You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbgst.c 80 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. /* > \brief \b CHBGST */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHBGST + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  508. /* LDX, WORK, RWORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  511. /* REAL RWORK( * ) */
  512. /* COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CHBGST reduces a complex Hermitian-definite banded generalized */
  520. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  521. /* > such that C has the same bandwidth as A. */
  522. /* > */
  523. /* > B must have been previously factorized as S**H*S by CPBSTF, using a */
  524. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  525. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  526. /* > bandwidth of A. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] VECT */
  531. /* > \verbatim */
  532. /* > VECT is CHARACTER*1 */
  533. /* > = 'N': do not form the transformation matrix X; */
  534. /* > = 'V': form X. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': Upper triangle of A is stored; */
  541. /* > = 'L': Lower triangle of A is stored. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrices A and B. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] KA */
  551. /* > \verbatim */
  552. /* > KA is INTEGER */
  553. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  554. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  561. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] AB */
  565. /* > \verbatim */
  566. /* > AB is COMPLEX array, dimension (LDAB,N) */
  567. /* > On entry, the upper or lower triangle of the Hermitian band */
  568. /* > matrix A, stored in the first ka+1 rows of the array. The */
  569. /* > j-th column of A is stored in the j-th column of the array AB */
  570. /* > as follows: */
  571. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  572. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  573. /* > */
  574. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  575. /* > format as A. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDAB */
  579. /* > \verbatim */
  580. /* > LDAB is INTEGER */
  581. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BB */
  585. /* > \verbatim */
  586. /* > BB is COMPLEX array, dimension (LDBB,N) */
  587. /* > The banded factor S from the split Cholesky factorization of */
  588. /* > B, as returned by CPBSTF, stored in the first kb+1 rows of */
  589. /* > the array. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDBB */
  593. /* > \verbatim */
  594. /* > LDBB is INTEGER */
  595. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] X */
  599. /* > \verbatim */
  600. /* > X is COMPLEX array, dimension (LDX,N) */
  601. /* > If VECT = 'V', the n-by-n matrix X. */
  602. /* > If VECT = 'N', the array X is not referenced. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDX */
  606. /* > \verbatim */
  607. /* > LDX is INTEGER */
  608. /* > The leading dimension of the array X. */
  609. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX array, dimension (N) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] RWORK */
  618. /* > \verbatim */
  619. /* > RWORK is REAL array, dimension (N) */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup complexOTHERcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ int chbgst_(char *vect, char *uplo, integer *n, integer *ka,
  638. integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb,
  639. complex *x, integer *ldx, complex *work, real *rwork, integer *info)
  640. {
  641. /* System generated locals */
  642. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  643. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  644. real r__1;
  645. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8, q__9, q__10;
  646. /* Local variables */
  647. integer inca;
  648. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  649. complex *, integer *, real *, complex *);
  650. integer i__, j, k, l, m;
  651. extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
  652. complex *, integer *, complex *, integer *, complex *, integer *);
  653. complex t;
  654. extern logical lsame_(char *, char *);
  655. extern /* Subroutine */ int cgeru_(integer *, integer *, complex *,
  656. complex *, integer *, complex *, integer *, complex *, integer *);
  657. integer i0, i1;
  658. logical upper;
  659. integer i2, j1, j2;
  660. logical wantx;
  661. extern /* Subroutine */ int clar2v_(integer *, complex *, complex *,
  662. complex *, integer *, real *, complex *, integer *);
  663. complex ra;
  664. extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);
  665. integer nr, nx;
  666. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  667. *), claset_(char *, integer *, integer *, complex *, complex *,
  668. complex *, integer *), clartg_(complex *, complex *, real
  669. *, complex *, complex *), xerbla_(char *, integer *, ftnlen),
  670. clargv_(integer *, complex *, integer *, complex *, integer *,
  671. real *, integer *);
  672. logical update;
  673. extern /* Subroutine */ int clartv_(integer *, complex *, integer *,
  674. complex *, integer *, real *, complex *, integer *);
  675. integer ka1, kb1;
  676. complex ra1;
  677. integer j1t, j2t;
  678. real bii;
  679. integer kbt, nrt;
  680. /* -- LAPACK computational routine (version 3.7.0) -- */
  681. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  682. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  683. /* December 2016 */
  684. /* ===================================================================== */
  685. /* Test the input parameters */
  686. /* Parameter adjustments */
  687. ab_dim1 = *ldab;
  688. ab_offset = 1 + ab_dim1 * 1;
  689. ab -= ab_offset;
  690. bb_dim1 = *ldbb;
  691. bb_offset = 1 + bb_dim1 * 1;
  692. bb -= bb_offset;
  693. x_dim1 = *ldx;
  694. x_offset = 1 + x_dim1 * 1;
  695. x -= x_offset;
  696. --work;
  697. --rwork;
  698. /* Function Body */
  699. wantx = lsame_(vect, "V");
  700. upper = lsame_(uplo, "U");
  701. ka1 = *ka + 1;
  702. kb1 = *kb + 1;
  703. *info = 0;
  704. if (! wantx && ! lsame_(vect, "N")) {
  705. *info = -1;
  706. } else if (! upper && ! lsame_(uplo, "L")) {
  707. *info = -2;
  708. } else if (*n < 0) {
  709. *info = -3;
  710. } else if (*ka < 0) {
  711. *info = -4;
  712. } else if (*kb < 0 || *kb > *ka) {
  713. *info = -5;
  714. } else if (*ldab < *ka + 1) {
  715. *info = -7;
  716. } else if (*ldbb < *kb + 1) {
  717. *info = -9;
  718. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  719. *info = -11;
  720. }
  721. if (*info != 0) {
  722. i__1 = -(*info);
  723. xerbla_("CHBGST", &i__1, (ftnlen)6);
  724. return 0;
  725. }
  726. /* Quick return if possible */
  727. if (*n == 0) {
  728. return 0;
  729. }
  730. inca = *ldab * ka1;
  731. /* Initialize X to the unit matrix, if needed */
  732. if (wantx) {
  733. claset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  734. }
  735. /* Set M to the splitting point m. It must be the same value as is */
  736. /* used in CPBSTF. The chosen value allows the arrays WORK and RWORK */
  737. /* to be of dimension (N). */
  738. m = (*n + *kb) / 2;
  739. /* The routine works in two phases, corresponding to the two halves */
  740. /* of the split Cholesky factorization of B as S**H*S where */
  741. /* S = ( U ) */
  742. /* ( M L ) */
  743. /* with U upper triangular of order m, and L lower triangular of */
  744. /* order n-m. S has the same bandwidth as B. */
  745. /* S is treated as a product of elementary matrices: */
  746. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  747. /* where S(i) is determined by the i-th row of S. */
  748. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  749. /* in phase 2, it takes the values 1, 2, ... , m. */
  750. /* For each value of i, the current matrix A is updated by forming */
  751. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  752. /* the band of A. The bulge is then pushed down toward the bottom of */
  753. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  754. /* plane rotations. */
  755. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  756. /* of them are linearly independent, so annihilating a bulge requires */
  757. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  758. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  759. /* Wherever possible, rotations are generated and applied in vector */
  760. /* operations of length NR between the indices J1 and J2 (sometimes */
  761. /* replaced by modified values NRT, J1T or J2T). */
  762. /* The real cosines and complex sines of the rotations are stored in */
