You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvp.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. /* > \brief \b ZGGSVP */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZGGSVP + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  507. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  508. /* IWORK, RWORK, TAU, WORK, INFO ) */
  509. /* CHARACTER JOBQ, JOBU, JOBV */
  510. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
  511. /* DOUBLE PRECISION TOLA, TOLB */
  512. /* INTEGER IWORK( * ) */
  513. /* DOUBLE PRECISION RWORK( * ) */
  514. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  515. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > This routine is deprecated and has been replaced by routine ZGGSVP3. */
  522. /* > */
  523. /* > ZGGSVP computes unitary matrices U, V and Q such that */
  524. /* > */
  525. /* > N-K-L K L */
  526. /* > U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  527. /* > L ( 0 0 A23 ) */
  528. /* > M-K-L ( 0 0 0 ) */
  529. /* > */
  530. /* > N-K-L K L */
  531. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  532. /* > M-K ( 0 0 A23 ) */
  533. /* > */
  534. /* > N-K-L K L */
  535. /* > V**H*B*Q = L ( 0 0 B13 ) */
  536. /* > P-L ( 0 0 0 ) */
  537. /* > */
  538. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  539. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  540. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  541. /* > numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. */
  542. /* > */
  543. /* > This decomposition is the preprocessing step for computing the */
  544. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  545. /* > ZGGSVD. */
  546. /* > \endverbatim */
  547. /* Arguments: */
  548. /* ========== */
  549. /* > \param[in] JOBU */
  550. /* > \verbatim */
  551. /* > JOBU is CHARACTER*1 */
  552. /* > = 'U': Unitary matrix U is computed; */
  553. /* > = 'N': U is not computed. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] JOBV */
  557. /* > \verbatim */
  558. /* > JOBV is CHARACTER*1 */
  559. /* > = 'V': Unitary matrix V is computed; */
  560. /* > = 'N': V is not computed. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] JOBQ */
  564. /* > \verbatim */
  565. /* > JOBQ is CHARACTER*1 */
  566. /* > = 'Q': Unitary matrix Q is computed; */
  567. /* > = 'N': Q is not computed. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] M */
  571. /* > \verbatim */
  572. /* > M is INTEGER */
  573. /* > The number of rows of the matrix A. M >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] P */
  577. /* > \verbatim */
  578. /* > P is INTEGER */
  579. /* > The number of rows of the matrix B. P >= 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] N */
  583. /* > \verbatim */
  584. /* > N is INTEGER */
  585. /* > The number of columns of the matrices A and B. N >= 0. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] A */
  589. /* > \verbatim */
  590. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  591. /* > On entry, the M-by-N matrix A. */
  592. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  593. /* > described in the Purpose section. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDA */
  597. /* > \verbatim */
  598. /* > LDA is INTEGER */
  599. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] B */
  603. /* > \verbatim */
  604. /* > B is COMPLEX*16 array, dimension (LDB,N) */
  605. /* > On entry, the P-by-N matrix B. */
  606. /* > On exit, B contains the triangular matrix described in */
  607. /* > the Purpose section. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDB */
  611. /* > \verbatim */
  612. /* > LDB is INTEGER */
  613. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] TOLA */
  617. /* > \verbatim */
  618. /* > TOLA is DOUBLE PRECISION */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] TOLB */
  622. /* > \verbatim */
  623. /* > TOLB is DOUBLE PRECISION */
  624. /* > */
  625. /* > TOLA and TOLB are the thresholds to determine the effective */
  626. /* > numerical rank of matrix B and a subblock of A. Generally, */
  627. /* > they are set to */
  628. /* > TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
  629. /* > TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
  630. /* > The size of TOLA and TOLB may affect the size of backward */
  631. /* > errors of the decomposition. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] K */
  635. /* > \verbatim */
