You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgsvj1.c 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b18 = 1.f;
  489. /* > \brief \b CGSVJ1 pre-processor for the routine cgesvj, applies Jacobi rotations targeting only particular
  490. pivots. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGSVJ1 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj1.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj1.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj1.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, */
  509. /* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP */
  512. /* CHARACTER*1 JOBV */
  513. /* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK ) */
  514. /* REAL SVA( N ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CGSVJ1 is called from CGESVJ as a pre-processor and that is its main */
  521. /* > purpose. It applies Jacobi rotations in the same way as CGESVJ does, but */
  522. /* > it targets only particular pivots and it does not check convergence */
  523. /* > (stopping criterion). Few tunning parameters (marked by [TP]) are */
  524. /* > available for the implementer. */
  525. /* > */
  526. /* > Further Details */
  527. /* > ~~~~~~~~~~~~~~~ */
  528. /* > CGSVJ1 applies few sweeps of Jacobi rotations in the column space of */
  529. /* > the input M-by-N matrix A. The pivot pairs are taken from the (1,2) */
  530. /* > off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The */
  531. /* > block-entries (tiles) of the (1,2) off-diagonal block are marked by the */
  532. /* > [x]'s in the following scheme: */
  533. /* > */
  534. /* > | * * * [x] [x] [x]| */
  535. /* > | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  536. /* > | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  537. /* > |[x] [x] [x] * * * | */
  538. /* > |[x] [x] [x] * * * | */
  539. /* > |[x] [x] [x] * * * | */
  540. /* > */
  541. /* > In terms of the columns of A, the first N1 columns are rotated 'against' */
  542. /* > the remaining N-N1 columns, trying to increase the angle between the */
  543. /* > corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is */
  544. /* > tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. */
  545. /* > The number of sweeps is given in NSWEEP and the orthogonality threshold */
  546. /* > is given in TOL. */
  547. /* > \endverbatim */
  548. /* Arguments: */
  549. /* ========== */
  550. /* > \param[in] JOBV */
  551. /* > \verbatim */
  552. /* > JOBV is CHARACTER*1 */
  553. /* > Specifies whether the output from this procedure is used */
  554. /* > to compute the matrix V: */
  555. /* > = 'V': the product of the Jacobi rotations is accumulated */
  556. /* > by postmulyiplying the N-by-N array V. */
  557. /* > (See the description of V.) */
  558. /* > = 'A': the product of the Jacobi rotations is accumulated */
  559. /* > by postmulyiplying the MV-by-N array V. */
  560. /* > (See the descriptions of MV and V.) */
  561. /* > = 'N': the Jacobi rotations are not accumulated. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. */
  574. /* > M >= N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] N1 */
  578. /* > \verbatim */
  579. /* > N1 is INTEGER */
  580. /* > N1 specifies the 2 x 2 block partition, the first N1 columns are */
  581. /* > rotated 'against' the remaining N-N1 columns of A. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] A */