  763. /* the arrays RWORK and WORK, those of the 1st set in elements */
  764. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  765. /* The bulges are not formed explicitly; nonzero elements outside the */
  766. /* band are created only when they are required for generating new */
  767. /* rotations; they are stored in the array WORK, in positions where */
  768. /* they are later overwritten by the sines of the rotations which */
  769. /* annihilate them. */
  770. /* **************************** Phase 1 ***************************** */
  771. /* The logical structure of this phase is: */
  772. /* UPDATE = .TRUE. */
  773. /* DO I = N, M + 1, -1 */
  774. /* use S(i) to update A and create a new bulge */
  775. /* apply rotations to push all bulges KA positions downward */
  776. /* END DO */
  777. /* UPDATE = .FALSE. */
  778. /* DO I = M + KA + 1, N - 1 */
  779. /* apply rotations to push all bulges KA positions downward */
  780. /* END DO */
  781. /* To avoid duplicating code, the two loops are merged. */
  782. update = TRUE_;
  783. i__ = *n + 1;
  784. L10:
  785. if (update) {
  786. --i__;
  787. /* Computing MIN */
  788. i__1 = *kb, i__2 = i__ - 1;
  789. kbt = f2cmin(i__1,i__2);
  790. i0 = i__ - 1;
  791. /* Computing MIN */
  792. i__1 = *n, i__2 = i__ + *ka;
  793. i1 = f2cmin(i__1,i__2);
  794. i2 = i__ - kbt + ka1;
  795. if (i__ < m + 1) {
  796. update = FALSE_;
  797. ++i__;
  798. i0 = m;
  799. if (*ka == 0) {
  800. goto L480;
  801. }
  802. goto L10;
  803. }
  804. } else {
  805. i__ += *ka;
  806. if (i__ > *n - 1) {
  807. goto L480;
  808. }
  809. }
  810. if (upper) {
  811. /* Transform A, working with the upper triangle */
  812. if (update) {
  813. /* Form inv(S(i))**H * A * inv(S(i)) */
  814. i__1 = kb1 + i__ * bb_dim1;
  815. bii = bb[i__1].r;
  816. i__1 = ka1 + i__ * ab_dim1;
  817. i__2 = ka1 + i__ * ab_dim1;
  818. r__1 = ab[i__2].r / bii / bii;
  819. ab[i__1].r = r__1, ab[i__1].i = 0.f;
  820. i__1 = i1;
  821. for (j = i__ + 1; j <= i__1; ++j) {
  822. i__2 = i__ - j + ka1 + j * ab_dim1;
  823. i__3 = i__ - j + ka1 + j * ab_dim1;
  824. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  825. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  826. /* L20: */
  827. }
  828. /* Computing MAX */
  829. i__1 = 1, i__2 = i__ - *ka;
  830. i__3 = i__ - 1;
  831. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  832. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  833. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  834. q__1.r = ab[i__2].r / bii, q__1.i = ab[i__2].i / bii;
  835. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  836. /* L30: */
  837. }
  838. i__3 = i__ - 1;
  839. for (k = i__ - kbt; k <= i__3; ++k) {
  840. i__1 = k;
  841. for (j = i__ - kbt; j <= i__1; ++j) {
  842. i__2 = j - k + ka1 + k * ab_dim1;
  843. i__4 = j - k + ka1 + k * ab_dim1;
  844. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  845. r_cnjg(&q__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  846. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  847. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  848. q__5.r;
  849. q__3.r = ab[i__4].r - q__4.r, q__3.i = ab[i__4].i -
  850. q__4.i;
  851. r_cnjg(&q__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  852. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  853. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  854. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  855. .r;
  856. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  857. i__7 = ka1 + i__ * ab_dim1;
  858. r__1 = ab[i__7].r;
  859. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  860. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  861. r_cnjg(&q__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  862. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  863. q__9.r * q__10.i + q__9.i * q__10.r;
  864. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  865. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  866. /* L40: */
  867. }
  868. /* Computing MAX */
  869. i__1 = 1, i__2 = i__ - *ka;
  870. i__4 = i__ - kbt - 1;
  871. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  872. i__1 = j - k + ka1 + k * ab_dim1;
  873. i__2 = j - k + ka1 + k * ab_dim1;
  874. r_cnjg(&q__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  875. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  876. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  877. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  878. .r;
  879. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  880. q__2.i;
  881. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  882. /* L50: */
  883. }
  884. /* L60: */
  885. }
  886. i__3 = i1;
  887. for (j = i__; j <= i__3; ++j) {
  888. /* Computing MAX */
  889. i__4 = j - *ka, i__1 = i__ - kbt;
  890. i__2 = i__ - 1;
  891. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  892. i__4 = k - j + ka1 + j * ab_dim1;
  893. i__1 = k - j + ka1 + j * ab_dim1;
  894. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  895. i__6 = i__ - j + ka1 + j * ab_dim1;
  896. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  897. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  898. * ab[i__6].r;
  899. q__1.r = ab[i__1].r - q__2.r, q__1.i = ab[i__1].i -
  900. q__2.i;
  901. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  902. /* L70: */
  903. }
  904. /* L80: */
  905. }
  906. if (wantx) {
  907. /* post-multiply X by inv(S(i)) */
  908. i__3 = *n - m;
  909. r__1 = 1.f / bii;
  910. csscal_(&i__3, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  911. if (kbt > 0) {
  912. i__3 = *n - m;
  913. q__1.r = -1.f, q__1.i = 0.f;
  914. cgerc_(&i__3, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  915. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  916. + 1 + (i__ - kbt) * x_dim1], ldx);
  917. }
  918. }
  919. /* store a(i,i1) in RA1 for use in next loop over K */
  920. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  921. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  922. }
  923. /* Generate and apply vectors of rotations to chase all the */
  924. /* existing bulges KA positions down toward the bottom of the */
  925. /* band */
  926. i__3 = *kb - 1;
  927. for (k = 1; k <= i__3; ++k) {
  928. if (update) {
  929. /* Determine the rotations which would annihilate the bulge */
  930. /* which has in theory just been created */
  931. if (i__ - k + *ka < *n && i__ - k > 1) {
  932. /* generate rotation to annihilate a(i,i-k+ka+1) */
  933. clartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  934. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  935. , &ra);
  936. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  937. /* band and store it in WORK(i-k) */
  938. i__2 = kb1 - k + i__ * bb_dim1;
  939. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  940. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  941. * ra1.i + q__2.i * ra1.r;
  942. t.r = q__1.r, t.i = q__1.i;
  943. i__2 = i__ - k;
  944. i__4 = i__ - k + *ka - m;
  945. q__2.r = rwork[i__4] * t.r, q__2.i = rwork[i__4] * t.i;
  946. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  947. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  948. q__3.r = q__4.r * ab[i__1].r - q__4.i * ab[i__1].i,
  949. q__3.i = q__4.r * ab[i__1].i + q__4.i * ab[i__1]
  950. .r;
  951. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  952. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  953. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  954. i__4 = i__ - k + *ka - m;
  955. q__2.r = work[i__4].r * t.r - work[i__4].i * t.i, q__2.i =
  956. work[i__4].r * t.i + work[i__4].i * t.r;
  957. i__1 = i__ - k + *ka - m;
  958. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  959. q__3.r = rwork[i__1] * ab[i__5].r, q__3.i = rwork[i__1] *
  960. ab[i__5].i;
  961. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  962. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  963. ra1.r = ra.r, ra1.i = ra.i;
  964. }
  965. }
  966. /* Computing MAX */
  967. i__2 = 1, i__4 = k - i0 + 2;
  968. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  969. nr = (*n - j2 + *ka) / ka1;
  970. j1 = j2 + (nr - 1) * ka1;
  971. if (update) {
  972. /* Computing MAX */
  973. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  974. j2t = f2cmax(i__2,i__4);
  975. } else {
  976. j2t = j2;
  977. }
  978. nrt = (*n - j2t + *ka) / ka1;
  979. i__2 = j1;
  980. i__4 = ka1;
  981. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  982. /* create nonzero element a(j-ka,j+1) outside the band */
  983. /* and store it in WORK(j-m) */
  984. i__1 = j - m;
  985. i__5 = j - m;
  986. i__6 = (j + 1) * ab_dim1 + 1;
