped */
  1360. kk = k + kstep - 1;
  1361. /* Interchange rows and columns P and K (only for 2-by-2 pivot). */
  1362. /* Updated column P is already stored in column K of W. */
  1363. if (kstep == 2 && p != k) {
  1364. /* Copy non-updated column KK-1 to column P of submatrix A */
  1365. /* at step K. No need to copy element into columns */
  1366. /* K and K+1 of A for 2-by-2 pivot, since these columns */
  1367. /* will be later overwritten. */
  1368. i__1 = p + p * a_dim1;
  1369. i__2 = k + k * a_dim1;
  1370. r__1 = a[i__2].r;
  1371. a[i__1].r = r__1, a[i__1].i = 0.f;
  1372. i__1 = p - k - 1;
  1373. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) *
  1374. a_dim1], lda);
  1375. i__1 = p - k - 1;
  1376. clacgv_(&i__1, &a[p + (k + 1) * a_dim1], lda);
  1377. if (p < *n) {
  1378. i__1 = *n - p;
  1379. ccopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1380. * a_dim1], &c__1);
  1381. }
  1382. /* Interchange rows K and P in first K-1 columns of A */
  1383. /* (columns K and K+1 of A for 2-by-2 pivot will be */
  1384. /* later overwritten). Interchange rows K and P */
  1385. /* in first KK columns of W. */
  1386. if (k > 1) {
  1387. i__1 = k - 1;
  1388. cswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1389. }
  1390. cswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
  1391. }
  1392. /* Interchange rows and columns KP and KK. */
  1393. /* Updated column KP is already stored in column KK of W. */
  1394. if (kp != kk) {
  1395. /* Copy non-updated column KK to column KP of submatrix A */
  1396. /* at step K. No need to copy element into column K */
  1397. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1398. /* will be later overwritten. */
  1399. i__1 = kp + kp * a_dim1;
  1400. i__2 = kk + kk * a_dim1;
  1401. r__1 = a[i__2].r;
  1402. a[i__1].r = r__1, a[i__1].i = 0.f;
  1403. i__1 = kp - kk - 1;
  1404. ccopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1405. 1) * a_dim1], lda);
  1406. i__1 = kp - kk - 1;
  1407. clacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda);
  1408. if (kp < *n) {
  1409. i__1 = *n - kp;
  1410. ccopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1411. + kp * a_dim1], &c__1);
  1412. }
  1413. /* Interchange rows KK and KP in first K-1 columns of A */
  1414. /* (column K (or K and K+1 for 2-by-2 pivot) of A will be */
  1415. /* later overwritten). Interchange rows KK and KP */
  1416. /* in first KK columns of W. */
  1417. if (k > 1) {
  1418. i__1 = k - 1;
  1419. cswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1420. }
  1421. cswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1422. }
  1423. if (kstep == 1) {
  1424. /* 1-by-1 pivot block D(k): column k of W now holds */
  1425. /* W(k) = L(k)*D(k), */
  1426. /* where L(k) is the k-th column of L */
  1427. /* (1) Store subdiag. elements of column L(k) */
  1428. /* and 1-by-1 block D(k) in column k of A. */
  1429. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1430. /* and not stored) */
  1431. /* A(k,k) := D(k,k) = W(k,k) */
  1432. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1433. /* (NOTE: No need to use for Hermitian matrix */
  1434. /* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal */
  1435. /* element D(k,k) from W (potentially saves only one load)) */
  1436. i__1 = *n - k + 1;
  1437. ccopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1438. c__1);
  1439. if (k < *n) {
  1440. /* (NOTE: No need to check if A(k,k) is NOT ZERO, */
  1441. /* since that was ensured earlier in pivot search: */
  1442. /* case A(k,k) = 0 falls into 2x2 pivot case(3)) */
  1443. /* Handle division by a small number */
  1444. i__1 = k + k * a_dim1;
  1445. t = a[i__1].r;
  1446. if (abs(t) >= sfmin) {
  1447. r1 = 1.f / t;
  1448. i__1 = *n - k;
  1449. csscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1450. } else {
  1451. i__1 = *n;
  1452. for (ii = k + 1; ii <= i__1; ++ii) {
