|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {1.f,0.f};
- static complex c_b2 = {0.f,0.f};
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- static integer c__3 = 3;
- static integer c__16 = 16;
-
- /* > \brief \b CGGHD3 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGGHD3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgghd3.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgghd3.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgghd3.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, */
- /* $ LDQ, Z, LDZ, WORK, LWORK, INFO ) */
-
- /* CHARACTER COMPQ, COMPZ */
- /* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK */
- /* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
- /* $ Z( LDZ, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > */
- /* > CGGHD3 reduces a pair of complex matrices (A,B) to generalized upper */
- /* > Hessenberg form using unitary transformations, where A is a */
- /* > general matrix and B is upper triangular. The form of the */
- /* > generalized eigenvalue problem is */
- /* > A*x = lambda*B*x, */
- /* > and B is typically made upper triangular by computing its QR */
- /* > factorization and moving the unitary matrix Q to the left side */
- /* > of the equation. */
- /* > */
- /* > This subroutine simultaneously reduces A to a Hessenberg matrix H: */
- /* > Q**H*A*Z = H */
- /* > and transforms B to another upper triangular matrix T: */
- /* > Q**H*B*Z = T */
- /* > in order to reduce the problem to its standard form */
- /* > H*y = lambda*T*y */
- /* > where y = Z**H*x. */
- /* > */
- /* > The unitary matrices Q and Z are determined as products of Givens */
- /* > rotations. They may either be formed explicitly, or they may be */
- /* > postmultiplied into input matrices Q1 and Z1, so that */
- /* > */
- /* > Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */
- /* > */
- /* > Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */
- /* > */
- /* > If Q1 is the unitary matrix from the QR factorization of B in the */
- /* > original equation A*x = lambda*B*x, then CGGHD3 reduces the original */
- /* > problem to generalized Hessenberg form. */
- /* > */
- /* > This is a blocked variant of CGGHRD, using matrix-matrix */
- /* > multiplications for parts of the computation to enhance performance. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] COMPQ */
- /* > \verbatim */
- /* > COMPQ is CHARACTER*1 */
- /* > = 'N': do not compute Q; */
- /* > = 'I': Q is initialized to the unit matrix, and the */
- /* > unitary matrix Q is returned; */
- /* > = 'V': Q must contain a unitary matrix Q1 on entry, */
- /* > and the product Q1*Q is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPZ */
- /* > \verbatim */
- /* > COMPZ is CHARACTER*1 */
- /* > = 'N': do not compute Z; */
- /* > = 'I': Z is initialized to the unit matrix, and the */
- /* > unitary matrix Z is returned; */
- /* > = 'V': Z must contain a unitary matrix Z1 on entry, */
- /* > and the product Z1*Z is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > */
- /* > ILO and IHI mark the rows and columns of A which are to be */
- /* > reduced. It is assumed that A is already upper triangular */
- /* > in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */
- /* > normally set by a previous call to CGGBAL; otherwise they */
- /* > should be set to 1 and N respectively. */
- /* > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > On entry, the N-by-N general matrix to be reduced. */
- /* > On exit, the upper triangle and the first subdiagonal of A */
- /* > are overwritten with the upper Hessenberg matrix H, and the */
- /* > rest is set to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB, N) */
- /* > On entry, the N-by-N upper triangular matrix B. */
- /* > On exit, the upper triangular matrix T = Q**H B Z. The */
- /* > elements below the diagonal are set to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is COMPLEX array, dimension (LDQ, N) */
- /* > On entry, if COMPQ = 'V', the unitary matrix Q1, typically */
- /* > from the QR factorization of B. */
- /* > On exit, if COMPQ='I', the unitary matrix Q, and if */