  987. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  988. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  989. * ab[i__6].r;
  990. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  991. i__1 = (j + 1) * ab_dim1 + 1;
  992. i__5 = j - m;
  993. i__6 = (j + 1) * ab_dim1 + 1;
  994. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  995. i__6].i;
  996. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  997. /* L90: */
  998. }
  999. /* generate rotations in 1st set to annihilate elements which */
  1000. /* have been created outside the band */
  1001. if (nrt > 0) {
  1002. clargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1003. ka1, &rwork[j2t - m], &ka1);
  1004. }
  1005. if (nr > 0) {
  1006. /* apply rotations in 1st set from the right */
  1007. i__4 = *ka - 1;
  1008. for (l = 1; l <= i__4; ++l) {
  1009. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1010. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1011. &work[j2 - m], &ka1);
  1012. /* L100: */
  1013. }
  1014. /* apply rotations in 1st set from both sides to diagonal */
  1015. /* blocks */
  1016. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1017. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1018. rwork[j2 - m], &work[j2 - m], &ka1);
  1019. clacgv_(&nr, &work[j2 - m], &ka1);
  1020. }
  1021. /* start applying rotations in 1st set from the left */
  1022. i__4 = *kb - k + 1;
  1023. for (l = *ka - 1; l >= i__4; --l) {
  1024. nrt = (*n - j2 + l) / ka1;
  1025. if (nrt > 0) {
  1026. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1027. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1028. rwork[j2 - m], &work[j2 - m], &ka1);
  1029. }
  1030. /* L110: */
  1031. }
  1032. if (wantx) {
  1033. /* post-multiply X by product of rotations in 1st set */
  1034. i__4 = j1;
  1035. i__2 = ka1;
  1036. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1037. i__1 = *n - m;
  1038. r_cnjg(&q__1, &work[j - m]);
  1039. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1040. + 1) * x_dim1], &c__1, &rwork[j - m], &q__1);
  1041. /* L120: */
  1042. }
  1043. }
  1044. /* L130: */
  1045. }
  1046. if (update) {
  1047. if (i2 <= *n && kbt > 0) {
  1048. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1049. /* band and store it in WORK(i-kbt) */
  1050. i__3 = i__ - kbt;
  1051. i__2 = kb1 - kbt + i__ * bb_dim1;
  1052. q__2.r = -bb[i__2].r, q__2.i = -bb[i__2].i;
  1053. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1054. ra1.i + q__2.i * ra1.r;
  1055. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1056. }
  1057. }
  1058. for (k = *kb; k >= 1; --k) {
  1059. if (update) {
  1060. /* Computing MAX */
  1061. i__3 = 2, i__2 = k - i0 + 1;
  1062. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1063. } else {
  1064. /* Computing MAX */
  1065. i__3 = 1, i__2 = k - i0 + 1;
  1066. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1067. }
  1068. /* finish applying rotations in 2nd set from the left */
  1069. for (l = *kb - k; l >= 1; --l) {
  1070. nrt = (*n - j2 + *ka + l) / ka1;
  1071. if (nrt > 0) {
  1072. clartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1073. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1074. - *ka], &work[j2 - *ka], &ka1);
  1075. }
  1076. /* L140: */
  1077. }
  1078. nr = (*n - j2 + *ka) / ka1;
  1079. j1 = j2 + (nr - 1) * ka1;
  1080. i__3 = j2;
  1081. i__2 = -ka1;
  1082. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1083. i__4 = j;
  1084. i__1 = j - *ka;
  1085. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1086. rwork[j] = rwork[j - *ka];
  1087. /* L150: */
  1088. }
  1089. i__2 = j1;
  1090. i__3 = ka1;
  1091. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1092. /* create nonzero element a(j-ka,j+1) outside the band */
  1093. /* and store it in WORK(j) */
  1094. i__4 = j;
  1095. i__1 = j;
  1096. i__5 = (j + 1) * ab_dim1 + 1;
  1097. q__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1098. .i, q__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1099. * ab[i__5].r;
  1100. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1101. i__4 = (j + 1) * ab_dim1 + 1;
  1102. i__1 = j;
  1103. i__5 = (j + 1) * ab_dim1 + 1;
  1104. q__1.r = rwork[i__1] * ab[i__5].r, q__1.i = rwork[i__1] * ab[
  1105. i__5].i;
  1106. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1107. /* L160: */
  1108. }
  1109. if (update) {
  1110. if (i__ - k < *n - *ka && k <= kbt) {
  1111. i__3 = i__ - k + *ka;
  1112. i__2 = i__ - k;
  1113. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1114. }
  1115. }
  1116. /* L170: */
  1117. }
  1118. for (k = *kb; k >= 1; --k) {
  1119. /* Computing MAX */
  1120. i__3 = 1, i__2 = k - i0 + 1;
  1121. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1122. nr = (*n - j2 + *ka) / ka1;
  1123. j1 = j2 + (nr - 1) * ka1;
  1124. if (nr > 0) {
  1125. /* generate rotations in 2nd set to annihilate elements */
  1126. /* which have been created outside the band */
  1127. clargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1128. rwork[j2], &ka1);
  1129. /* apply rotations in 2nd set from the right */
  1130. i__3 = *ka - 1;
  1131. for (l = 1; l <= i__3; ++l) {
  1132. clartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1133. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1134. work[j2], &ka1);
  1135. /* L180: */
  1136. }
  1137. /* apply rotations in 2nd set from both sides to diagonal */
  1138. /* blocks */
  1139. clar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1140. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1141. rwork[j2], &work[j2], &ka1);
  1142. clacgv_(&nr, &work[j2], &ka1);
  1143. }
  1144. /* start applying rotations in 2nd set from the left */
  1145. i__3 = *kb - k + 1;
  1146. for (l = *ka - 1; l >= i__3; --l) {
  1147. nrt = (*n - j2 + l) / ka1;
  1148. if (nrt > 0) {
  1149. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1150. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1151. rwork[j2], &work[j2], &ka1);
  1152. }
  1153. /* L190: */
  1154. }
  1155. if (wantx) {
  1156. /* post-multiply X by product of rotations in 2nd set */
  1157. i__3 = j1;
  1158. i__2 = ka1;
  1159. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1160. i__4 = *n - m;
  1161. r_cnjg(&q__1, &work[j]);
  1162. crot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1163. + 1) * x_dim1], &c__1, &rwork[j], &q__1);
  1164. /* L200: */
  1165. }
  1166. }
  1167. /* L210: */
  1168. }
  1169. i__2 = *kb - 1;
  1170. for (k = 1; k <= i__2; ++k) {
  1171. /* Computing MAX */
  1172. i__3 = 1, i__4 = k - i0 + 2;
  1173. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1174. /* finish applying rotations in 1st set from the left */
  1175. for (l = *kb - k; l >= 1; --l) {
  1176. nrt = (*n - j2 + l) / ka1;
  1177. if (nrt > 0) {
  1178. clartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1179. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1180. rwork[j2 - m], &work[j2 - m], &ka1);
  1181. }
  1182. /* L220: */
  1183. }
  1184. /* L230: */
  1185. }
  1186. if (*kb > 1) {
  1187. i__2 = j2 + *ka;
  1188. for (j = *n - 1; j >= i__2; --j) {
  1189. rwork[j - m] = rwork[j - *ka - m];
  1190. i__3 = j - m;
  1191. i__4 = j - *ka - m;
  1192. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1193. /* L240: */
  1194. }
  1195. }
  1196. } else {
  1197. /* Transform A, working with the lower triangle */
  1198. if (update) {
  1199. /* Form inv(S(i))**H * A * inv(S(i)) */
  1200. i__2 = i__ * bb_dim1 + 1;
  1201. bii = bb[i__2].r;
  1202. i__2 = i__ * ab_dim1 + 1;
  1203. i__3 = i__ * ab_dim1 + 1;
  1204. r__1 = ab[i__3].r / bii / bii;
  1205. ab[i__2].r = r__1, ab[i__2].i = 0.f;
  1206. i__2 = i1;
  1207. for (j = i__ + 1; j <= i__2; ++j) {
  1208. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1209. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1210. q__1.r = ab[i__4].r / bii, q__1.i = ab[i__4].i / bii;
  1211. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1212. /* L250: */
  1213. }
  1214. /* Computing MAX */
  1215. i__2 = 1, i__3 = i__ - *ka;
  1216. i__4 = i__ - 1;
  1217. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1218. i__2 = i__ - j + 1 + j * ab_dim1;
  1219. i__3 = i__ - j + 1 + j * ab_dim1;
  1220. q__1.r = ab[i__3].r / bii, q__1.i = ab[i__3].i / bii;
  1221. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1222. /* L260: */
  1223. }
  1224. i__4 = i__ - 1;
  1225. for (k = i__ - kbt; k <= i__4; ++k) {
  1226. i__2 = k;
  1227. for (j = i__ - kbt; j <= i__2; ++j) {
  1228. i__3 = k - j + 1 + j * ab_dim1;
  1229. i__1 = k - j + 1 + j * ab_dim1;
  1230. i__5 = i__ - j + 1 + j * bb_dim1;