  636. /* > K is INTEGER */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] L */
  640. /* > \verbatim */
  641. /* > L is INTEGER */
  642. /* > */
  643. /* > On exit, K and L specify the dimension of the subblocks */
  644. /* > described in Purpose section. */
  645. /* > K + L = effective numerical rank of (A**H,B**H)**H. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] U */
  649. /* > \verbatim */
  650. /* > U is COMPLEX*16 array, dimension (LDU,M) */
  651. /* > If JOBU = 'U', U contains the unitary matrix U. */
  652. /* > If JOBU = 'N', U is not referenced. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in] LDU */
  656. /* > \verbatim */
  657. /* > LDU is INTEGER */
  658. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  659. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] V */
  663. /* > \verbatim */
  664. /* > V is COMPLEX*16 array, dimension (LDV,P) */
  665. /* > If JOBV = 'V', V contains the unitary matrix V. */
  666. /* > If JOBV = 'N', V is not referenced. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in] LDV */
  670. /* > \verbatim */
  671. /* > LDV is INTEGER */
  672. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  673. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] Q */
  677. /* > \verbatim */
  678. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  679. /* > If JOBQ = 'Q', Q contains the unitary matrix Q. */
  680. /* > If JOBQ = 'N', Q is not referenced. */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] LDQ */
  684. /* > \verbatim */
  685. /* > LDQ is INTEGER */
  686. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  687. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[out] IWORK */
  691. /* > \verbatim */
  692. /* > IWORK is INTEGER array, dimension (N) */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] RWORK */
  696. /* > \verbatim */
  697. /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[out] TAU */
  701. /* > \verbatim */
  702. /* > TAU is COMPLEX*16 array, dimension (N) */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] WORK */
  706. /* > \verbatim */
  707. /* > WORK is COMPLEX*16 array, dimension (f2cmax(3*N,M,P)) */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[out] INFO */
  711. /* > \verbatim */
  712. /* > INFO is INTEGER */
  713. /* > = 0: successful exit */
  714. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  715. /* > \endverbatim */
  716. /* Authors: */
  717. /* ======== */
  718. /* > \author Univ. of Tennessee */
  719. /* > \author Univ. of California Berkeley */
  720. /* > \author Univ. of Colorado Denver */
  721. /* > \author NAG Ltd. */
  722. /* > \date December 2016 */
  723. /* > \ingroup complex16OTHERcomputational */
  724. /* > \par Further Details: */
  725. /* ===================== */
  726. /* > */
  727. /* > \verbatim */
  728. /* > */
  729. /* > The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization */
  730. /* > with column pivoting to detect the effective numerical rank of the */
  731. /* > a matrix. It may be replaced by a better rank determination strategy. */
  732. /* > \endverbatim */
  733. /* > */
  734. /* ===================================================================== */
  735. /* Subroutine */ int zggsvp_(char *jobu, char *jobv, char *jobq, integer *m,
  736. integer *p, integer *n, doublecomplex *a, integer *lda, doublecomplex
  737. *b, integer *ldb, doublereal *tola, doublereal *tolb, integer *k,
  738. integer *l, doublecomplex *u, integer *ldu, doublecomplex *v, integer
  739. *ldv, doublecomplex *q, integer *ldq, integer *iwork, doublereal *
  740. rwork, doublecomplex *tau, doublecomplex *work, integer *info)
  741. {
  742. /* System generated locals */
  743. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  744. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  745. doublereal d__1, d__2;
  746. /* Local variables */
  747. integer i__, j;
  748. extern logical lsame_(char *, char *);
  749. logical wantq, wantu, wantv;
  750. extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
  751. integer *, doublecomplex *, doublecomplex *, integer *), zgerq2_(
  752. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  753. doublecomplex *, integer *), zung2r_(integer *, integer *,
  754. integer *, doublecomplex *, integer *, doublecomplex *,
  755. doublecomplex *, integer *), zunm2r_(char *, char *, integer *,
  756. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  757. doublecomplex *, integer *, doublecomplex *, integer *), zunmr2_(char *, char *, integer *, integer *, integer *,