- /* > COMPQ = 'V', the product Q1*Q. */
- /* > Not referenced if COMPQ='N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. */
- /* > LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX array, dimension (LDZ, N) */
- /* > On entry, if COMPZ = 'V', the unitary matrix Z1. */
- /* > On exit, if COMPZ='I', the unitary matrix Z, and if */
- /* > COMPZ = 'V', the product Z1*Z. */
- /* > Not referenced if COMPZ='N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. */
- /* > LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (LWORK) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The length of the array WORK. LWORK >= 1. */
- /* > For optimum performance LWORK >= 6*N*NB, where NB is the */
- /* > optimal blocksize. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date January 2015 */
-
- /* > \ingroup complexOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine reduces A to Hessenberg form and maintains B in */
- /* > using a blocked variant of Moler and Stewart's original algorithm, */
- /* > as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti */
- /* > (BIT 2008). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int cgghd3_(char *compq, char *compz, integer *n, integer *
- ilo, integer *ihi, complex *a, integer *lda, complex *b, integer *ldb,
- complex *q, integer *ldq, complex *z__, integer *ldz, complex *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9;
- complex q__1, q__2, q__3, q__4;
-
- /* Local variables */
- logical blk22;
- integer cola, jcol, ierr;
- complex temp;
- extern /* Subroutine */ int crot_(integer *, complex *, integer *,
- complex *, integer *, real *, complex *);
- integer jrow, topq, ppwo;
- complex temp1, temp2, temp3;
- real c__;
- integer kacc22, i__, j, k;
- complex s;
- extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
- integer *, complex *, complex *, integer *, complex *, integer *,
- complex *, complex *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
- , complex *, integer *, complex *, integer *, complex *, complex *
- , integer *);
- integer nbmin;
- extern /* Subroutine */ int cunm22_(char *, char *, integer *, integer *,
- integer *, integer *, complex *, integer *, complex *, integer *,
- complex *, integer *, integer *);
- complex ctemp;
- integer nblst;
- logical initq;
- complex c1, c2;
- logical wantq;
- integer j0;
- extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *,
- complex *, integer *, complex *, integer *);
- logical initz, wantz;
- complex s1, s2;
- char compq2[1], compz2[1];
- integer nb, jj, nh;
- extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, integer *, complex *,
- integer *, complex *, integer *, integer *);
- integer nx, pw;
- extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
- *, complex *, complex *, integer *), clartg_(complex *,
- complex *, real *, complex *, complex *), clacpy_(char *, integer
- *, integer *, complex *, integer *, complex *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer lwkopt;
- logical lquery;
- integer nnb, len, top, ppw, n2nb;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* January 2015 */
-
-
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- nb = ilaenv_(&c__1, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6, (ftnlen)
- 1);
- /* Computing MAX */
- i__1 = *n * 6 * nb;
- lwkopt = f2cmax(i__1,1);
- q__1.r = (real) lwkopt, q__1.i = 0.f;
- work[1].r = q__1.r, work[1].i = q__1.i;
- initq = lsame_(compq, "I");
- wantq = initq || lsame_(compq, "V");
- initz = lsame_(compz, "I");
- wantz = initz || lsame_(compz, "V");
- lquery = *lwork == -1;
-
- if (! lsame_(compq, "N") && ! wantq) {
- *info = -1;
- } else if (! lsame_(compz, "N") && ! wantz) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1) {
- *info = -4;
- } else if (*ihi > *n || *ihi < *ilo - 1) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (wantq && *ldq < *n || *ldq < 1) {
- *info = -11;
- } else if (wantz && *ldz < *n || *ldz < 1) {
- *info = -13;
- } else if (*lwork < 1 && ! lquery) {
- *info = -15;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGGHD3", &i__1, (ftnlen)6);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Initialize Q and Z if desired. */