  1453. i__2 = ii + k * a_dim1;
  1454. i__3 = ii + k * a_dim1;
  1455. q__1.r = a[i__3].r / t, q__1.i = a[i__3].i / t;
  1456. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1457. /* L74: */
  1458. }
  1459. }
  1460. /* (2) Conjugate column W(k) */
  1461. i__1 = *n - k;
  1462. clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1463. }
  1464. } else {
  1465. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1466. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1467. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1468. /* of L */
  1469. /* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1470. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1471. /* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1472. /* block and not stored. */
  1473. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1474. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1475. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1476. if (k < *n - 1) {
  1477. /* Factor out the columns of the inverse of 2-by-2 pivot */
  1478. /* block D, so that each column contains 1, to reduce the */
  1479. /* number of FLOPS when we multiply panel */
  1480. /* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1). */
  1481. /* D**(-1) = ( d11 cj(d21) )**(-1) = */
  1482. /* ( d21 d22 ) */
  1483. /* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = */
  1484. /* ( (-d21) ( d11 ) ) */
  1485. /* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * */
  1486. /* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = */
  1487. /* ( ( -1 ) ( d11/conj(d21) ) ) */
  1488. /* = 1/(|d21|**2) * 1/(D22*D11-1) * */
  1489. /* * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1490. /* ( ( -1 ) ( D22 ) ) */
  1491. /* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) = */
  1492. /* ( ( -1 ) ( D22 ) ) */
  1493. /* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) = */
  1494. /* ( ( -1 ) ( D22 ) ) */
  1495. /* Handle division by a small number. (NOTE: order of */
  1496. /* operations is important) */
  1497. /* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) ) */
  1498. /* ( (( -1 ) ) (( D22 ) ) ), */
  1499. /* where D11 = d22/d21, */
  1500. /* D22 = d11/conj(d21), */
  1501. /* D21 = d21, */
  1502. /* T = 1/(D22*D11-1). */
  1503. /* (NOTE: No need to check for division by ZERO, */
  1504. /* since that was ensured earlier in pivot search: */
  1505. /* (a) d21 != 0 in 2x2 pivot case(4), */
  1506. /* since |d21| should be larger than |d11| and |d22|; */
  1507. /* (b) (D22*D11 - 1) != 0, since from (a), */
  1508. /* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.) */
  1509. i__1 = k + 1 + k * w_dim1;
  1510. d21.r = w[i__1].r, d21.i = w[i__1].i;
  1511. c_div(&q__1, &w[k + 1 + (k + 1) * w_dim1], &d21);
  1512. d11.r = q__1.r, d11.i = q__1.i;
  1513. r_cnjg(&q__2, &d21);
  1514. c_div(&q__1, &w[k + k * w_dim1], &q__2);
  1515. d22.r = q__1.r, d22.i = q__1.i;
  1516. q__1.r = d11.r * d22.r - d11.i * d22.i, q__1.i = d11.r *
  1517. d22.i + d11.i * d22.r;
  1518. t = 1.f / (q__1.r - 1.f);
  1519. /* Update elements in columns A(k) and A(k+1) as */
  1520. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1521. /* of D**(-1) */
  1522. i__1 = *n;
  1523. for (j = k + 2; j <= i__1; ++j) {
  1524. i__2 = j + k * a_dim1;
  1525. i__3 = j + k * w_dim1;
  1526. q__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i,
  1527. q__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
  1528. .r;
  1529. i__4 = j + (k + 1) * w_dim1;
  1530. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1531. .i;
  1532. r_cnjg(&q__5, &d21);
  1533. c_div(&q__2, &q__3, &q__5);
  1534. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1535. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1536. i__2 = j + (k + 1) * a_dim1;
  1537. i__3 = j + (k + 1) * w_dim1;
  1538. q__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i,
  1539. q__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