  585. /* > \verbatim */
  586. /* > A is COMPLEX array, dimension (LDA,N) */
  587. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  588. /* > the input matrix. */
  589. /* > On exit, */
  590. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  591. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  592. /* > rotation threshold and the total number of sweeps are given in */
  593. /* > TOL and NSWEEP, respectively. */
  594. /* > (See the descriptions of N1, D, TOL and NSWEEP.) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDA */
  598. /* > \verbatim */
  599. /* > LDA is INTEGER */
  600. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] D */
  604. /* > \verbatim */
  605. /* > D is COMPLEX array, dimension (N) */
  606. /* > The array D accumulates the scaling factors from the fast scaled */
  607. /* > Jacobi rotations. */
  608. /* > On entry, A*diag(D) represents the input matrix. */
  609. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  610. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  611. /* > rotation threshold and the total number of sweeps are given in */
  612. /* > TOL and NSWEEP, respectively. */
  613. /* > (See the descriptions of N1, A, TOL and NSWEEP.) */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] SVA */
  617. /* > \verbatim */
  618. /* > SVA is REAL array, dimension (N) */
  619. /* > On entry, SVA contains the Euclidean norms of the columns of */
  620. /* > the matrix A*diag(D). */
  621. /* > On exit, SVA contains the Euclidean norms of the columns of */
  622. /* > the matrix onexit*diag(D_onexit). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] MV */
  626. /* > \verbatim */
  627. /* > MV is INTEGER */
  628. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  629. /* > sequence of Jacobi rotations. */
  630. /* > If JOBV = 'N', then MV is not referenced. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] V */
  634. /* > \verbatim */
  635. /* > V is COMPLEX array, dimension (LDV,N) */
  636. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  637. /* > sequence of Jacobi rotations. */
  638. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  639. /* > sequence of Jacobi rotations. */
  640. /* > If JOBV = 'N', then V is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LDV */
  644. /* > \verbatim */
  645. /* > LDV is INTEGER */
  646. /* > The leading dimension of the array V, LDV >= 1. */
  647. /* > If JOBV = 'V', LDV >= N. */
  648. /* > If JOBV = 'A', LDV >= MV. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] EPS */
  652. /* > \verbatim */
  653. /* > EPS is REAL */
  654. /* > EPS = SLAMCH('Epsilon') */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] SFMIN */
  658. /* > \verbatim */
  659. /* > SFMIN is REAL */
  660. /* > SFMIN = SLAMCH('Safe Minimum') */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] TOL */
  664. /* > \verbatim */
  665. /* > TOL is REAL */
  666. /* > TOL is the threshold for Jacobi rotations. For a pair */
  667. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  668. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] NSWEEP */
  672. /* > \verbatim */
  673. /* > NSWEEP is INTEGER */
  674. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  675. /* > performed. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] WORK */
  679. /* > \verbatim */