-
- if (initq) {
- claset_("All", n, n, &c_b2, &c_b1, &q[q_offset], ldq);
- }
- if (initz) {
- claset_("All", n, n, &c_b2, &c_b1, &z__[z_offset], ldz);
- }
-
- /* Zero out lower triangle of B. */
-
- if (*n > 1) {
- i__1 = *n - 1;
- i__2 = *n - 1;
- claset_("Lower", &i__1, &i__2, &c_b2, &c_b2, &b[b_dim1 + 2], ldb);
- }
-
- /* Quick return if possible */
-
- nh = *ihi - *ilo + 1;
- if (nh <= 1) {
- work[1].r = 1.f, work[1].i = 0.f;
- return 0;
- }
-
- /* Determine the blocksize. */
-
- nbmin = ilaenv_(&c__2, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6, (
- ftnlen)1);
- if (nb > 1 && nb < nh) {
-
- /* Determine when to use unblocked instead of blocked code. */
-
- /* Computing MAX */
- i__1 = nb, i__2 = ilaenv_(&c__3, "CGGHD3", " ", n, ilo, ihi, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = f2cmax(i__1,i__2);
- if (nx < nh) {
-
- /* Determine if workspace is large enough for blocked code. */
-
- if (*lwork < lwkopt) {
-
- /* Not enough workspace to use optimal NB: determine the */
- /* minimum value of NB, and reduce NB or force use of */
- /* unblocked code. */
-
- /* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "CGGHD3", " ", n, ilo, ihi, &
- c_n1, (ftnlen)6, (ftnlen)1);
- nbmin = f2cmax(i__1,i__2);
- if (*lwork >= *n * 6 * nbmin) {
- nb = *lwork / (*n * 6);
- } else {
- nb = 1;
- }
- }
- }
- }
-
- if (nb < nbmin || nb >= nh) {
-
- /* Use unblocked code below */
-
- jcol = *ilo;
-
- } else {
-
- /* Use blocked code */
-
- kacc22 = ilaenv_(&c__16, "CGGHD3", " ", n, ilo, ihi, &c_n1, (ftnlen)6,
- (ftnlen)1);
- blk22 = kacc22 == 2;
- i__1 = *ihi - 2;
- i__2 = nb;
- for (jcol = *ilo; i__2 < 0 ? jcol >= i__1 : jcol <= i__1; jcol +=
- i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *ihi - jcol - 1;
- nnb = f2cmin(i__3,i__4);
-
- /* Initialize small unitary factors that will hold the */
- /* accumulated Givens rotations in workspace. */
- /* N2NB denotes the number of 2*NNB-by-2*NNB factors */
- /* NBLST denotes the (possibly smaller) order of the last */
- /* factor. */
-
- n2nb = (*ihi - jcol - 1) / nnb - 1;
- nblst = *ihi - jcol - n2nb * nnb;
- claset_("All", &nblst, &nblst, &c_b2, &c_b1, &work[1], &nblst);
- pw = nblst * nblst + 1;
- i__3 = n2nb;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = nnb << 1;
- i__5 = nnb << 1;
- i__6 = nnb << 1;
- claset_("All", &i__4, &i__5, &c_b2, &c_b1, &work[pw], &i__6);
- pw += (nnb << 2) * nnb;
- }
-
- /* Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form. */
-
- i__3 = jcol + nnb - 1;
- for (j = jcol; j <= i__3; ++j) {
-
- /* Reduce Jth column of A. Store cosines and sines in Jth */
- /* column of A and B, respectively. */
-
- i__4 = j + 2;
- for (i__ = *ihi; i__ >= i__4; --i__) {
- i__5 = i__ - 1 + j * a_dim1;
- temp.r = a[i__5].r, temp.i = a[i__5].i;
- clartg_(&temp, &a[i__ + j * a_dim1], &c__, &s, &a[i__ - 1
- + j * a_dim1]);
- i__5 = i__ + j * a_dim1;
- q__1.r = c__, q__1.i = 0.f;
- a[i__5].r = q__1.r, a[i__5].i = q__1.i;
- i__5 = i__ + j * b_dim1;
- b[i__5].r = s.r, b[i__5].i = s.i;
- }
-
- /* Accumulate Givens rotations into workspace array. */
-
- ppw = (nblst + 1) * (nblst - 2) - j + jcol + 1;
- len = j + 2 - jcol;
- jrow = j + n2nb * nnb + 2;
- i__4 = jrow;
- for (i__ = *ihi; i__ >= i__4; --i__) {
- i__5 = i__ + j * a_dim1;
- ctemp.r = a[i__5].r, ctemp.i = a[i__5].i;
- i__5 = i__ + j * b_dim1;
- s.r = b[i__5].r, s.i = b[i__5].i;
- i__5 = ppw + len - 1;
- for (jj = ppw; jj <= i__5; ++jj) {
- i__6 = jj + nblst;
- temp.r = work[i__6].r, temp.i = work[i__6].i;
- i__6 = jj + nblst;
- q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, q__2.i =
- ctemp.r * temp.i + ctemp.i * temp.r;
- i__7 = jj;
- q__3.r = s.r * work[i__7].r - s.i * work[i__7].i,
- q__3.i = s.r * work[i__7].i + s.i * work[i__7]
- .r;
- q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
- work[i__6].r = q__1.r, work[i__6].i = q__1.i;
- i__6 = jj;
- r_cnjg(&q__3, &s);
- q__2.r = q__3.r * temp.r - q__3.i * temp.i, q__2.i =
- q__3.r * temp.i + q__3.i * temp.r;
- i__7 = jj;
- q__4.r = ctemp.r * work[i__7].r - ctemp.i * work[i__7]
- .i, q__4.i = ctemp.r * work[i__7].i + ctemp.i