  1231. r_cnjg(&q__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1232. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1233. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1234. q__5.r;
  1235. q__3.r = ab[i__1].r - q__4.r, q__3.i = ab[i__1].i -
  1236. q__4.i;
  1237. r_cnjg(&q__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1238. i__6 = i__ - j + 1 + j * ab_dim1;
  1239. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1240. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1241. .r;
  1242. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1243. i__7 = i__ * ab_dim1 + 1;
  1244. r__1 = ab[i__7].r;
  1245. i__8 = i__ - j + 1 + j * bb_dim1;
  1246. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1247. r_cnjg(&q__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1248. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1249. q__9.r * q__10.i + q__9.i * q__10.r;
  1250. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1251. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1252. /* L270: */
  1253. }
  1254. /* Computing MAX */
  1255. i__2 = 1, i__3 = i__ - *ka;
  1256. i__1 = i__ - kbt - 1;
  1257. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1258. i__2 = k - j + 1 + j * ab_dim1;
  1259. i__3 = k - j + 1 + j * ab_dim1;
  1260. r_cnjg(&q__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1261. i__5 = i__ - j + 1 + j * ab_dim1;
  1262. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1263. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1264. .r;
  1265. q__1.r = ab[i__3].r - q__2.r, q__1.i = ab[i__3].i -
  1266. q__2.i;
  1267. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1268. /* L280: */
  1269. }
  1270. /* L290: */
  1271. }
  1272. i__4 = i1;
  1273. for (j = i__; j <= i__4; ++j) {
  1274. /* Computing MAX */
  1275. i__1 = j - *ka, i__2 = i__ - kbt;
  1276. i__3 = i__ - 1;
  1277. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1278. i__1 = j - k + 1 + k * ab_dim1;
  1279. i__2 = j - k + 1 + k * ab_dim1;
  1280. i__5 = i__ - k + 1 + k * bb_dim1;
  1281. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1282. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1283. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1284. * ab[i__6].r;
  1285. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1286. q__2.i;
  1287. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1288. /* L300: */
  1289. }
  1290. /* L310: */
  1291. }
  1292. if (wantx) {
  1293. /* post-multiply X by inv(S(i)) */
  1294. i__4 = *n - m;
  1295. r__1 = 1.f / bii;
  1296. csscal_(&i__4, &r__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1297. if (kbt > 0) {
  1298. i__4 = *n - m;
  1299. q__1.r = -1.f, q__1.i = 0.f;
  1300. i__3 = *ldbb - 1;
  1301. cgeru_(&i__4, &kbt, &q__1, &x[m + 1 + i__ * x_dim1], &
  1302. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1303. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1304. }
  1305. }
  1306. /* store a(i1,i) in RA1 for use in next loop over K */
  1307. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1308. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1309. }
  1310. /* Generate and apply vectors of rotations to chase all the */
  1311. /* existing bulges KA positions down toward the bottom of the */
  1312. /* band */
  1313. i__4 = *kb - 1;
  1314. for (k = 1; k <= i__4; ++k) {
  1315. if (update) {
  1316. /* Determine the rotations which would annihilate the bulge */
  1317. /* which has in theory just been created */
  1318. if (i__ - k + *ka < *n && i__ - k > 1) {
  1319. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1320. clartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1321. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1322. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1323. /* band and store it in WORK(i-k) */
  1324. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1325. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1326. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1327. * ra1.i + q__2.i * ra1.r;
  1328. t.r = q__1.r, t.i = q__1.i;
  1329. i__3 = i__ - k;
  1330. i__1 = i__ - k + *ka - m;
  1331. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1332. r_cnjg(&q__4, &work[i__ - k + *ka - m]);
  1333. i__2 = ka1 + (i__ - k) * ab_dim1;
  1334. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1335. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1336. .r;
  1337. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1338. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1339. i__3 = ka1 + (i__ - k) * ab_dim1;
  1340. i__1 = i__ - k + *ka - m;
  1341. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1342. work[i__1].r * t.i + work[i__1].i * t.r;
  1343. i__2 = i__ - k + *ka - m;
  1344. i__5 = ka1 + (i__ - k) * ab_dim1;
  1345. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1346. ab[i__5].i;
  1347. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1348. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  1349. ra1.r = ra.r, ra1.i = ra.i;
  1350. }
  1351. }
  1352. /* Computing MAX */
  1353. i__3 = 1, i__1 = k - i0 + 2;
  1354. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1355. nr = (*n - j2 + *ka) / ka1;
  1356. j1 = j2 + (nr - 1) * ka1;
  1357. if (update) {
  1358. /* Computing MAX */
  1359. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1360. j2t = f2cmax(i__3,i__1);
  1361. } else {
  1362. j2t = j2;
  1363. }
  1364. nrt = (*n - j2t + *ka) / ka1;
  1365. i__3 = j1;
  1366. i__1 = ka1;
  1367. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1368. /* create nonzero element a(j+1,j-ka) outside the band */
  1369. /* and store it in WORK(j-m) */
  1370. i__2 = j - m;
  1371. i__5 = j - m;
  1372. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1373. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1374. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1375. * ab[i__6].r;
  1376. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1377. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1378. i__5 = j - m;
  1379. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1380. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1381. i__6].i;
  1382. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1383. /* L320: */
  1384. }
  1385. /* generate rotations in 1st set to annihilate elements which */
  1386. /* have been created outside the band */
  1387. if (nrt > 0) {
  1388. clargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1389. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1390. }
  1391. if (nr > 0) {
  1392. /* apply rotations in 1st set from the left */
  1393. i__1 = *ka - 1;
  1394. for (l = 1; l <= i__1; ++l) {
  1395. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1396. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1397. , &work[j2 - m], &ka1);
  1398. /* L330: */
  1399. }
  1400. /* apply rotations in 1st set from both sides to diagonal */
  1401. /* blocks */
  1402. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1403. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1404. work[j2 - m], &ka1);
  1405. clacgv_(&nr, &work[j2 - m], &ka1);
  1406. }
  1407. /* start applying rotations in 1st set from the right */
  1408. i__1 = *kb - k + 1;
  1409. for (l = *ka - 1; l >= i__1; --l) {
  1410. nrt = (*n - j2 + l) / ka1;
  1411. if (nrt > 0) {
  1412. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1413. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1414. m], &work[j2 - m], &ka1);
  1415. }
  1416. /* L340: */
  1417. }
  1418. if (wantx) {
  1419. /* post-multiply X by product of rotations in 1st set */
  1420. i__1 = j1;
  1421. i__3 = ka1;
  1422. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1423. i__2 = *n - m;
  1424. crot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1425. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1426. );
  1427. /* L350: */
  1428. }
  1429. }
  1430. /* L360: */
  1431. }
  1432. if (update) {
  1433. if (i2 <= *n && kbt > 0) {
  1434. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1435. /* band and store it in WORK(i-kbt) */
  1436. i__4 = i__ - kbt;
  1437. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1438. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  1439. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1440. ra1.i + q__2.i * ra1.r;
  1441. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1442. }
  1443. }
  1444. for (k = *kb; k >= 1; --k) {
  1445. if (update) {
  1446. /* Computing MAX */
  1447. i__4 = 2, i__3 = k - i0 + 1;
  1448. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1449. } else {
  1450. /* Computing MAX */
  1451. i__4 = 1, i__3 = k - i0 + 1;
  1452. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1453. }
  1454. /* finish applying rotations in 2nd set from the right */
  1455. for (l = *kb - k; l >= 1; --l) {