  680. /* > WORK is COMPLEX array, dimension (LWORK) */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] LWORK */
  684. /* > \verbatim */
  685. /* > LWORK is INTEGER */
  686. /* > LWORK is the dimension of WORK. LWORK >= M. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit. */
  693. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date June 2016 */
  702. /* > \ingroup complexOTHERcomputational */
  703. /* > \par Contributor: */
  704. /* ================== */
  705. /* > */
  706. /* > Zlatko Drmac (Zagreb, Croatia) */
  707. /* ===================================================================== */
  708. /* Subroutine */ int cgsvj1_(char *jobv, integer *m, integer *n, integer *n1,
  709. complex *a, integer *lda, complex *d__, real *sva, integer *mv,
  710. complex *v, integer *ldv, real *eps, real *sfmin, real *tol, integer *
  711. nsweep, complex *work, integer *lwork, integer *info)
  712. {
  713. /* System generated locals */
  714. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  715. i__6, i__7;
  716. real r__1, r__2;
  717. complex q__1, q__2, q__3;
  718. /* Local variables */
  719. integer nblc;
  720. real aapp;
  721. complex aapq;
  722. real aaqq;
  723. integer nblr, ierr;
  724. real bigtheta;
  725. extern /* Subroutine */ int crot_(integer *, complex *, integer *,
  726. complex *, integer *, real *, complex *);
  727. complex ompq;
  728. integer pskipped;
  729. real aapp0, aapq1, temp1;
  730. integer i__, p, q;
  731. real t;
  732. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  733. *, complex *, integer *);
  734. real apoaq, aqoap;
  735. extern logical lsame_(char *, char *);
  736. real theta, small;
  737. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  738. complex *, integer *), cswap_(integer *, complex *, integer *,
  739. complex *, integer *);
  740. logical applv, rsvec;
  741. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  742. integer *, complex *, integer *);
  743. logical rotok;
  744. real rootsfmin;
  745. extern real scnrm2_(integer *, complex *, integer *);
  746. real cs, sn;
  747. extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
  748. real *, integer *, integer *, complex *, integer *, integer *), xerbla_(char *, integer *, ftnlen);
  749. integer ijblsk, swband;
  750. extern integer isamax_(integer *, real *, integer *);
  751. integer blskip;
  752. extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
  753. *, real *);
  754. real mxaapq, thsign, mxsinj;
  755. integer emptsw, notrot, iswrot, jbc;
  756. real big;
  757. integer kbl, igl, ibr, jgl, mvl;
  758. real rootbig, rooteps;
  759. integer rowskip;
  760. real roottol;
  761. /* -- LAPACK computational routine (version 3.8.0) -- */
  762. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  763. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  764. /* June 2016 */
  765. /* ===================================================================== */
  766. /* Test the input parameters. */
  767. /* Parameter adjustments */
  768. --sva;
  769. --d__;
  770. a_dim1 = *lda;
  771. a_offset = 1 + a_dim1 * 1;
  772. a -= a_offset;
  773. v_dim1 = *ldv;
  774. v_offset = 1 + v_dim1 * 1;
  775. v -= v_offset;
  776. --work;
  777. /* Function Body */
  778. applv = lsame_(jobv, "A");
  779. rsvec = lsame_(jobv, "V");