- * work[i__7].r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- work[i__6].r = q__1.r, work[i__6].i = q__1.i;
- }
- ++len;
- ppw = ppw - nblst - 1;
- }
-
- ppwo = nblst * nblst + (nnb + j - jcol - 1 << 1) * nnb + nnb;
- j0 = jrow - nnb;
- i__4 = j + 2;
- i__5 = -nnb;
- for (jrow = j0; i__5 < 0 ? jrow >= i__4 : jrow <= i__4; jrow
- += i__5) {
- ppw = ppwo;
- len = j + 2 - jcol;
- i__6 = jrow;
- for (i__ = jrow + nnb - 1; i__ >= i__6; --i__) {
- i__7 = i__ + j * a_dim1;
- ctemp.r = a[i__7].r, ctemp.i = a[i__7].i;
- i__7 = i__ + j * b_dim1;
- s.r = b[i__7].r, s.i = b[i__7].i;
- i__7 = ppw + len - 1;
- for (jj = ppw; jj <= i__7; ++jj) {
- i__8 = jj + (nnb << 1);
- temp.r = work[i__8].r, temp.i = work[i__8].i;
- i__8 = jj + (nnb << 1);
- q__2.r = ctemp.r * temp.r - ctemp.i * temp.i,
- q__2.i = ctemp.r * temp.i + ctemp.i *
- temp.r;
- i__9 = jj;
- q__3.r = s.r * work[i__9].r - s.i * work[i__9].i,
- q__3.i = s.r * work[i__9].i + s.i * work[
- i__9].r;
- q__1.r = q__2.r - q__3.r, q__1.i = q__2.i -
- q__3.i;
- work[i__8].r = q__1.r, work[i__8].i = q__1.i;
- i__8 = jj;
- r_cnjg(&q__3, &s);
- q__2.r = q__3.r * temp.r - q__3.i * temp.i,
- q__2.i = q__3.r * temp.i + q__3.i *
- temp.r;
- i__9 = jj;
- q__4.r = ctemp.r * work[i__9].r - ctemp.i * work[
- i__9].i, q__4.i = ctemp.r * work[i__9].i
- + ctemp.i * work[i__9].r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i +
- q__4.i;
- work[i__8].r = q__1.r, work[i__8].i = q__1.i;
- }
- ++len;
- ppw = ppw - (nnb << 1) - 1;
- }
- ppwo += (nnb << 2) * nnb;
- }
-
- /* TOP denotes the number of top rows in A and B that will */
- /* not be updated during the next steps. */
-
- if (jcol <= 2) {
- top = 0;
- } else {
- top = jcol;
- }
-
- /* Propagate transformations through B and replace stored */
- /* left sines/cosines by right sines/cosines. */
-
- i__5 = j + 1;
- for (jj = *n; jj >= i__5; --jj) {
-
- /* Update JJth column of B. */
-
- /* Computing MIN */
- i__4 = jj + 1;
- i__6 = j + 2;
- for (i__ = f2cmin(i__4,*ihi); i__ >= i__6; --i__) {
- i__4 = i__ + j * a_dim1;
- ctemp.r = a[i__4].r, ctemp.i = a[i__4].i;
- i__4 = i__ + j * b_dim1;
- s.r = b[i__4].r, s.i = b[i__4].i;
- i__4 = i__ + jj * b_dim1;
- temp.r = b[i__4].r, temp.i = b[i__4].i;
- i__4 = i__ + jj * b_dim1;
- q__2.r = ctemp.r * temp.r - ctemp.i * temp.i, q__2.i =
- ctemp.r * temp.i + ctemp.i * temp.r;
- r_cnjg(&q__4, &s);
- i__7 = i__ - 1 + jj * b_dim1;
- q__3.r = q__4.r * b[i__7].r - q__4.i * b[i__7].i,
- q__3.i = q__4.r * b[i__7].i + q__4.i * b[i__7]
- .r;
- q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
- b[i__4].r = q__1.r, b[i__4].i = q__1.i;
- i__4 = i__ - 1 + jj * b_dim1;
- q__2.r = s.r * temp.r - s.i * temp.i, q__2.i = s.r *
- temp.i + s.i * temp.r;
- i__7 = i__ - 1 + jj * b_dim1;
- q__3.r = ctemp.r * b[i__7].r - ctemp.i * b[i__7].i,
- q__3.i = ctemp.r * b[i__7].i + ctemp.i * b[
- i__7].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- b[i__4].r = q__1.r, b[i__4].i = q__1.i;
- }
-
- /* Annihilate B( JJ+1, JJ ). */
-
- if (jj < *ihi) {
- i__6 = jj + 1 + (jj + 1) * b_dim1;
- temp.r = b[i__6].r, temp.i = b[i__6].i;
- clartg_(&temp, &b[jj + 1 + jj * b_dim1], &c__, &s, &b[
- jj + 1 + (jj + 1) * b_dim1]);
- i__6 = jj + 1 + jj * b_dim1;
- b[i__6].r = 0.f, b[i__6].i = 0.f;
- i__6 = jj - top;
- crot_(&i__6, &b[top + 1 + (jj + 1) * b_dim1], &c__1, &
- b[top + 1 + jj * b_dim1], &c__1, &c__, &s);
- i__6 = jj + 1 + j * a_dim1;
- q__1.r = c__, q__1.i = 0.f;
- a[i__6].r = q__1.r, a[i__6].i = q__1.i;
- i__6 = jj + 1 + j * b_dim1;
- r_cnjg(&q__2, &s);
- q__1.r = -q__2.r, q__1.i = -q__2.i;
- b[i__6].r = q__1.r, b[i__6].i = q__1.i;
- }
- }
-
- /* Update A by transformations from right. */
-
- jj = (*ihi - j - 1) % 3;
- i__5 = jj + 1;
- for (i__ = *ihi - j - 3; i__ >= i__5; i__ += -3) {
- i__6 = j + 1 + i__ + j * a_dim1;
- ctemp.r = a[i__6].r, ctemp.i = a[i__6].i;
- i__6 = j + 1 + i__ + j * b_dim1;
- q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
- s.r = q__1.r, s.i = q__1.i;
- i__6 = j + 2 + i__ + j * a_dim1;
- c1.r = a[i__6].r, c1.i = a[i__6].i;
- i__6 = j + 2 + i__ + j * b_dim1;
- q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