  1456. nrt = (*n - j2 + *ka + l) / ka1;
  1457. if (nrt > 0) {
  1458. clartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1459. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1460. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1461. }
  1462. /* L370: */
  1463. }
  1464. nr = (*n - j2 + *ka) / ka1;
  1465. j1 = j2 + (nr - 1) * ka1;
  1466. i__4 = j2;
  1467. i__3 = -ka1;
  1468. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1469. i__1 = j;
  1470. i__2 = j - *ka;
  1471. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1472. rwork[j] = rwork[j - *ka];
  1473. /* L380: */
  1474. }
  1475. i__3 = j1;
  1476. i__4 = ka1;
  1477. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1478. /* create nonzero element a(j+1,j-ka) outside the band */
  1479. /* and store it in WORK(j) */
  1480. i__1 = j;
  1481. i__2 = j;
  1482. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1483. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1484. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1485. * ab[i__5].r;
  1486. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1487. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1488. i__2 = j;
  1489. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1490. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1491. i__5].i;
  1492. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1493. /* L390: */
  1494. }
  1495. if (update) {
  1496. if (i__ - k < *n - *ka && k <= kbt) {
  1497. i__4 = i__ - k + *ka;
  1498. i__3 = i__ - k;
  1499. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1500. }
  1501. }
  1502. /* L400: */
  1503. }
  1504. for (k = *kb; k >= 1; --k) {
  1505. /* Computing MAX */
  1506. i__4 = 1, i__3 = k - i0 + 1;
  1507. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1508. nr = (*n - j2 + *ka) / ka1;
  1509. j1 = j2 + (nr - 1) * ka1;
  1510. if (nr > 0) {
  1511. /* generate rotations in 2nd set to annihilate elements */
  1512. /* which have been created outside the band */
  1513. clargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1514. , &ka1, &rwork[j2], &ka1);
  1515. /* apply rotations in 2nd set from the left */
  1516. i__4 = *ka - 1;
  1517. for (l = 1; l <= i__4; ++l) {
  1518. clartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1519. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1520. work[j2], &ka1);
  1521. /* L410: */
  1522. }
  1523. /* apply rotations in 2nd set from both sides to diagonal */
  1524. /* blocks */
  1525. clar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1526. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1527. j2], &ka1);
  1528. clacgv_(&nr, &work[j2], &ka1);
  1529. }
  1530. /* start applying rotations in 2nd set from the right */
  1531. i__4 = *kb - k + 1;
  1532. for (l = *ka - 1; l >= i__4; --l) {
  1533. nrt = (*n - j2 + l) / ka1;
  1534. if (nrt > 0) {
  1535. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1536. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1537. &work[j2], &ka1);
  1538. }
  1539. /* L420: */
  1540. }
  1541. if (wantx) {
  1542. /* post-multiply X by product of rotations in 2nd set */
  1543. i__4 = j1;
  1544. i__3 = ka1;
  1545. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1546. i__1 = *n - m;
  1547. crot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1548. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1549. /* L430: */
  1550. }
  1551. }
  1552. /* L440: */
  1553. }
  1554. i__3 = *kb - 1;
  1555. for (k = 1; k <= i__3; ++k) {
  1556. /* Computing MAX */
  1557. i__4 = 1, i__1 = k - i0 + 2;
  1558. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1559. /* finish applying rotations in 1st set from the right */
  1560. for (l = *kb - k; l >= 1; --l) {
  1561. nrt = (*n - j2 + l) / ka1;
  1562. if (nrt > 0) {
  1563. clartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1564. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1565. m], &work[j2 - m], &ka1);
  1566. }
  1567. /* L450: */
  1568. }
  1569. /* L460: */
  1570. }
  1571. if (*kb > 1) {
  1572. i__3 = j2 + *ka;
  1573. for (j = *n - 1; j >= i__3; --j) {
  1574. rwork[j - m] = rwork[j - *ka - m];
  1575. i__4 = j - m;
  1576. i__1 = j - *ka - m;
  1577. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1578. /* L470: */
  1579. }
  1580. }
  1581. }
  1582. goto L10;
  1583. L480:
  1584. /* **************************** Phase 2 ***************************** */
  1585. /* The logical structure of this phase is: */
  1586. /* UPDATE = .TRUE. */
  1587. /* DO I = 1, M */
  1588. /* use S(i) to update A and create a new bulge */
  1589. /* apply rotations to push all bulges KA positions upward */
  1590. /* END DO */
  1591. /* UPDATE = .FALSE. */
  1592. /* DO I = M - KA - 1, 2, -1 */
  1593. /* apply rotations to push all bulges KA positions upward */
  1594. /* END DO */
  1595. /* To avoid duplicating code, the two loops are merged. */
  1596. update = TRUE_;
  1597. i__ = 0;
  1598. L490:
  1599. if (update) {
  1600. ++i__;
  1601. /* Computing MIN */
  1602. i__3 = *kb, i__4 = m - i__;
  1603. kbt = f2cmin(i__3,i__4);
  1604. i0 = i__ + 1;
  1605. /* Computing MAX */
  1606. i__3 = 1, i__4 = i__ - *ka;
  1607. i1 = f2cmax(i__3,i__4);
  1608. i2 = i__ + kbt - ka1;
  1609. if (i__ > m) {
  1610. update = FALSE_;
  1611. --i__;
  1612. i0 = m + 1;
  1613. if (*ka == 0) {
  1614. return 0;
  1615. }
  1616. goto L490;
  1617. }
  1618. } else {
  1619. i__ -= *ka;
  1620. if (i__ < 2) {
  1621. return 0;
  1622. }
  1623. }
  1624. if (i__ < m - kbt) {
  1625. nx = m;
  1626. } else {
  1627. nx = *n;
  1628. }
  1629. if (upper) {
  1630. /* Transform A, working with the upper triangle */
  1631. if (update) {
  1632. /* Form inv(S(i))**H * A * inv(S(i)) */
  1633. i__3 = kb1 + i__ * bb_dim1;
  1634. bii = bb[i__3].r;
  1635. i__3 = ka1 + i__ * ab_dim1;
  1636. i__4 = ka1 + i__ * ab_dim1;
  1637. r__1 = ab[i__4].r / bii / bii;
  1638. ab[i__3].r = r__1, ab[i__3].i = 0.f;
  1639. i__3 = i__ - 1;
  1640. for (j = i1; j <= i__3; ++j) {
  1641. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1642. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1643. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1644. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1645. /* L500: */
  1646. }
  1647. /* Computing MIN */
  1648. i__4 = *n, i__1 = i__ + *ka;
  1649. i__3 = f2cmin(i__4,i__1);
  1650. for (j = i__ + 1; j <= i__3; ++j) {
  1651. i__4 = i__ - j + ka1 + j * ab_dim1;
  1652. i__1 = i__ - j + ka1 + j * ab_dim1;
  1653. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  1654. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1655. /* L510: */
  1656. }
  1657. i__3 = i__ + kbt;
  1658. for (k = i__ + 1; k <= i__3; ++k) {
  1659. i__4 = i__ + kbt;
  1660. for (j = k; j <= i__4; ++j) {
  1661. i__1 = k - j + ka1 + j * ab_dim1;
  1662. i__2 = k - j + ka1 + j * ab_dim1;
  1663. i__5 = i__ - j + kb1 + j * bb_dim1;
  1664. r_cnjg(&q__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1665. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  1666. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  1667. q__5.r;
  1668. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  1669. q__4.i;
  1670. r_cnjg(&q__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1671. i__6 = i__ - j + ka1 + j * ab_dim1;
  1672. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  1673. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  1674. .r;
  1675. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  1676. i__7 = ka1 + i__ * ab_dim1;
  1677. r__1 = ab[i__7].r;
  1678. i__8 = i__ - j + kb1 + j * bb_dim1;
  1679. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  1680. r_cnjg(&q__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1681. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  1682. q__9.r * q__10.i + q__9.i * q__10.r;
  1683. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  1684. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1685. /* L520: */
  1686. }
  1687. /* Computing MIN */
  1688. i__1 = *n, i__2 = i__ + *ka;
  1689. i__4 = f2cmin(i__1,i__2);
  1690. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1691. i__1 = k - j + ka1 + j * ab_dim1;
  1692. i__2 = k - j + ka1 + j * ab_dim1;
  1693. r_cnjg(&q__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1694. i__5 = i__ - j + ka1 + j * ab_dim1;
  1695. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  1696. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  1697. .r;
  1698. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1699. q__2.i;
  1700. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1701. /* L530: */
  1702. }
  1703. /* L540: */
  1704. }
  1705. i__3 = i__;
  1706. for (j = i1; j <= i__3; ++j) {