  758. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  759. integer *, doublecomplex *, integer *), xerbla_(
  760. char *, integer *), zgeqpf_(integer *, integer *,
  761. doublecomplex *, integer *, integer *, doublecomplex *,
  762. doublecomplex *, doublereal *, integer *), zlacpy_(char *,
  763. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  764. integer *);
  765. logical forwrd;
  766. extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
  767. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlapmt_(logical *, integer *, integer *, doublecomplex *,
  768. integer *, integer *);
  769. /* -- LAPACK computational routine (version 3.7.0) -- */
  770. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  771. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  772. /* December 2016 */
  773. /* ===================================================================== */
  774. /* Test the input parameters */
  775. /* Parameter adjustments */
  776. a_dim1 = *lda;
  777. a_offset = 1 + a_dim1 * 1;
  778. a -= a_offset;
  779. b_dim1 = *ldb;
  780. b_offset = 1 + b_dim1 * 1;
  781. b -= b_offset;
  782. u_dim1 = *ldu;
  783. u_offset = 1 + u_dim1 * 1;
  784. u -= u_offset;
  785. v_dim1 = *ldv;
  786. v_offset = 1 + v_dim1 * 1;
  787. v -= v_offset;
  788. q_dim1 = *ldq;
  789. q_offset = 1 + q_dim1 * 1;
  790. q -= q_offset;
  791. --iwork;
  792. --rwork;
  793. --tau;
  794. --work;
  795. /* Function Body */
  796. wantu = lsame_(jobu, "U");
  797. wantv = lsame_(jobv, "V");
  798. wantq = lsame_(jobq, "Q");
  799. forwrd = TRUE_;
  800. *info = 0;
  801. if (! (wantu || lsame_(jobu, "N"))) {
  802. *info = -1;
  803. } else if (! (wantv || lsame_(jobv, "N"))) {
  804. *info = -2;
  805. } else if (! (wantq || lsame_(jobq, "N"))) {
  806. *info = -3;
  807. } else if (*m < 0) {
  808. *info = -4;
  809. } else if (*p < 0) {
  810. *info = -5;
  811. } else if (*n < 0) {
  812. *info = -6;
  813. } else if (*lda < f2cmax(1,*m)) {
  814. *info = -8;
  815. } else if (*ldb < f2cmax(1,*p)) {
  816. *info = -10;
  817. } else if (*ldu < 1 || wantu && *ldu < *m) {
  818. *info = -16;
  819. } else if (*ldv < 1 || wantv && *ldv < *p) {
  820. *info = -18;
  821. } else if (*ldq < 1 || wantq && *ldq < *n) {
  822. *info = -20;
  823. }
  824. if (*info != 0) {
  825. i__1 = -(*info);
  826. xerbla_("ZGGSVP", &i__1);
  827. return 0;
  828. }
  829. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  830. /* ( 0 0 ) */
  831. i__1 = *n;
  832. for (i__ = 1; i__ <= i__1; ++i__) {
  833. iwork[i__] = 0;
  834. /* L10: */
  835. }
  836. zgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &rwork[1],
  837. info);
  838. /* Update A := A*P */
  839. zlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  840. /* Determine the effective rank of matrix B. */
  841. *l = 0;
  842. i__1 = f2cmin(*p,*n);
  843. for (i__ = 1; i__ <= i__1; ++i__) {
  844. i__2 = i__ + i__ * b_dim1;
  845. if ((d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[i__ + i__ *
  846. b_dim1]), abs(d__2)) > *tolb) {
  847. ++(*l);
  848. }
  849. /* L20: */
  850. }
  851. if (wantv) {
  852. /* Copy the details of V, and form V. */
  853. zlaset_("Full", p, p, &c_b1, &c_b1, &v[v_offset], ldv);
  854. if (*p > 1) {
  855. i__1 = *p - 1;
  856. zlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  857. ldv);
  858. }
  859. i__1 = f2cmin(*p,*n);
  860. zung2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  861. }
  862. /* Clean up B */
  863. i__1 = *l - 1;
  864. for (j = 1; j <= i__1; ++j) {
  865. i__2 = *l;
  866. for (i__ = j + 1; i__ <= i__2; ++i__) {
  867. i__3 = i__ + j * b_dim1;
  868. b[i__3].r = 0., b[i__3].i = 0.;
  869. /* L30: */
  870. }
  871. /* L40: */
  872. }
  873. if (*p > *l) {
  874. i__1 = *p - *l;
  875. zlaset_("Full", &i__1, n, &c_b1, &c_b1, &b[*l + 1 + b_dim1], ldb);
  876. }
  877. if (wantq) {
  878. /* Set Q = I and Update Q := Q*P */
  879. zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  880. zlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  881. }
  882. if (*p >= *l && *n != *l) {
  883. /* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z */
  884. zgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  885. /* Update A := A*Z**H */
  886. zunmr2_("Right", "Conjugate transpose", m, n, l, &b[b_offset], ldb, &
  887. tau[1], &a[a_offset], lda, &work[1], info);
  888. if (wantq) {
  889. /* Update Q := Q*Z**H */
  890. zunmr2_("Right", "Conjugate transpose", n, n, l, &b[b_offset],