- s1.r = q__1.r, s1.i = q__1.i;
- i__6 = j + 3 + i__ + j * a_dim1;
- c2.r = a[i__6].r, c2.i = a[i__6].i;
- i__6 = j + 3 + i__ + j * b_dim1;
- q__1.r = -b[i__6].r, q__1.i = -b[i__6].i;
- s2.r = q__1.r, s2.i = q__1.i;
-
- i__6 = *ihi;
- for (k = top + 1; k <= i__6; ++k) {
- i__4 = k + (j + i__) * a_dim1;
- temp.r = a[i__4].r, temp.i = a[i__4].i;
- i__4 = k + (j + i__ + 1) * a_dim1;
- temp1.r = a[i__4].r, temp1.i = a[i__4].i;
- i__4 = k + (j + i__ + 2) * a_dim1;
- temp2.r = a[i__4].r, temp2.i = a[i__4].i;
- i__4 = k + (j + i__ + 3) * a_dim1;
- temp3.r = a[i__4].r, temp3.i = a[i__4].i;
- i__4 = k + (j + i__ + 3) * a_dim1;
- q__2.r = c2.r * temp3.r - c2.i * temp3.i, q__2.i =
- c2.r * temp3.i + c2.i * temp3.r;
- r_cnjg(&q__4, &s2);
- q__3.r = q__4.r * temp2.r - q__4.i * temp2.i, q__3.i =
- q__4.r * temp2.i + q__4.i * temp2.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- a[i__4].r = q__1.r, a[i__4].i = q__1.i;
- q__3.r = -s2.r, q__3.i = -s2.i;
- q__2.r = q__3.r * temp3.r - q__3.i * temp3.i, q__2.i =
- q__3.r * temp3.i + q__3.i * temp3.r;
- q__4.r = c2.r * temp2.r - c2.i * temp2.i, q__4.i =
- c2.r * temp2.i + c2.i * temp2.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- temp2.r = q__1.r, temp2.i = q__1.i;
- i__4 = k + (j + i__ + 2) * a_dim1;
- q__2.r = c1.r * temp2.r - c1.i * temp2.i, q__2.i =
- c1.r * temp2.i + c1.i * temp2.r;
- r_cnjg(&q__4, &s1);
- q__3.r = q__4.r * temp1.r - q__4.i * temp1.i, q__3.i =
- q__4.r * temp1.i + q__4.i * temp1.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- a[i__4].r = q__1.r, a[i__4].i = q__1.i;
- q__3.r = -s1.r, q__3.i = -s1.i;
- q__2.r = q__3.r * temp2.r - q__3.i * temp2.i, q__2.i =
- q__3.r * temp2.i + q__3.i * temp2.r;
- q__4.r = c1.r * temp1.r - c1.i * temp1.i, q__4.i =
- c1.r * temp1.i + c1.i * temp1.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- temp1.r = q__1.r, temp1.i = q__1.i;
- i__4 = k + (j + i__ + 1) * a_dim1;
- q__2.r = ctemp.r * temp1.r - ctemp.i * temp1.i,
- q__2.i = ctemp.r * temp1.i + ctemp.i *
- temp1.r;
- r_cnjg(&q__4, &s);
- q__3.r = q__4.r * temp.r - q__4.i * temp.i, q__3.i =
- q__4.r * temp.i + q__4.i * temp.r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- a[i__4].r = q__1.r, a[i__4].i = q__1.i;
- i__4 = k + (j + i__) * a_dim1;
- q__3.r = -s.r, q__3.i = -s.i;
- q__2.r = q__3.r * temp1.r - q__3.i * temp1.i, q__2.i =
- q__3.r * temp1.i + q__3.i * temp1.r;
- q__4.r = ctemp.r * temp.r - ctemp.i * temp.i, q__4.i =
- ctemp.r * temp.i + ctemp.i * temp.r;
- q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
- a[i__4].r = q__1.r, a[i__4].i = q__1.i;
- }
- }
-
- if (jj > 0) {
- for (i__ = jj; i__ >= 1; --i__) {
- i__5 = j + 1 + i__ + j * a_dim1;
- c__ = (doublereal) a[i__5].r;
- i__5 = *ihi - top;
- r_cnjg(&q__2, &b[j + 1 + i__ + j * b_dim1]);
- q__1.r = -q__2.r, q__1.i = -q__2.i;
- crot_(&i__5, &a[top + 1 + (j + i__ + 1) * a_dim1], &
- c__1, &a[top + 1 + (j + i__) * a_dim1], &c__1,
- &c__, &q__1);
- }
- }
-
- /* Update (J+1)th column of A by transformations from left. */
-
- if (j < jcol + nnb - 1) {
- len = j + 1 - jcol;
-
- /* Multiply with the trailing accumulated unitary */
- /* matrix, which takes the form */
-
- /* [ U11 U12 ] */
- /* U = [ ], */
- /* [ U21 U22 ] */
-
- /* where U21 is a LEN-by-LEN matrix and U12 is lower */
- /* triangular. */
-
- jrow = *ihi - nblst + 1;
- cgemv_("Conjugate", &nblst, &len, &c_b1, &work[1], &nblst,
- &a[jrow + (j + 1) * a_dim1], &c__1, &c_b2, &work[
- pw], &c__1);
- ppw = pw + len;
- i__5 = jrow + nblst - len - 1;
- for (i__ = jrow; i__ <= i__5; ++i__) {
- i__6 = ppw;
- i__4 = i__ + (j + 1) * a_dim1;
- work[i__6].r = a[i__4].r, work[i__6].i = a[i__4].i;
- ++ppw;
- }
- i__5 = nblst - len;
- ctrmv_("Lower", "Conjugate", "Non-unit", &i__5, &work[len
- * nblst + 1], &nblst, &work[pw + len], &c__1);
- i__5 = nblst - len;
- cgemv_("Conjugate", &len, &i__5, &c_b1, &work[(len + 1) *
- nblst - len + 1], &nblst, &a[jrow + nblst - len +
- (j + 1) * a_dim1], &c__1, &c_b1, &work[pw + len],
- &c__1);
- ppw = pw;
- i__5 = jrow + nblst - 1;
- for (i__ = jrow; i__ <= i__5; ++i__) {
- i__6 = i__ + (j + 1) * a_dim1;
- i__4 = ppw;