  780. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  781. *info = -1;
  782. } else if (*m < 0) {
  783. *info = -2;
  784. } else if (*n < 0 || *n > *m) {
  785. *info = -3;
  786. } else if (*n1 < 0) {
  787. *info = -4;
  788. } else if (*lda < *m) {
  789. *info = -6;
  790. } else if ((rsvec || applv) && *mv < 0) {
  791. *info = -9;
  792. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  793. *info = -11;
  794. } else if (*tol <= *eps) {
  795. *info = -14;
  796. } else if (*nsweep < 0) {
  797. *info = -15;
  798. } else if (*lwork < *m) {
  799. *info = -17;
  800. } else {
  801. *info = 0;
  802. }
  803. /* #:( */
  804. if (*info != 0) {
  805. i__1 = -(*info);
  806. xerbla_("CGSVJ1", &i__1, (ftnlen)6);
  807. return 0;
  808. }
  809. if (rsvec) {
  810. mvl = *n;
  811. } else if (applv) {
  812. mvl = *mv;
  813. }
  814. rsvec = rsvec || applv;
  815. rooteps = sqrt(*eps);
  816. rootsfmin = sqrt(*sfmin);
  817. small = *sfmin / *eps;
  818. big = 1.f / *sfmin;
  819. rootbig = 1.f / rootsfmin;
  820. /* LARGE = BIG / SQRT( REAL( M*N ) ) */
  821. bigtheta = 1.f / rooteps;
  822. roottol = sqrt(*tol);
  823. /* RSVEC = LSAME( JOBV, 'Y' ) */
  824. emptsw = *n1 * (*n - *n1);
  825. notrot = 0;
  826. kbl = f2cmin(8,*n);
  827. nblr = *n1 / kbl;
  828. if (nblr * kbl != *n1) {
  829. ++nblr;
  830. }
  831. nblc = (*n - *n1) / kbl;
  832. if (nblc * kbl != *n - *n1) {
  833. ++nblc;
  834. }
  835. /* Computing 2nd power */
  836. i__1 = kbl;
  837. blskip = i__1 * i__1 + 1;
  838. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  839. rowskip = f2cmin(5,kbl);
  840. /* [TP] ROWSKIP is a tuning parameter. */
  841. swband = 0;
  842. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  843. /* if CGESVJ is used as a computational routine in the preconditioned */
  844. /* Jacobi SVD algorithm CGEJSV. */
  845. /* | * * * [x] [x] [x]| */
  846. /* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  847. /* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  848. /* |[x] [x] [x] * * * | */
  849. /* |[x] [x] [x] * * * | */
  850. /* |[x] [x] [x] * * * | */
  851. i__1 = *nsweep;
  852. for (i__ = 1; i__ <= i__1; ++i__) {
  853. mxaapq = 0.f;
  854. mxsinj = 0.f;
  855. iswrot = 0;
  856. notrot = 0;
  857. pskipped = 0;
  858. /* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */
  859. /* 1 <= p < q <= N. This is the first step toward a blocked implementation */
  860. /* of the rotations. New implementation, based on block transformations, */
  861. /* is under development. */
  862. i__2 = nblr;
  863. for (ibr = 1; ibr <= i__2; ++ibr) {
  864. igl = (ibr - 1) * kbl + 1;
  865. /* ... go to the off diagonal blocks */
  866. igl = (ibr - 1) * kbl + 1;
  867. /* DO 2010 jbc = ibr + 1, NBL */
  868. i__3 = nblc;
  869. for (jbc = 1; jbc <= i__3; ++jbc) {
  870. jgl = (jbc - 1) * kbl + *n1 + 1;
  871. /* doing the block at ( ibr, jbc ) */
  872. ijblsk = 0;
  873. /* Computing MIN */
  874. i__5 = igl + kbl - 1;
  875. i__4 = f2cmin(i__5,*n1);
  876. for (p = igl; p <= i__4; ++p) {
  877. aapp = sva[p];
  878. if (aapp > 0.f) {
  879. pskipped = 0;
  880. /* Computing MIN */
  881. i__6 = jgl + kbl - 1;
  882. i__5 = f2cmin(i__6,*n);
  883. for (q = jgl; q <= i__5; ++q) {
  884. aaqq = sva[q];
  885. if (aaqq > 0.f) {
  886. aapp0 = aapp;
  887. /* Safe Gram matrix computation */
  888. if (aaqq >= 1.f) {
  889. if (aapp >= aaqq) {