  891. ldb, &tau[1], &q[q_offset], ldq, &work[1], info);
  892. }
  893. /* Clean up B */
  894. i__1 = *n - *l;
  895. zlaset_("Full", l, &i__1, &c_b1, &c_b1, &b[b_offset], ldb);
  896. i__1 = *n;
  897. for (j = *n - *l + 1; j <= i__1; ++j) {
  898. i__2 = *l;
  899. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  900. i__3 = i__ + j * b_dim1;
  901. b[i__3].r = 0., b[i__3].i = 0.;
  902. /* L50: */
  903. }
  904. /* L60: */
  905. }
  906. }
  907. /* Let N-L L */
  908. /* A = ( A11 A12 ) M, */
  909. /* then the following does the complete QR decomposition of A11: */
  910. /* A11 = U*( 0 T12 )*P1**H */
  911. /* ( 0 0 ) */
  912. i__1 = *n - *l;
  913. for (i__ = 1; i__ <= i__1; ++i__) {
  914. iwork[i__] = 0;
  915. /* L70: */
  916. }
  917. i__1 = *n - *l;
  918. zgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &rwork[
  919. 1], info);
  920. /* Determine the effective rank of A11 */
  921. *k = 0;
  922. /* Computing MIN */
  923. i__2 = *m, i__3 = *n - *l;
  924. i__1 = f2cmin(i__2,i__3);
  925. for (i__ = 1; i__ <= i__1; ++i__) {
  926. i__2 = i__ + i__ * a_dim1;
  927. if ((d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + i__ *
  928. a_dim1]), abs(d__2)) > *tola) {
  929. ++(*k);
  930. }
  931. /* L80: */
  932. }
  933. /* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N ) */
  934. /* Computing MIN */
  935. i__2 = *m, i__3 = *n - *l;
  936. i__1 = f2cmin(i__2,i__3);
  937. zunm2r_("Left", "Conjugate transpose", m, l, &i__1, &a[a_offset], lda, &
  938. tau[1], &a[(*n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  939. if (wantu) {
  940. /* Copy the details of U, and form U */
  941. zlaset_("Full", m, m, &c_b1, &c_b1, &u[u_offset], ldu);
  942. if (*m > 1) {
  943. i__1 = *m - 1;
  944. i__2 = *n - *l;
  945. zlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  946. , ldu);
  947. }
  948. /* Computing MIN */
  949. i__2 = *m, i__3 = *n - *l;
  950. i__1 = f2cmin(i__2,i__3);
  951. zung2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  952. }
  953. if (wantq) {
  954. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  955. i__1 = *n - *l;
  956. zlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  957. }
  958. /* Clean up A: set the strictly lower triangular part of */
  959. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  960. i__1 = *k - 1;
  961. for (j = 1; j <= i__1; ++j) {
  962. i__2 = *k;
  963. for (i__ = j + 1; i__ <= i__2; ++i__) {
  964. i__3 = i__ + j * a_dim1;
  965. a[i__3].r = 0., a[i__3].i = 0.;
  966. /* L90: */
  967. }
  968. /* L100: */
  969. }
  970. if (*m > *k) {
  971. i__1 = *m - *k;
  972. i__2 = *n - *l;
  973. zlaset_("Full", &i__1, &i__2, &c_b1, &c_b1, &a[*k + 1 + a_dim1], lda);
  974. }
  975. if (*n - *l > *k) {
  976. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  977. i__1 = *n - *l;
  978. zgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  979. if (wantq) {
  980. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H */
  981. i__1 = *n - *l;
  982. zunmr2_("Right", "Conjugate transpose", n, &i__1, k, &a[a_offset],
  983. lda, &tau[1], &q[q_offset], ldq, &work[1], info);
  984. }
  985. /* Clean up A */
  986. i__1 = *n - *l - *k;
  987. zlaset_("Full", k, &i__1, &c_b1, &c_b1, &a[a_offset], lda);
  988. i__1 = *n - *l;
  989. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  990. i__2 = *k;
  991. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  992. i__3 = i__ + j * a_dim1;
  993. a[i__3].r = 0., a[i__3].i = 0.;
  994. /* L110: */
  995. }
  996. /* L120: */
  997. }
  998. }
  999. if (*m > *k) {
  1000. /* QR factorization of A( K+1:M,N-L+1:N ) */
  1001. i__1 = *m - *k;
  1002. zgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  1003. work[1], info);
  1004. if (wantu) {
  1005. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  1006. i__1 = *m - *k;
  1007. /* Computing MIN */
  1008. i__3 = *m - *k;
  1009. i__2 = f2cmin(i__3,*l);
  1010. zunm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  1011. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  1012. 1], ldu, &work[1], info);
  1013. }
  1014. /* Clean up */
  1015. i__1 = *n;
  1016. for (j = *n - *l + 1; j <= i__1; ++j) {
  1017. i__2 = *m;
  1018. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  1019. i__3 = i__ + j * a_dim1;
  1020. a[i__3].r = 0., a[i__3].i = 0.;
  1021. /* L130: */
  1022. }
  1023. /* L140: */
  1024. }
  1025. }
  1026. return 0;
  1027. /* End of ZGGSVP */
  1028. } /* zggsvp_ */