- a[i__6].r = work[i__4].r, a[i__6].i = work[i__4].i;
- ++ppw;
- }
-
- /* Multiply with the other accumulated unitary */
- /* matrices, which take the form */
-
- /* [ U11 U12 0 ] */
- /* [ ] */
- /* U = [ U21 U22 0 ], */
- /* [ ] */
- /* [ 0 0 I ] */
-
- /* where I denotes the (NNB-LEN)-by-(NNB-LEN) identity */
- /* matrix, U21 is a LEN-by-LEN upper triangular matrix */
- /* and U12 is an NNB-by-NNB lower triangular matrix. */
-
- ppwo = nblst * nblst + 1;
- j0 = jrow - nnb;
- i__5 = jcol + 1;
- i__6 = -nnb;
- for (jrow = j0; i__6 < 0 ? jrow >= i__5 : jrow <= i__5;
- jrow += i__6) {
- ppw = pw + len;
- i__4 = jrow + nnb - 1;
- for (i__ = jrow; i__ <= i__4; ++i__) {
- i__7 = ppw;
- i__8 = i__ + (j + 1) * a_dim1;
- work[i__7].r = a[i__8].r, work[i__7].i = a[i__8]
- .i;
- ++ppw;
- }
- ppw = pw;
- i__4 = jrow + nnb + len - 1;
- for (i__ = jrow + nnb; i__ <= i__4; ++i__) {
- i__7 = ppw;
- i__8 = i__ + (j + 1) * a_dim1;
- work[i__7].r = a[i__8].r, work[i__7].i = a[i__8]
- .i;
- ++ppw;
- }
- i__4 = nnb << 1;
- ctrmv_("Upper", "Conjugate", "Non-unit", &len, &work[
- ppwo + nnb], &i__4, &work[pw], &c__1);
- i__4 = nnb << 1;
- ctrmv_("Lower", "Conjugate", "Non-unit", &nnb, &work[
- ppwo + (len << 1) * nnb], &i__4, &work[pw +
- len], &c__1);
- i__4 = nnb << 1;
- cgemv_("Conjugate", &nnb, &len, &c_b1, &work[ppwo], &
- i__4, &a[jrow + (j + 1) * a_dim1], &c__1, &
- c_b1, &work[pw], &c__1);
- i__4 = nnb << 1;
- cgemv_("Conjugate", &len, &nnb, &c_b1, &work[ppwo + (
- len << 1) * nnb + nnb], &i__4, &a[jrow + nnb
- + (j + 1) * a_dim1], &c__1, &c_b1, &work[pw +
- len], &c__1);
- ppw = pw;
- i__4 = jrow + len + nnb - 1;
- for (i__ = jrow; i__ <= i__4; ++i__) {
- i__7 = i__ + (j + 1) * a_dim1;
- i__8 = ppw;
- a[i__7].r = work[i__8].r, a[i__7].i = work[i__8]
- .i;
- ++ppw;
- }
- ppwo += (nnb << 2) * nnb;
- }
- }
- }
-
- /* Apply accumulated unitary matrices to A. */
-
- cola = *n - jcol - nnb + 1;
- j = *ihi - nblst + 1;
- cgemm_("Conjugate", "No Transpose", &nblst, &cola, &nblst, &c_b1,
- &work[1], &nblst, &a[j + (jcol + nnb) * a_dim1], lda, &
- c_b2, &work[pw], &nblst);
- clacpy_("All", &nblst, &cola, &work[pw], &nblst, &a[j + (jcol +
- nnb) * a_dim1], lda);
- ppwo = nblst * nblst + 1;
- j0 = j - nnb;
- i__3 = jcol + 1;
- i__6 = -nnb;
- for (j = j0; i__6 < 0 ? j >= i__3 : j <= i__3; j += i__6) {
- if (blk22) {
-
- /* Exploit the structure of */
-
- /* [ U11 U12 ] */
- /* U = [ ] */
- /* [ U21 U22 ], */
-
- /* where all blocks are NNB-by-NNB, U21 is upper */
- /* triangular and U12 is lower triangular. */
-
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = *lwork - pw + 1;
- cunm22_("Left", "Conjugate", &i__5, &cola, &nnb, &nnb, &
- work[ppwo], &i__4, &a[j + (jcol + nnb) * a_dim1],
- lda, &work[pw], &i__7, &ierr);
- } else {
-
- /* Ignore the structure of U. */
-
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = nnb << 1;
- i__8 = nnb << 1;
- cgemm_("Conjugate", "No Transpose", &i__5, &cola, &i__4, &
- c_b1, &work[ppwo], &i__7, &a[j + (jcol + nnb) *
- a_dim1], lda, &c_b2, &work[pw], &i__8);
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- clacpy_("All", &i__5, &cola, &work[pw], &i__4, &a[j + (
- jcol + nnb) * a_dim1], lda);
- }
- ppwo += (nnb << 2) * nnb;
- }
-
- /* Apply accumulated unitary matrices to Q. */
-
- if (wantq) {
- j = *ihi - nblst + 1;
- if (initq) {
- /* Computing MAX */
- i__6 = 2, i__3 = j - jcol + 1;
- topq = f2cmax(i__6,i__3);
- nh = *ihi - topq + 1;
- } else {
- topq = 1;
- nh = *n;
- }
- cgemm_("No Transpose", "No Transpose", &nh, &nblst, &nblst, &
- c_b1, &q[topq + j * q_dim1], ldq, &work[1], &nblst, &
- c_b2, &work[pw], &nh);
- clacpy_("All", &nh, &nblst, &work[pw], &nh, &q[topq + j *
- q_dim1], ldq);
- ppwo = nblst * nblst + 1;
- j0 = j - nnb;
- i__6 = jcol + 1;
- i__3 = -nnb;
- for (j = j0; i__3 < 0 ? j >= i__6 : j <= i__6; j += i__3) {
- if (initq) {
- /* Computing MAX */
- i__5 = 2, i__4 = j - jcol + 1;
- topq = f2cmax(i__5,i__4);
- nh = *ihi - topq + 1;
- }
- if (blk22) {
-
- /* Exploit the structure of U. */
-
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = *lwork - pw + 1;
- cunm22_("Right", "No Transpose", &nh, &i__5, &nnb, &