  1707. /* Computing MIN */
  1708. i__1 = j + *ka, i__2 = i__ + kbt;
  1709. i__4 = f2cmin(i__1,i__2);
  1710. for (k = i__ + 1; k <= i__4; ++k) {
  1711. i__1 = j - k + ka1 + k * ab_dim1;
  1712. i__2 = j - k + ka1 + k * ab_dim1;
  1713. i__5 = i__ - k + kb1 + k * bb_dim1;
  1714. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1715. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1716. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1717. * ab[i__6].r;
  1718. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  1719. q__2.i;
  1720. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1721. /* L550: */
  1722. }
  1723. /* L560: */
  1724. }
  1725. if (wantx) {
  1726. /* post-multiply X by inv(S(i)) */
  1727. r__1 = 1.f / bii;
  1728. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  1729. if (kbt > 0) {
  1730. q__1.r = -1.f, q__1.i = 0.f;
  1731. i__3 = *ldbb - 1;
  1732. cgeru_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1733. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1734. x_dim1 + 1], ldx);
  1735. }
  1736. }
  1737. /* store a(i1,i) in RA1 for use in next loop over K */
  1738. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1739. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1740. }
  1741. /* Generate and apply vectors of rotations to chase all the */
  1742. /* existing bulges KA positions up toward the top of the band */
  1743. i__3 = *kb - 1;
  1744. for (k = 1; k <= i__3; ++k) {
  1745. if (update) {
  1746. /* Determine the rotations which would annihilate the bulge */
  1747. /* which has in theory just been created */
  1748. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1749. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1750. clartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1751. - *ka], &work[i__ + k - *ka], &ra);
  1752. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1753. /* band and store it in WORK(m-kb+i+k) */
  1754. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1755. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1756. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  1757. * ra1.i + q__2.i * ra1.r;
  1758. t.r = q__1.r, t.i = q__1.i;
  1759. i__4 = m - *kb + i__ + k;
  1760. i__1 = i__ + k - *ka;
  1761. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  1762. r_cnjg(&q__4, &work[i__ + k - *ka]);
  1763. i__2 = (i__ + k) * ab_dim1 + 1;
  1764. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  1765. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  1766. .r;
  1767. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  1768. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  1769. i__4 = (i__ + k) * ab_dim1 + 1;
  1770. i__1 = i__ + k - *ka;
  1771. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  1772. work[i__1].r * t.i + work[i__1].i * t.r;
  1773. i__2 = i__ + k - *ka;
  1774. i__5 = (i__ + k) * ab_dim1 + 1;
  1775. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  1776. ab[i__5].i;
  1777. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  1778. ab[i__4].r = q__1.r, ab[i__4].i = q__1.i;
  1779. ra1.r = ra.r, ra1.i = ra.i;
  1780. }
  1781. }
  1782. /* Computing MAX */
  1783. i__4 = 1, i__1 = k + i0 - m + 1;
  1784. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1785. nr = (j2 + *ka - 1) / ka1;
  1786. j1 = j2 - (nr - 1) * ka1;
  1787. if (update) {
  1788. /* Computing MIN */
  1789. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1790. j2t = f2cmin(i__4,i__1);
  1791. } else {
  1792. j2t = j2;
  1793. }
  1794. nrt = (j2t + *ka - 1) / ka1;
  1795. i__4 = j2t;
  1796. i__1 = ka1;
  1797. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1798. /* create nonzero element a(j-1,j+ka) outside the band */
  1799. /* and store it in WORK(j) */
  1800. i__2 = j;
  1801. i__5 = j;
  1802. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1803. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1804. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1805. * ab[i__6].r;
  1806. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  1807. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1808. i__5 = j;
  1809. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1810. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  1811. i__6].i;
  1812. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1813. /* L570: */
  1814. }
  1815. /* generate rotations in 1st set to annihilate elements which */
  1816. /* have been created outside the band */
  1817. if (nrt > 0) {
  1818. clargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1819. &ka1, &rwork[j1], &ka1);
  1820. }
  1821. if (nr > 0) {
  1822. /* apply rotations in 1st set from the left */
  1823. i__1 = *ka - 1;
  1824. for (l = 1; l <= i__1; ++l) {
  1825. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1826. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1827. j1], &work[j1], &ka1);
  1828. /* L580: */
  1829. }
  1830. /* apply rotations in 1st set from both sides to diagonal */
  1831. /* blocks */
  1832. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1833. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1834. &work[j1], &ka1);
  1835. clacgv_(&nr, &work[j1], &ka1);
  1836. }
  1837. /* start applying rotations in 1st set from the right */
  1838. i__1 = *kb - k + 1;
  1839. for (l = *ka - 1; l >= i__1; --l) {
  1840. nrt = (j2 + l - 1) / ka1;
  1841. j1t = j2 - (nrt - 1) * ka1;
  1842. if (nrt > 0) {
  1843. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1844. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1845. j1t], &ka1);
  1846. }
  1847. /* L590: */
  1848. }
  1849. if (wantx) {
  1850. /* post-multiply X by product of rotations in 1st set */
  1851. i__1 = j2;
  1852. i__4 = ka1;
  1853. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1854. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1855. + 1], &c__1, &rwork[j], &work[j]);
  1856. /* L600: */
  1857. }
  1858. }
  1859. /* L610: */
  1860. }
  1861. if (update) {
  1862. if (i2 > 0 && kbt > 0) {
  1863. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1864. /* band and store it in WORK(m-kb+i+kbt) */
  1865. i__3 = m - *kb + i__ + kbt;
  1866. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1867. q__2.r = -bb[i__4].r, q__2.i = -bb[i__4].i;
  1868. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  1869. ra1.i + q__2.i * ra1.r;
  1870. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1871. }
  1872. }
  1873. for (k = *kb; k >= 1; --k) {
  1874. if (update) {
  1875. /* Computing MAX */
  1876. i__3 = 2, i__4 = k + i0 - m;
  1877. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1878. } else {
  1879. /* Computing MAX */
  1880. i__3 = 1, i__4 = k + i0 - m;
  1881. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1882. }
  1883. /* finish applying rotations in 2nd set from the right */
  1884. for (l = *kb - k; l >= 1; --l) {
  1885. nrt = (j2 + *ka + l - 1) / ka1;
  1886. j1t = j2 - (nrt - 1) * ka1;
  1887. if (nrt > 0) {
  1888. clartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1889. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1890. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1891. &ka1);
  1892. }
  1893. /* L620: */
  1894. }
  1895. nr = (j2 + *ka - 1) / ka1;
  1896. j1 = j2 - (nr - 1) * ka1;
  1897. i__3 = j2;
  1898. i__4 = ka1;
  1899. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1900. i__1 = m - *kb + j;
  1901. i__2 = m - *kb + j + *ka;
  1902. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1903. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1904. /* L630: */
  1905. }
  1906. i__4 = j2;
  1907. i__3 = ka1;
  1908. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1909. /* create nonzero element a(j-1,j+ka) outside the band */
  1910. /* and store it in WORK(m-kb+j) */
  1911. i__1 = m - *kb + j;
  1912. i__2 = m - *kb + j;
  1913. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1914. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1915. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1916. * ab[i__5].r;
  1917. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  1918. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1919. i__2 = m - *kb + j;
  1920. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1921. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  1922. i__5].i;
  1923. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1924. /* L640: */
  1925. }
  1926. if (update) {
  1927. if (i__ + k > ka1 && k <= kbt) {
  1928. i__3 = m - *kb + i__ + k - *ka;
  1929. i__4 = m - *kb + i__ + k;
  1930. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1931. }
  1932. }
  1933. /* L650: */
  1934. }
  1935. for (k = *kb; k >= 1; --k) {
  1936. /* Computing MAX */
  1937. i__3 = 1, i__4 = k + i0 - m;
