You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgegv.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static real c_b27 = 1.f;
  489. static real c_b38 = 0.f;
  490. /* > \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  491. rices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SGEGV + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegv.f
  498. "> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegv.f
  501. "> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegv.f
  504. "> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
  510. /* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
  511. /* CHARACTER JOBVL, JOBVR */
  512. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  513. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  514. /* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), */
  515. /* $ VR( LDVR, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > This routine is deprecated and has been replaced by routine SGGEV. */
  522. /* > */
  523. /* > SGEGV computes the eigenvalues and, optionally, the left and/or right */
  524. /* > eigenvectors of a real matrix pair (A,B). */
  525. /* > Given two square matrices A and B, */
  526. /* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
  527. /* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
  528. /* > that */
  529. /* > */
  530. /* > A*x = lambda*B*x. */
  531. /* > */
  532. /* > An alternate form is to find the eigenvalues mu and corresponding */
  533. /* > eigenvectors y such that */
  534. /* > */
  535. /* > mu*A*y = B*y. */
  536. /* > */
  537. /* > These two forms are equivalent with mu = 1/lambda and x = y if */
  538. /* > neither lambda nor mu is zero. In order to deal with the case that */
  539. /* > lambda or mu is zero or small, two values alpha and beta are returned */
  540. /* > for each eigenvalue, such that lambda = alpha/beta and */
  541. /* > mu = beta/alpha. */
  542. /* > */
  543. /* > The vectors x and y in the above equations are right eigenvectors of */
  544. /* > the matrix pair (A,B). Vectors u and v satisfying */
  545. /* > */
  546. /* > u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
  547. /* > */
  548. /* > are left eigenvectors of (A,B). */
  549. /* > */
  550. /* > Note: this routine performs "full balancing" on A and B */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] JOBVL */
  555. /* > \verbatim */
  556. /* > JOBVL is CHARACTER*1 */
  557. /* > = 'N': do not compute the left generalized eigenvectors; */
  558. /* > = 'V': compute the left generalized eigenvectors (returned */
  559. /* > in VL). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] JOBVR */
  563. /* > \verbatim */
  564. /* > JOBVR is CHARACTER*1 */
  565. /* > = 'N': do not compute the right generalized eigenvectors; */
  566. /* > = 'V': compute the right generalized eigenvectors (returned */
  567. /* > in VR). */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] A */
  577. /* > \verbatim */
  578. /* > A is REAL array, dimension (LDA, N) */
  579. /* > On entry, the matrix A. */
  580. /* > If JOBVL = 'V' or JOBVR = 'V', then on exit A */
  581. /* > contains the real Schur form of A from the generalized Schur */
  582. /* > factorization of the pair (A,B) after balancing. */
  583. /* > If no eigenvectors were computed, then only the diagonal */
  584. /* > blocks from the Schur form will be correct. See SGGHRD and */
  585. /* > SHGEQZ for details. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDA */
  589. /* > \verbatim */
  590. /* > LDA is INTEGER */
  591. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] B */
  595. /* > \verbatim */
  596. /* > B is REAL array, dimension (LDB, N) */
  597. /* > On entry, the matrix B. */
  598. /* > If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
  599. /* > upper triangular matrix obtained from B in the generalized */
  600. /* > Schur factorization of the pair (A,B) after balancing. */
  601. /* > If no eigenvectors were computed, then only those elements of */
  602. /* > B corresponding to the diagonal blocks from the Schur form of */
  603. /* > A will be correct. See SGGHRD and SHGEQZ for details. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] LDB */
  607. /* > \verbatim */
  608. /* > LDB is INTEGER */
  609. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] ALPHAR */
  613. /* > \verbatim */
  614. /* > ALPHAR is REAL array, dimension (N) */
  615. /* > The real parts of each scalar alpha defining an eigenvalue of */
  616. /* > GNEP. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] ALPHAI */
  620. /* > \verbatim */
  621. /* > ALPHAI is REAL array, dimension (N) */
  622. /* > The imaginary parts of each scalar alpha defining an */
  623. /* > eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
  624. /* > eigenvalue is real; if positive, then the j-th and */
  625. /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
  626. /* > ALPHAI(j+1) = -ALPHAI(j). */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] BETA */
  630. /* > \verbatim */
  631. /* > BETA is REAL array, dimension (N) */
  632. /* > The scalars beta that define the eigenvalues of GNEP. */
  633. /* > */
  634. /* > Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
  635. /* > beta = BETA(j) represent the j-th eigenvalue of the matrix */
  636. /* > pair (A,B), in one of the forms lambda = alpha/beta or */
  637. /* > mu = beta/alpha. Since either lambda or mu may overflow, */
  638. /* > they should not, in general, be computed. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] VL */
  642. /* > \verbatim */
  643. /* > VL is REAL array, dimension (LDVL,N) */
  644. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored */
  645. /* > in the columns of VL, in the same order as their eigenvalues. */