- nnb, &work[ppwo], &i__4, &q[topq + j * q_dim1]
- , ldq, &work[pw], &i__7, &ierr);
- } else {
-
- /* Ignore the structure of U. */
-
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = nnb << 1;
- cgemm_("No Transpose", "No Transpose", &nh, &i__5, &
- i__4, &c_b1, &q[topq + j * q_dim1], ldq, &
- work[ppwo], &i__7, &c_b2, &work[pw], &nh);
- i__5 = nnb << 1;
- clacpy_("All", &nh, &i__5, &work[pw], &nh, &q[topq +
- j * q_dim1], ldq);
- }
- ppwo += (nnb << 2) * nnb;
- }
- }
-
- /* Accumulate right Givens rotations if required. */
-
- if (wantz || top > 0) {
-
- /* Initialize small unitary factors that will hold the */
- /* accumulated Givens rotations in workspace. */
-
- claset_("All", &nblst, &nblst, &c_b2, &c_b1, &work[1], &nblst);
- pw = nblst * nblst + 1;
- i__3 = n2nb;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__6 = nnb << 1;
- i__5 = nnb << 1;
- i__4 = nnb << 1;
- claset_("All", &i__6, &i__5, &c_b2, &c_b1, &work[pw], &
- i__4);
- pw += (nnb << 2) * nnb;
- }
-
- /* Accumulate Givens rotations into workspace array. */
-
- i__3 = jcol + nnb - 1;
- for (j = jcol; j <= i__3; ++j) {
- ppw = (nblst + 1) * (nblst - 2) - j + jcol + 1;
- len = j + 2 - jcol;
- jrow = j + n2nb * nnb + 2;
- i__6 = jrow;
- for (i__ = *ihi; i__ >= i__6; --i__) {
- i__5 = i__ + j * a_dim1;
- ctemp.r = a[i__5].r, ctemp.i = a[i__5].i;
- i__5 = i__ + j * a_dim1;
- a[i__5].r = 0.f, a[i__5].i = 0.f;
- i__5 = i__ + j * b_dim1;
- s.r = b[i__5].r, s.i = b[i__5].i;
- i__5 = i__ + j * b_dim1;
- b[i__5].r = 0.f, b[i__5].i = 0.f;
- i__5 = ppw + len - 1;
- for (jj = ppw; jj <= i__5; ++jj) {
- i__4 = jj + nblst;
- temp.r = work[i__4].r, temp.i = work[i__4].i;
- i__4 = jj + nblst;
- q__2.r = ctemp.r * temp.r - ctemp.i * temp.i,
- q__2.i = ctemp.r * temp.i + ctemp.i *
- temp.r;
- r_cnjg(&q__4, &s);
- i__7 = jj;
- q__3.r = q__4.r * work[i__7].r - q__4.i * work[
- i__7].i, q__3.i = q__4.r * work[i__7].i +
- q__4.i * work[i__7].r;
- q__1.r = q__2.r - q__3.r, q__1.i = q__2.i -
- q__3.i;
- work[i__4].r = q__1.r, work[i__4].i = q__1.i;
- i__4 = jj;
- q__2.r = s.r * temp.r - s.i * temp.i, q__2.i =
- s.r * temp.i + s.i * temp.r;
- i__7 = jj;
- q__3.r = ctemp.r * work[i__7].r - ctemp.i * work[
- i__7].i, q__3.i = ctemp.r * work[i__7].i
- + ctemp.i * work[i__7].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
- q__3.i;
- work[i__4].r = q__1.r, work[i__4].i = q__1.i;
- }
- ++len;
- ppw = ppw - nblst - 1;
- }
-
- ppwo = nblst * nblst + (nnb + j - jcol - 1 << 1) * nnb +
- nnb;
- j0 = jrow - nnb;
- i__6 = j + 2;
- i__5 = -nnb;
- for (jrow = j0; i__5 < 0 ? jrow >= i__6 : jrow <= i__6;
- jrow += i__5) {
- ppw = ppwo;
- len = j + 2 - jcol;
- i__4 = jrow;
- for (i__ = jrow + nnb - 1; i__ >= i__4; --i__) {
- i__7 = i__ + j * a_dim1;
- ctemp.r = a[i__7].r, ctemp.i = a[i__7].i;
- i__7 = i__ + j * a_dim1;
- a[i__7].r = 0.f, a[i__7].i = 0.f;
- i__7 = i__ + j * b_dim1;
- s.r = b[i__7].r, s.i = b[i__7].i;
- i__7 = i__ + j * b_dim1;
- b[i__7].r = 0.f, b[i__7].i = 0.f;
- i__7 = ppw + len - 1;
- for (jj = ppw; jj <= i__7; ++jj) {
- i__8 = jj + (nnb << 1);
- temp.r = work[i__8].r, temp.i = work[i__8].i;
- i__8 = jj + (nnb << 1);
- q__2.r = ctemp.r * temp.r - ctemp.i * temp.i,
- q__2.i = ctemp.r * temp.i + ctemp.i *
- temp.r;
- r_cnjg(&q__4, &s);
- i__9 = jj;
- q__3.r = q__4.r * work[i__9].r - q__4.i *
- work[i__9].i, q__3.i = q__4.r * work[
- i__9].i + q__4.i * work[i__9].r;
- q__1.r = q__2.r - q__3.r, q__1.i = q__2.i -
- q__3.i;
- work[i__8].r = q__1.r, work[i__8].i = q__1.i;
- i__8 = jj;
- q__2.r = s.r * temp.r - s.i * temp.i, q__2.i =
- s.r * temp.i + s.i * temp.r;
- i__9 = jj;
- q__3.r = ctemp.r * work[i__9].r - ctemp.i *
- work[i__9].i, q__3.i = ctemp.r * work[
- i__9].i + ctemp.i * work[i__9].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i +
- q__3.i;
- work[i__8].r = q__1.r, work[i__8].i = q__1.i;
- }
- ++len;
- ppw = ppw - (nnb << 1) - 1;
- }
- ppwo += (nnb << 2) * nnb;
- }
- }
- } else {
-
- i__3 = *ihi - jcol - 1;
- claset_("Lower", &i__3, &nnb, &c_b2, &c_b2, &a[jcol + 2 +
- jcol * a_dim1], lda);
- i__3 = *ihi - jcol - 1;
- claset_("Lower", &i__3, &nnb, &c_b2, &c_b2, &b[jcol + 2 +
- jcol * b_dim1], ldb);