  1938. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1939. nr = (j2 + *ka - 1) / ka1;
  1940. j1 = j2 - (nr - 1) * ka1;
  1941. if (nr > 0) {
  1942. /* generate rotations in 2nd set to annihilate elements */
  1943. /* which have been created outside the band */
  1944. clargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1945. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1946. /* apply rotations in 2nd set from the left */
  1947. i__3 = *ka - 1;
  1948. for (l = 1; l <= i__3; ++l) {
  1949. clartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1950. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1951. - *kb + j1], &work[m - *kb + j1], &ka1);
  1952. /* L660: */
  1953. }
  1954. /* apply rotations in 2nd set from both sides to diagonal */
  1955. /* blocks */
  1956. clar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1957. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1958. kb + j1], &work[m - *kb + j1], &ka1);
  1959. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  1960. }
  1961. /* start applying rotations in 2nd set from the right */
  1962. i__3 = *kb - k + 1;
  1963. for (l = *ka - 1; l >= i__3; --l) {
  1964. nrt = (j2 + l - 1) / ka1;
  1965. j1t = j2 - (nrt - 1) * ka1;
  1966. if (nrt > 0) {
  1967. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1968. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1969. &work[m - *kb + j1t], &ka1);
  1970. }
  1971. /* L670: */
  1972. }
  1973. if (wantx) {
  1974. /* post-multiply X by product of rotations in 2nd set */
  1975. i__3 = j2;
  1976. i__4 = ka1;
  1977. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1978. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1979. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1980. j]);
  1981. /* L680: */
  1982. }
  1983. }
  1984. /* L690: */
  1985. }
  1986. i__4 = *kb - 1;
  1987. for (k = 1; k <= i__4; ++k) {
  1988. /* Computing MAX */
  1989. i__3 = 1, i__1 = k + i0 - m + 1;
  1990. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1991. /* finish applying rotations in 1st set from the right */
  1992. for (l = *kb - k; l >= 1; --l) {
  1993. nrt = (j2 + l - 1) / ka1;
  1994. j1t = j2 - (nrt - 1) * ka1;
  1995. if (nrt > 0) {
  1996. clartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1997. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1998. j1t], &ka1);
  1999. }
  2000. /* L700: */
  2001. }
  2002. /* L710: */
  2003. }
  2004. if (*kb > 1) {
  2005. i__4 = i2 - *ka;
  2006. for (j = 2; j <= i__4; ++j) {
  2007. rwork[j] = rwork[j + *ka];
  2008. i__3 = j;
  2009. i__1 = j + *ka;
  2010. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2011. /* L720: */
  2012. }
  2013. }
  2014. } else {
  2015. /* Transform A, working with the lower triangle */
  2016. if (update) {
  2017. /* Form inv(S(i))**H * A * inv(S(i)) */
  2018. i__4 = i__ * bb_dim1 + 1;
  2019. bii = bb[i__4].r;
  2020. i__4 = i__ * ab_dim1 + 1;
  2021. i__3 = i__ * ab_dim1 + 1;
  2022. r__1 = ab[i__3].r / bii / bii;
  2023. ab[i__4].r = r__1, ab[i__4].i = 0.f;
  2024. i__4 = i__ - 1;
  2025. for (j = i1; j <= i__4; ++j) {
  2026. i__3 = i__ - j + 1 + j * ab_dim1;
  2027. i__1 = i__ - j + 1 + j * ab_dim1;
  2028. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2029. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2030. /* L730: */
  2031. }
  2032. /* Computing MIN */
  2033. i__3 = *n, i__1 = i__ + *ka;
  2034. i__4 = f2cmin(i__3,i__1);
  2035. for (j = i__ + 1; j <= i__4; ++j) {
  2036. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2037. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2038. q__1.r = ab[i__1].r / bii, q__1.i = ab[i__1].i / bii;
  2039. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2040. /* L740: */
  2041. }
  2042. i__4 = i__ + kbt;
  2043. for (k = i__ + 1; k <= i__4; ++k) {
  2044. i__3 = i__ + kbt;
  2045. for (j = k; j <= i__3; ++j) {
  2046. i__1 = j - k + 1 + k * ab_dim1;
  2047. i__2 = j - k + 1 + k * ab_dim1;
  2048. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2049. r_cnjg(&q__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2050. q__4.r = bb[i__5].r * q__5.r - bb[i__5].i * q__5.i,
  2051. q__4.i = bb[i__5].r * q__5.i + bb[i__5].i *
  2052. q__5.r;
  2053. q__3.r = ab[i__2].r - q__4.r, q__3.i = ab[i__2].i -
  2054. q__4.i;
  2055. r_cnjg(&q__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2056. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2057. q__6.r = q__7.r * ab[i__6].r - q__7.i * ab[i__6].i,
  2058. q__6.i = q__7.r * ab[i__6].i + q__7.i * ab[i__6]
  2059. .r;
  2060. q__2.r = q__3.r - q__6.r, q__2.i = q__3.i - q__6.i;
  2061. i__7 = i__ * ab_dim1 + 1;
  2062. r__1 = ab[i__7].r;
  2063. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2064. q__9.r = r__1 * bb[i__8].r, q__9.i = r__1 * bb[i__8].i;
  2065. r_cnjg(&q__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2066. q__8.r = q__9.r * q__10.r - q__9.i * q__10.i, q__8.i =
  2067. q__9.r * q__10.i + q__9.i * q__10.r;
  2068. q__1.r = q__2.r + q__8.r, q__1.i = q__2.i + q__8.i;
  2069. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2070. /* L750: */
  2071. }
  2072. /* Computing MIN */
  2073. i__1 = *n, i__2 = i__ + *ka;
  2074. i__3 = f2cmin(i__1,i__2);
  2075. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2076. i__1 = j - k + 1 + k * ab_dim1;
  2077. i__2 = j - k + 1 + k * ab_dim1;
  2078. r_cnjg(&q__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2079. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2080. q__2.r = q__3.r * ab[i__5].r - q__3.i * ab[i__5].i,
  2081. q__2.i = q__3.r * ab[i__5].i + q__3.i * ab[i__5]
  2082. .r;
  2083. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2084. q__2.i;
  2085. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2086. /* L760: */
  2087. }
  2088. /* L770: */
  2089. }
  2090. i__4 = i__;
  2091. for (j = i1; j <= i__4; ++j) {
  2092. /* Computing MIN */
  2093. i__1 = j + *ka, i__2 = i__ + kbt;
  2094. i__3 = f2cmin(i__1,i__2);
  2095. for (k = i__ + 1; k <= i__3; ++k) {
  2096. i__1 = k - j + 1 + j * ab_dim1;
  2097. i__2 = k - j + 1 + j * ab_dim1;
  2098. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2099. i__6 = i__ - j + 1 + j * ab_dim1;
  2100. q__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2101. .i, q__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2102. * ab[i__6].r;
  2103. q__1.r = ab[i__2].r - q__2.r, q__1.i = ab[i__2].i -
  2104. q__2.i;
  2105. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2106. /* L780: */
  2107. }
  2108. /* L790: */
  2109. }
  2110. if (wantx) {
  2111. /* post-multiply X by inv(S(i)) */
  2112. r__1 = 1.f / bii;
  2113. csscal_(&nx, &r__1, &x[i__ * x_dim1 + 1], &c__1);
  2114. if (kbt > 0) {
  2115. q__1.r = -1.f, q__1.i = 0.f;
  2116. cgerc_(&nx, &kbt, &q__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2117. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2118. + 1], ldx);
  2119. }
  2120. }
  2121. /* store a(i,i1) in RA1 for use in next loop over K */
  2122. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2123. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2124. }
  2125. /* Generate and apply vectors of rotations to chase all the */
  2126. /* existing bulges KA positions up toward the top of the band */
  2127. i__4 = *kb - 1;
  2128. for (k = 1; k <= i__4; ++k) {
  2129. if (update) {
  2130. /* Determine the rotations which would annihilate the bulge */
  2131. /* which has in theory just been created */
  2132. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2133. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2134. clartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2135. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2136. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2137. /* band and store it in WORK(m-kb+i+k) */
  2138. i__3 = k + 1 + i__ * bb_dim1;
  2139. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2140. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r
  2141. * ra1.i + q__2.i * ra1.r;
  2142. t.r = q__1.r, t.i = q__1.i;
  2143. i__3 = m - *kb + i__ + k;
  2144. i__1 = i__ + k - *ka;
  2145. q__2.r = rwork[i__1] * t.r, q__2.i = rwork[i__1] * t.i;
  2146. r_cnjg(&q__4, &work[i__ + k - *ka]);
  2147. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2148. q__3.r = q__4.r * ab[i__2].r - q__4.i * ab[i__2].i,
  2149. q__3.i = q__4.r * ab[i__2].i + q__4.i * ab[i__2]
  2150. .r;
  2151. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  2152. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  2153. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2154. i__1 = i__ + k - *ka;
  2155. q__2.r = work[i__1].r * t.r - work[i__1].i * t.i, q__2.i =
  2156. work[i__1].r * t.i + work[i__1].i * t.r;
  2157. i__2 = i__ + k - *ka;