  1540. .r;
  1541. i__4 = j + k * w_dim1;
  1542. q__3.r = q__4.r - w[i__4].r, q__3.i = q__4.i - w[i__4]
  1543. .i;
  1544. c_div(&q__2, &q__3, &d21);
  1545. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  1546. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1547. /* L80: */
  1548. }
  1549. }
  1550. /* Copy D(k) to A */
  1551. i__1 = k + k * a_dim1;
  1552. i__2 = k + k * w_dim1;
  1553. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1554. i__1 = k + 1 + k * a_dim1;
  1555. i__2 = k + 1 + k * w_dim1;
  1556. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1557. i__1 = k + 1 + (k + 1) * a_dim1;
  1558. i__2 = k + 1 + (k + 1) * w_dim1;
  1559. a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
  1560. /* (2) Conjugate columns W(k) and W(k+1) */
  1561. i__1 = *n - k;
  1562. clacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  1563. i__1 = *n - k - 1;
  1564. clacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1);
  1565. }
  1566. }
  1567. /* Store details of the interchanges in IPIV */
  1568. if (kstep == 1) {
  1569. ipiv[k] = kp;
  1570. } else {
  1571. ipiv[k] = -p;
  1572. ipiv[k + 1] = -kp;
  1573. }
  1574. /* Increase K and return to the start of the main loop */
  1575. k += kstep;
  1576. goto L70;
  1577. L90:
  1578. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1579. /* A22 := A22 - L21*D*L21**H = A22 - L21*W**H */
  1580. /* computing blocks of NB columns at a time (note that conjg(W) is */
  1581. /* actually stored) */
  1582. i__1 = *n;
  1583. i__2 = *nb;
  1584. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1585. /* Computing MIN */
  1586. i__3 = *nb, i__4 = *n - j + 1;
  1587. jb = f2cmin(i__3,i__4);
  1588. /* Update the lower triangle of the diagonal block */
  1589. i__3 = j + jb - 1;
  1590. for (jj = j; jj <= i__3; ++jj) {
  1591. i__4 = jj + jj * a_dim1;
  1592. i__5 = jj + jj * a_dim1;
  1593. r__1 = a[i__5].r;
  1594. a[i__4].r = r__1, a[i__4].i = 0.f;
  1595. i__4 = j + jb - jj;
  1596. i__5 = k - 1;
  1597. q__1.r = -1.f, q__1.i = 0.f;
  1598. cgemv_("No transpose", &i__4, &i__5, &q__1, &a[jj + a_dim1],
  1599. lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1]
  1600. , &c__1);
  1601. i__4 = jj + jj * a_dim1;
  1602. i__5 = jj + jj * a_dim1;
  1603. r__1 = a[i__5].r;
  1604. a[i__4].r = r__1, a[i__4].i = 0.f;
  1605. /* L100: */
  1606. }
  1607. /* Update the rectangular subdiagonal block */
  1608. if (j + jb <= *n) {
  1609. i__3 = *n - j - jb + 1;
  1610. i__4 = k - 1;
  1611. q__1.r = -1.f, q__1.i = 0.f;
  1612. cgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &q__1,
  1613. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1,
  1614. &a[j + jb + j * a_dim1], lda);
  1615. }
  1616. /* L110: */
  1617. }
  1618. /* Put L21 in standard form by partially undoing the interchanges */
  1619. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1620. j = k - 1;
  1621. L120:
  1622. /* Undo the interchanges (if any) of rows J and JP2 */
  1623. /* (or J and JP2, and J-1 and JP1) at each step J */
  1624. kstep = 1;
  1625. jp1 = 1;
  1626. /* (Here, J is a diagonal index) */
  1627. jj = j;
  1628. jp2 = ipiv[j];
  1629. if (jp2 < 0) {
  1630. jp2 = -jp2;
  1631. /* (Here, J is a diagonal index) */
  1632. --j;
  1633. jp1 = -ipiv[j];
  1634. kstep = 2;
  1635. }
  1636. /* (NOTE: Here, J is used to determine row length. Length J */
  1637. /* of the rows to swap back doesn't include diagonal element) */
  1638. --j;
  1639. if (jp2 != jj && j >= 1) {
  1640. cswap_(&j, &a[jp2 + a_dim1], lda, &a[jj + a_dim1], lda);
  1641. }
  1642. --jj;
  1643. if (kstep == 2 && jp1 != jj && j >= 1) {
  1644. cswap_(&j, &a[jp1 + a_dim1], lda, &a[jj + a_dim1], lda);
  1645. }
  1646. if (j > 1) {
  1647. goto L120;
  1648. }
  1649. /* Set KB to the number of columns factorized */
  1650. *kb = k - 1;
  1651. }
  1652. return 0;
  1653. /* End of CLAHEF_ROOK */
  1654. } /* clahef_rook__ */