  890. rotok = small * aapp <= aaqq;
  891. } else {
  892. rotok = small * aaqq <= aapp;
  893. }
  894. if (aapp < big / aaqq) {
  895. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  896. c__1, &a[q * a_dim1 + 1], &
  897. c__1);
  898. q__2.r = q__3.r / aaqq, q__2.i =
  899. q__3.i / aaqq;
  900. q__1.r = q__2.r / aapp, q__1.i =
  901. q__2.i / aapp;
  902. aapq.r = q__1.r, aapq.i = q__1.i;
  903. } else {
  904. ccopy_(m, &a[p * a_dim1 + 1], &c__1, &
  905. work[1], &c__1);
  906. clascl_("G", &c__0, &c__0, &aapp, &
  907. c_b18, m, &c__1, &work[1],
  908. lda, &ierr);
  909. cdotc_(&q__2, m, &work[1], &c__1, &a[
  910. q * a_dim1 + 1], &c__1);
  911. q__1.r = q__2.r / aaqq, q__1.i =
  912. q__2.i / aaqq;
  913. aapq.r = q__1.r, aapq.i = q__1.i;
  914. }
  915. } else {
  916. if (aapp >= aaqq) {
  917. rotok = aapp <= aaqq / small;
  918. } else {
  919. rotok = aaqq <= aapp / small;
  920. }
  921. if (aapp > small / aaqq) {
  922. cdotc_(&q__3, m, &a[p * a_dim1 + 1], &
  923. c__1, &a[q * a_dim1 + 1], &
  924. c__1);
  925. r__1 = f2cmax(aaqq,aapp);
  926. q__2.r = q__3.r / r__1, q__2.i =
  927. q__3.i / r__1;
  928. r__2 = f2cmin(aaqq,aapp);
  929. q__1.r = q__2.r / r__2, q__1.i =
  930. q__2.i / r__2;
  931. aapq.r = q__1.r, aapq.i = q__1.i;
  932. } else {
  933. ccopy_(m, &a[q * a_dim1 + 1], &c__1, &
  934. work[1], &c__1);
  935. clascl_("G", &c__0, &c__0, &aaqq, &
  936. c_b18, m, &c__1, &work[1],
  937. lda, &ierr);
  938. cdotc_(&q__2, m, &a[p * a_dim1 + 1], &
  939. c__1, &work[1], &c__1);
  940. q__1.r = q__2.r / aapp, q__1.i =
  941. q__2.i / aapp;
  942. aapq.r = q__1.r, aapq.i = q__1.i;
  943. }
  944. }
  945. /* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q) */
  946. aapq1 = -c_abs(&aapq);
  947. /* Computing MAX */
  948. r__1 = mxaapq, r__2 = -aapq1;
  949. mxaapq = f2cmax(r__1,r__2);
  950. /* TO rotate or NOT to rotate, THAT is the question ... */
  951. if (abs(aapq1) > *tol) {
  952. r__1 = c_abs(&aapq);
  953. q__1.r = aapq.r / r__1, q__1.i = aapq.i /
  954. r__1;
  955. ompq.r = q__1.r, ompq.i = q__1.i;
  956. notrot = 0;
  957. /* [RTD] ROTATED = ROTATED + 1 */
  958. pskipped = 0;
  959. ++iswrot;
  960. if (rotok) {
  961. aqoap = aaqq / aapp;
  962. apoaq = aapp / aaqq;
  963. theta = (r__1 = aqoap - apoaq, abs(
  964. r__1)) * -.5f / aapq1;
  965. if (aaqq > aapp0) {
  966. theta = -theta;
  967. }
  968. if (abs(theta) > bigtheta) {
  969. t = .5f / theta;
  970. cs = 1.f;
  971. r_cnjg(&q__2, &ompq);
  972. q__1.r = t * q__2.r, q__1.i = t *
  973. q__2.i;
  974. crot_(m, &a[p * a_dim1 + 1], &
  975. c__1, &a[q * a_dim1 + 1],
  976. &c__1, &cs, &q__1);
  977. if (rsvec) {
  978. r_cnjg(&q__2, &ompq);
  979. q__1.r = t * q__2.r, q__1.i = t * q__2.i;
  980. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  981. v_dim1 + 1], &c__1, &cs, &q__1);
  982. }
  983. /* Computing MAX */
  984. r__1 = 0.f, r__2 = t * apoaq *
  985. aapq1 + 1.f;
  986. sva[q] = aaqq * sqrt((f2cmax(r__1,
  987. r__2)));
  988. /* Computing MAX */
  989. r__1 = 0.f, r__2 = 1.f - t *
  990. aqoap * aapq1;
  991. aapp *= sqrt((f2cmax(r__1,r__2)));
  992. /* Computing MAX */
  993. r__1 = mxsinj, r__2 = abs(t);
  994. mxsinj = f2cmax(r__1,r__2);
  995. } else {
  996. thsign = -r_sign(&c_b18, &aapq1);
  997. if (aaqq > aapp0) {
  998. thsign = -thsign;
  999. }
  1000. t = 1.f / (theta + thsign * sqrt(