- }
-
- /* Apply accumulated unitary matrices to A and B. */
-
- if (top > 0) {
- j = *ihi - nblst + 1;
- cgemm_("No Transpose", "No Transpose", &top, &nblst, &nblst, &
- c_b1, &a[j * a_dim1 + 1], lda, &work[1], &nblst, &
- c_b2, &work[pw], &top);
- clacpy_("All", &top, &nblst, &work[pw], &top, &a[j * a_dim1 +
- 1], lda);
- ppwo = nblst * nblst + 1;
- j0 = j - nnb;
- i__3 = jcol + 1;
- i__5 = -nnb;
- for (j = j0; i__5 < 0 ? j >= i__3 : j <= i__3; j += i__5) {
- if (blk22) {
-
- /* Exploit the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = *lwork - pw + 1;
- cunm22_("Right", "No Transpose", &top, &i__6, &nnb, &
- nnb, &work[ppwo], &i__4, &a[j * a_dim1 + 1],
- lda, &work[pw], &i__7, &ierr);
- } else {
-
- /* Ignore the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = nnb << 1;
- cgemm_("No Transpose", "No Transpose", &top, &i__6, &
- i__4, &c_b1, &a[j * a_dim1 + 1], lda, &work[
- ppwo], &i__7, &c_b2, &work[pw], &top);
- i__6 = nnb << 1;
- clacpy_("All", &top, &i__6, &work[pw], &top, &a[j *
- a_dim1 + 1], lda);
- }
- ppwo += (nnb << 2) * nnb;
- }
-
- j = *ihi - nblst + 1;
- cgemm_("No Transpose", "No Transpose", &top, &nblst, &nblst, &
- c_b1, &b[j * b_dim1 + 1], ldb, &work[1], &nblst, &
- c_b2, &work[pw], &top);
- clacpy_("All", &top, &nblst, &work[pw], &top, &b[j * b_dim1 +
- 1], ldb);
- ppwo = nblst * nblst + 1;
- j0 = j - nnb;
- i__5 = jcol + 1;
- i__3 = -nnb;
- for (j = j0; i__3 < 0 ? j >= i__5 : j <= i__5; j += i__3) {
- if (blk22) {
-
- /* Exploit the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = *lwork - pw + 1;
- cunm22_("Right", "No Transpose", &top, &i__6, &nnb, &
- nnb, &work[ppwo], &i__4, &b[j * b_dim1 + 1],
- ldb, &work[pw], &i__7, &ierr);
- } else {
-
- /* Ignore the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = nnb << 1;
- cgemm_("No Transpose", "No Transpose", &top, &i__6, &
- i__4, &c_b1, &b[j * b_dim1 + 1], ldb, &work[
- ppwo], &i__7, &c_b2, &work[pw], &top);
- i__6 = nnb << 1;
- clacpy_("All", &top, &i__6, &work[pw], &top, &b[j *
- b_dim1 + 1], ldb);
- }
- ppwo += (nnb << 2) * nnb;
- }
- }
-
- /* Apply accumulated unitary matrices to Z. */
-
- if (wantz) {
- j = *ihi - nblst + 1;
- if (initq) {
- /* Computing MAX */
- i__3 = 2, i__5 = j - jcol + 1;
- topq = f2cmax(i__3,i__5);
- nh = *ihi - topq + 1;
- } else {
- topq = 1;
- nh = *n;
- }
- cgemm_("No Transpose", "No Transpose", &nh, &nblst, &nblst, &
- c_b1, &z__[topq + j * z_dim1], ldz, &work[1], &nblst,
- &c_b2, &work[pw], &nh);
- clacpy_("All", &nh, &nblst, &work[pw], &nh, &z__[topq + j *
- z_dim1], ldz);
- ppwo = nblst * nblst + 1;
- j0 = j - nnb;
- i__3 = jcol + 1;
- i__5 = -nnb;
- for (j = j0; i__5 < 0 ? j >= i__3 : j <= i__3; j += i__5) {
- if (initq) {
- /* Computing MAX */
- i__6 = 2, i__4 = j - jcol + 1;
- topq = f2cmax(i__6,i__4);
- nh = *ihi - topq + 1;
- }
- if (blk22) {
-
- /* Exploit the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = *lwork - pw + 1;
- cunm22_("Right", "No Transpose", &nh, &i__6, &nnb, &
- nnb, &work[ppwo], &i__4, &z__[topq + j *
- z_dim1], ldz, &work[pw], &i__7, &ierr);
- } else {
-
- /* Ignore the structure of U. */
-
- i__6 = nnb << 1;
- i__4 = nnb << 1;
- i__7 = nnb << 1;
- cgemm_("No Transpose", "No Transpose", &nh, &i__6, &
- i__4, &c_b1, &z__[topq + j * z_dim1], ldz, &
- work[ppwo], &i__7, &c_b2, &work[pw], &nh);
- i__6 = nnb << 1;
- clacpy_("All", &nh, &i__6, &work[pw], &nh, &z__[topq
- + j * z_dim1], ldz);
- }
- ppwo += (nnb << 2) * nnb;
- }
- }
- }
- }
-
- /* Use unblocked code to reduce the rest of the matrix */
- /* Avoid re-initialization of modified Q and Z. */
-
- *(unsigned char *)compq2 = *(unsigned char *)compq;
- *(unsigned char *)compz2 = *(unsigned char *)compz;
- if (jcol != *ilo) {
- if (wantq) {
- *(unsigned char *)compq2 = 'V';
- }
- if (wantz) {
- *(unsigned char *)compz2 = 'V';
- }
- }
-
- if (jcol < *ihi) {
- cgghrd_(compq2, compz2, n, &jcol, ihi, &a[a_offset], lda, &b[b_offset]
- , ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &ierr);
- }
- q__1.r = (real) lwkopt, q__1.i = 0.f;
- work[1].r = q__1.r, work[1].i = q__1.i;
-
- return 0;
-
- /* End of CGGHD3 */
-
- } /* cgghd3_ */
-
|