  2158. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2159. q__3.r = rwork[i__2] * ab[i__5].r, q__3.i = rwork[i__2] *
  2160. ab[i__5].i;
  2161. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  2162. ab[i__3].r = q__1.r, ab[i__3].i = q__1.i;
  2163. ra1.r = ra.r, ra1.i = ra.i;
  2164. }
  2165. }
  2166. /* Computing MAX */
  2167. i__3 = 1, i__1 = k + i0 - m + 1;
  2168. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2169. nr = (j2 + *ka - 1) / ka1;
  2170. j1 = j2 - (nr - 1) * ka1;
  2171. if (update) {
  2172. /* Computing MIN */
  2173. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2174. j2t = f2cmin(i__3,i__1);
  2175. } else {
  2176. j2t = j2;
  2177. }
  2178. nrt = (j2t + *ka - 1) / ka1;
  2179. i__3 = j2t;
  2180. i__1 = ka1;
  2181. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2182. /* create nonzero element a(j+ka,j-1) outside the band */
  2183. /* and store it in WORK(j) */
  2184. i__2 = j;
  2185. i__5 = j;
  2186. i__6 = ka1 + (j - 1) * ab_dim1;
  2187. q__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2188. .i, q__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2189. * ab[i__6].r;
  2190. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  2191. i__2 = ka1 + (j - 1) * ab_dim1;
  2192. i__5 = j;
  2193. i__6 = ka1 + (j - 1) * ab_dim1;
  2194. q__1.r = rwork[i__5] * ab[i__6].r, q__1.i = rwork[i__5] * ab[
  2195. i__6].i;
  2196. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  2197. /* L800: */
  2198. }
  2199. /* generate rotations in 1st set to annihilate elements which */
  2200. /* have been created outside the band */
  2201. if (nrt > 0) {
  2202. clargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2203. &rwork[j1], &ka1);
  2204. }
  2205. if (nr > 0) {
  2206. /* apply rotations in 1st set from the right */
  2207. i__1 = *ka - 1;
  2208. for (l = 1; l <= i__1; ++l) {
  2209. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2210. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2211. j1], &ka1);
  2212. /* L810: */
  2213. }
  2214. /* apply rotations in 1st set from both sides to diagonal */
  2215. /* blocks */
  2216. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2217. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2218. work[j1], &ka1);
  2219. clacgv_(&nr, &work[j1], &ka1);
  2220. }
  2221. /* start applying rotations in 1st set from the left */
  2222. i__1 = *kb - k + 1;
  2223. for (l = *ka - 1; l >= i__1; --l) {
  2224. nrt = (j2 + l - 1) / ka1;
  2225. j1t = j2 - (nrt - 1) * ka1;
  2226. if (nrt > 0) {
  2227. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2228. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2229. &inca, &rwork[j1t], &work[j1t], &ka1);
  2230. }
  2231. /* L820: */
  2232. }
  2233. if (wantx) {
  2234. /* post-multiply X by product of rotations in 1st set */
  2235. i__1 = j2;
  2236. i__3 = ka1;
  2237. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2238. r_cnjg(&q__1, &work[j]);
  2239. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2240. + 1], &c__1, &rwork[j], &q__1);
  2241. /* L830: */
  2242. }
  2243. }
  2244. /* L840: */
  2245. }
  2246. if (update) {
  2247. if (i2 > 0 && kbt > 0) {
  2248. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2249. /* band and store it in WORK(m-kb+i+kbt) */
  2250. i__4 = m - *kb + i__ + kbt;
  2251. i__3 = kbt + 1 + i__ * bb_dim1;
  2252. q__2.r = -bb[i__3].r, q__2.i = -bb[i__3].i;
  2253. q__1.r = q__2.r * ra1.r - q__2.i * ra1.i, q__1.i = q__2.r *
  2254. ra1.i + q__2.i * ra1.r;
  2255. work[i__4].r = q__1.r, work[i__4].i = q__1.i;
  2256. }
  2257. }
  2258. for (k = *kb; k >= 1; --k) {
  2259. if (update) {
  2260. /* Computing MAX */
  2261. i__4 = 2, i__3 = k + i0 - m;
  2262. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2263. } else {
  2264. /* Computing MAX */
  2265. i__4 = 1, i__3 = k + i0 - m;
  2266. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2267. }
  2268. /* finish applying rotations in 2nd set from the left */
  2269. for (l = *kb - k; l >= 1; --l) {
  2270. nrt = (j2 + *ka + l - 1) / ka1;
  2271. j1t = j2 - (nrt - 1) * ka1;
  2272. if (nrt > 0) {
  2273. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2274. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2275. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2276. + j1t + *ka], &ka1);
  2277. }
  2278. /* L850: */
  2279. }
  2280. nr = (j2 + *ka - 1) / ka1;
  2281. j1 = j2 - (nr - 1) * ka1;
  2282. i__4 = j2;
  2283. i__3 = ka1;
  2284. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2285. i__1 = m - *kb + j;
  2286. i__2 = m - *kb + j + *ka;
  2287. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2288. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2289. /* L860: */
  2290. }
  2291. i__3 = j2;
  2292. i__4 = ka1;
  2293. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2294. /* create nonzero element a(j+ka,j-1) outside the band */
  2295. /* and store it in WORK(m-kb+j) */
  2296. i__1 = m - *kb + j;
  2297. i__2 = m - *kb + j;
  2298. i__5 = ka1 + (j - 1) * ab_dim1;
  2299. q__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2300. .i, q__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2301. * ab[i__5].r;
  2302. work[i__1].r = q__1.r, work[i__1].i = q__1.i;
  2303. i__1 = ka1 + (j - 1) * ab_dim1;
  2304. i__2 = m - *kb + j;
  2305. i__5 = ka1 + (j - 1) * ab_dim1;
  2306. q__1.r = rwork[i__2] * ab[i__5].r, q__1.i = rwork[i__2] * ab[
  2307. i__5].i;
  2308. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  2309. /* L870: */
  2310. }
  2311. if (update) {
  2312. if (i__ + k > ka1 && k <= kbt) {
  2313. i__4 = m - *kb + i__ + k - *ka;
  2314. i__3 = m - *kb + i__ + k;
  2315. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2316. }
  2317. }
  2318. /* L880: */
  2319. }
  2320. for (k = *kb; k >= 1; --k) {
  2321. /* Computing MAX */
  2322. i__4 = 1, i__3 = k + i0 - m;
  2323. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2324. nr = (j2 + *ka - 1) / ka1;
  2325. j1 = j2 - (nr - 1) * ka1;
  2326. if (nr > 0) {
  2327. /* generate rotations in 2nd set to annihilate elements */
  2328. /* which have been created outside the band */
  2329. clargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2330. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2331. /* apply rotations in 2nd set from the right */
  2332. i__4 = *ka - 1;
  2333. for (l = 1; l <= i__4; ++l) {
  2334. clartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2335. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2336. , &work[m - *kb + j1], &ka1);
  2337. /* L890: */
  2338. }
  2339. /* apply rotations in 2nd set from both sides to diagonal */
  2340. /* blocks */
  2341. clar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2342. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2343. kb + j1], &work[m - *kb + j1], &ka1);
  2344. clacgv_(&nr, &work[m - *kb + j1], &ka1);
  2345. }
  2346. /* start applying rotations in 2nd set from the left */
  2347. i__4 = *kb - k + 1;
  2348. for (l = *ka - 1; l >= i__4; --l) {
  2349. nrt = (j2 + l - 1) / ka1;
  2350. j1t = j2 - (nrt - 1) * ka1;
  2351. if (nrt > 0) {
  2352. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2353. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2354. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2355. j1t], &ka1);
  2356. }
  2357. /* L900: */
  2358. }
  2359. if (wantx) {
  2360. /* post-multiply X by product of rotations in 2nd set */
  2361. i__4 = j2;
  2362. i__3 = ka1;
  2363. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2364. r_cnjg(&q__1, &work[m - *kb + j]);
  2365. crot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2366. + 1], &c__1, &rwork[m - *kb + j], &q__1);
  2367. /* L910: */
  2368. }
  2369. }
  2370. /* L920: */
  2371. }
  2372. i__3 = *kb - 1;
  2373. for (k = 1; k <= i__3; ++k) {
  2374. /* Computing MAX */
  2375. i__4 = 1, i__1 = k + i0 - m + 1;
  2376. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2377. /* finish applying rotations in 1st set from the left */
  2378. for (l = *kb - k; l >= 1; --l) {
  2379. nrt = (j2 + l - 1) / ka1;
  2380. j1t = j2 - (nrt - 1) * ka1;
  2381. if (nrt > 0) {
  2382. clartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2383. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2384. &inca, &rwork[j1t], &work[j1t], &ka1);
  2385. }
  2386. /* L930: */
  2387. }
  2388. /* L940: */
  2389. }
  2390. if (*kb > 1) {
  2391. i__3 = i2 - *ka;
  2392. for (j = 2; j <= i__3; ++j) {
  2393. rwork[j] = rwork[j + *ka];
  2394. i__4 = j;
  2395. i__1 = j + *ka;
  2396. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2397. /* L950: */
  2398. }
  2399. }
  2400. }
  2401. goto L490;
  2402. /* End of CHBGST */
  2403. } /* chbgst_ */