  1001. theta * theta + 1.f));
  1002. cs = sqrt(1.f / (t * t + 1.f));
  1003. sn = t * cs;
  1004. /* Computing MAX */
  1005. r__1 = mxsinj, r__2 = abs(sn);
  1006. mxsinj = f2cmax(r__1,r__2);
  1007. /* Computing MAX */
  1008. r__1 = 0.f, r__2 = t * apoaq *
  1009. aapq1 + 1.f;
  1010. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1011. r__2)));
  1012. /* Computing MAX */
  1013. r__1 = 0.f, r__2 = 1.f - t *
  1014. aqoap * aapq1;
  1015. aapp *= sqrt((f2cmax(r__1,r__2)));
  1016. r_cnjg(&q__2, &ompq);
  1017. q__1.r = sn * q__2.r, q__1.i = sn
  1018. * q__2.i;
  1019. crot_(m, &a[p * a_dim1 + 1], &
  1020. c__1, &a[q * a_dim1 + 1],
  1021. &c__1, &cs, &q__1);
  1022. if (rsvec) {
  1023. r_cnjg(&q__2, &ompq);
  1024. q__1.r = sn * q__2.r, q__1.i = sn * q__2.i;
  1025. crot_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1026. v_dim1 + 1], &c__1, &cs, &q__1);
  1027. }
  1028. }
  1029. i__6 = p;
  1030. i__7 = q;
  1031. q__2.r = -d__[i__7].r, q__2.i = -d__[
  1032. i__7].i;
  1033. q__1.r = q__2.r * ompq.r - q__2.i *
  1034. ompq.i, q__1.i = q__2.r *
  1035. ompq.i + q__2.i * ompq.r;
  1036. d__[i__6].r = q__1.r, d__[i__6].i =
  1037. q__1.i;
  1038. } else {
  1039. if (aapp > aaqq) {
  1040. ccopy_(m, &a[p * a_dim1 + 1], &
  1041. c__1, &work[1], &c__1);
  1042. clascl_("G", &c__0, &c__0, &aapp,
  1043. &c_b18, m, &c__1, &work[1]
  1044. , lda, &ierr);
  1045. clascl_("G", &c__0, &c__0, &aaqq,
  1046. &c_b18, m, &c__1, &a[q *
  1047. a_dim1 + 1], lda, &ierr);
  1048. q__1.r = -aapq.r, q__1.i =
  1049. -aapq.i;
  1050. caxpy_(m, &q__1, &work[1], &c__1,
  1051. &a[q * a_dim1 + 1], &c__1)
  1052. ;
  1053. clascl_("G", &c__0, &c__0, &c_b18,
  1054. &aaqq, m, &c__1, &a[q *
  1055. a_dim1 + 1], lda, &ierr);
  1056. /* Computing MAX */
  1057. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1058. aapq1;
  1059. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1060. r__2)));
  1061. mxsinj = f2cmax(mxsinj,*sfmin);
  1062. } else {
  1063. ccopy_(m, &a[q * a_dim1 + 1], &
  1064. c__1, &work[1], &c__1);
  1065. clascl_("G", &c__0, &c__0, &aaqq,
  1066. &c_b18, m, &c__1, &work[1]
  1067. , lda, &ierr);
  1068. clascl_("G", &c__0, &c__0, &aapp,
  1069. &c_b18, m, &c__1, &a[p *
  1070. a_dim1 + 1], lda, &ierr);
  1071. r_cnjg(&q__2, &aapq);
  1072. q__1.r = -q__2.r, q__1.i =
  1073. -q__2.i;
  1074. caxpy_(m, &q__1, &work[1], &c__1,
  1075. &a[p * a_dim1 + 1], &c__1)
  1076. ;
  1077. clascl_("G", &c__0, &c__0, &c_b18,
  1078. &aapp, m, &c__1, &a[p *
  1079. a_dim1 + 1], lda, &ierr);
  1080. /* Computing MAX */
  1081. r__1 = 0.f, r__2 = 1.f - aapq1 *
  1082. aapq1;
  1083. sva[p] = aapp * sqrt((f2cmax(r__1,
  1084. r__2)));
  1085. mxsinj = f2cmax(mxsinj,*sfmin);
  1086. }
  1087. }
  1088. /* END IF ROTOK THEN ... ELSE */
  1089. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1090. /* Computing 2nd power */
  1091. r__1 = sva[q] / aaqq;
  1092. if (r__1 * r__1 <= rooteps) {
  1093. if (aaqq < rootbig && aaqq >
  1094. rootsfmin) {
  1095. sva[q] = scnrm2_(m, &a[q * a_dim1
  1096. + 1], &c__1);
  1097. } else {
  1098. t = 0.f;
  1099. aaqq = 1.f;
  1100. classq_(m, &a[q * a_dim1 + 1], &
  1101. c__1, &t, &aaqq);
  1102. sva[q] = t * sqrt(aaqq);
  1103. }
  1104. }
  1105. /* Computing 2nd power */
  1106. r__1 = aapp / aapp0;
  1107. if (r__1 * r__1 <= rooteps) {
  1108. if (aapp < rootbig && aapp >
  1109. rootsfmin) {
  1110. aapp = scnrm2_(m, &a[p * a_dim1 +
  1111. 1], &c__1);
  1112. } else {
  1113. t = 0.f;
  1114. aapp = 1.f;
  1115. classq_(m, &a[p * a_dim1 + 1], &
  1116. c__1, &t, &aapp);
  1117. aapp = t * sqrt(aapp);
  1118. }
  1119. sva[p] = aapp;
  1120. }
  1121. /* end of OK rotation */
  1122. } else {
  1123. ++notrot;
  1124. /* [RTD] SKIPPED = SKIPPED + 1 */
  1125. ++pskipped;
  1126. ++ijblsk;
  1127. }
  1128. } else {
  1129. ++notrot;
  1130. ++pskipped;
  1131. ++ijblsk;
  1132. }
  1133. if (i__ <= swband && ijblsk >= blskip) {
  1134. sva[p] = aapp;
  1135. notrot = 0;
  1136. goto L2011;
  1137. }
  1138. if (i__ <= swband && pskipped > rowskip) {
  1139. aapp = -aapp;
  1140. notrot = 0;
  1141. goto L2203;
  1142. }
  1143. /* L2200: */
  1144. }
  1145. /* end of the q-loop */
  1146. L2203:
  1147. sva[p] = aapp;
  1148. } else {
  1149. if (aapp == 0.f) {
  1150. /* Computing MIN */
  1151. i__5 = jgl + kbl - 1;
  1152. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1153. }
  1154. if (aapp < 0.f) {
  1155. notrot = 0;
  1156. }
  1157. }
  1158. /* L2100: */
  1159. }
  1160. /* end of the p-loop */
  1161. /* L2010: */
  1162. }
  1163. /* end of the jbc-loop */
  1164. L2011:
  1165. /* 2011 bailed out of the jbc-loop */
  1166. /* Computing MIN */
  1167. i__4 = igl + kbl - 1;
  1168. i__3 = f2cmin(i__4,*n);
  1169. for (p = igl; p <= i__3; ++p) {
  1170. sva[p] = (r__1 = sva[p], abs(r__1));
  1171. /* L2012: */
  1172. }
  1173. /* ** */
  1174. /* L2000: */
  1175. }
  1176. /* 2000 :: end of the ibr-loop */
  1177. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1178. sva[*n] = scnrm2_(m, &a[*n * a_dim1 + 1], &c__1);
  1179. } else {
  1180. t = 0.f;
  1181. aapp = 1.f;
  1182. classq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1183. sva[*n] = t * sqrt(aapp);
  1184. }
  1185. /* Additional steering devices */
  1186. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1187. swband = i__;
  1188. }
  1189. if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * *tol && (real) (*
  1190. n) * mxaapq * mxsinj < *tol) {
  1191. goto L1994;
  1192. }
  1193. if (notrot >= emptsw) {
  1194. goto L1994;
  1195. }
  1196. /* L1993: */
  1197. }
  1198. /* end i=1:NSWEEP loop */
  1199. /* #:( Reaching this point means that the procedure has not converged. */
  1200. *info = *nsweep - 1;
  1201. goto L1995;
  1202. L1994:
  1203. /* #:) Reaching this point means numerical convergence after the i-th */
  1204. /* sweep. */
  1205. *info = 0;
  1206. /* #:) INFO = 0 confirms successful iterations. */
  1207. L1995:
  1208. /* Sort the vector SVA() of column norms. */
  1209. i__1 = *n - 1;
  1210. for (p = 1; p <= i__1; ++p) {
  1211. i__2 = *n - p + 1;
  1212. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1213. if (p != q) {
  1214. temp1 = sva[p];
  1215. sva[p] = sva[q];
  1216. sva[q] = temp1;
  1217. i__2 = p;
  1218. aapq.r = d__[i__2].r, aapq.i = d__[i__2].i;
  1219. i__2 = p;
  1220. i__3 = q;
  1221. d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i;
  1222. i__2 = q;
  1223. d__[i__2].r = aapq.r, d__[i__2].i = aapq.i;
  1224. cswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1225. if (rsvec) {
  1226. cswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1227. c__1);
  1228. }
  1229. }
  1230. /* L5991: */
  1231. }
  1232. return 0;
  1233. } /* cgsvj1_ */