  646. /* > If the j-th eigenvalue is real, then u(j) = VL(:,j). */
  647. /* > If the j-th and (j+1)-st eigenvalues form a complex conjugate */
  648. /* > pair, then */
  649. /* > u(j) = VL(:,j) + i*VL(:,j+1) */
  650. /* > and */
  651. /* > u(j+1) = VL(:,j) - i*VL(:,j+1). */
  652. /* > */
  653. /* > Each eigenvector is scaled so that its largest component has */
  654. /* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
  655. /* > corresponding to an eigenvalue with alpha = beta = 0, which */
  656. /* > are set to zero. */
  657. /* > Not referenced if JOBVL = 'N'. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDVL */
  661. /* > \verbatim */
  662. /* > LDVL is INTEGER */
  663. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  664. /* > if JOBVL = 'V', LDVL >= N. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] VR */
  668. /* > \verbatim */
  669. /* > VR is REAL array, dimension (LDVR,N) */
  670. /* > If JOBVR = 'V', the right eigenvectors x(j) are stored */
  671. /* > in the columns of VR, in the same order as their eigenvalues. */
  672. /* > If the j-th eigenvalue is real, then x(j) = VR(:,j). */
  673. /* > If the j-th and (j+1)-st eigenvalues form a complex conjugate */
  674. /* > pair, then */
  675. /* > x(j) = VR(:,j) + i*VR(:,j+1) */
  676. /* > and */
  677. /* > x(j+1) = VR(:,j) - i*VR(:,j+1). */
  678. /* > */
  679. /* > Each eigenvector is scaled so that its largest component has */
  680. /* > abs(real part) + abs(imag. part) = 1, except for eigenvalues */
  681. /* > corresponding to an eigenvalue with alpha = beta = 0, which */
  682. /* > are set to zero. */
  683. /* > Not referenced if JOBVR = 'N'. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[in] LDVR */
  687. /* > \verbatim */
  688. /* > LDVR is INTEGER */
  689. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  690. /* > if JOBVR = 'V', LDVR >= N. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] WORK */
  694. /* > \verbatim */
  695. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  696. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[in] LWORK */
  700. /* > \verbatim */
  701. /* > LWORK is INTEGER */
  702. /* > The dimension of the array WORK. LWORK >= f2cmax(1,8*N). */
  703. /* > For good performance, LWORK must generally be larger. */
  704. /* > To compute the optimal value of LWORK, call ILAENV to get */
  705. /* > blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: */
  706. /* > NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR; */
  707. /* > The optimal LWORK is: */
  708. /* > 2*N + MAX( 6*N, N*(NB+1) ). */
  709. /* > */
  710. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  711. /* > only calculates the optimal size of the WORK array, returns */
  712. /* > this value as the first entry of the WORK array, and no error */
  713. /* > message related to LWORK is issued by XERBLA. */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] INFO */
  717. /* > \verbatim */
  718. /* > INFO is INTEGER */
  719. /* > = 0: successful exit */
  720. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  721. /* > = 1,...,N: */
  722. /* > The QZ iteration failed. No eigenvectors have been */
  723. /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  724. /* > should be correct for j=INFO+1,...,N. */
  725. /* > > N: errors that usually indicate LAPACK problems: */
  726. /* > =N+1: error return from SGGBAL */
  727. /* > =N+2: error return from SGEQRF */
  728. /* > =N+3: error return from SORMQR */
  729. /* > =N+4: error return from SORGQR */
  730. /* > =N+5: error return from SGGHRD */
  731. /* > =N+6: error return from SHGEQZ (other than failed */
  732. /* > iteration) */
  733. /* > =N+7: error return from STGEVC */
  734. /* > =N+8: error return from SGGBAK (computing VL) */
  735. /* > =N+9: error return from SGGBAK (computing VR) */
  736. /* > =N+10: error return from SLASCL (various calls) */
  737. /* > \endverbatim */
  738. /* Authors: */
  739. /* ======== */
  740. /* > \author Univ. of Tennessee */
  741. /* > \author Univ. of California Berkeley */
  742. /* > \author Univ. of Colorado Denver */
  743. /* > \author NAG Ltd. */
  744. /* > \date December 2016 */
  745. /* > \ingroup realGEeigen */
  746. /* > \par Further Details: */
  747. /* ===================== */
  748. /* > */
  749. /* > \verbatim */
  750. /* > */
  751. /* > Balancing */
  752. /* > --------- */
  753. /* > */
  754. /* > This driver calls SGGBAL to both permute and scale rows and columns */
  755. /* > of A and B. The permutations PL and PR are chosen so that PL*A*PR */
  756. /* > and PL*B*R will be upper triangular except for the diagonal blocks */
  757. /* > A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
  758. /* > possible. The diagonal scaling matrices DL and DR are chosen so */
  759. /* > that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
  760. /* > one (except for the elements that start out zero.) */
  761. /* > */
  762. /* > After the eigenvalues and eigenvectors of the balanced matrices */
  763. /* > have been computed, SGGBAK transforms the eigenvectors back to what */
  764. /* > they would have been (in perfect arithmetic) if they had not been */
  765. /* > balanced. */
  766. /* > */
  767. /* > Contents of A and B on Exit */
  768. /* > -------- -- - --- - -- ---- */
  769. /* > */
  770. /* > If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
  771. /* > both), then on exit the arrays A and B will contain the real Schur */
  772. /* > form[*] of the "balanced" versions of A and B. If no eigenvectors */
  773. /* > are computed, then only the diagonal blocks will be correct. */
  774. /* > */
  775. /* > [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations", */
  776. /* > by Golub & van Loan, pub. by Johns Hopkins U. Press. */
  777. /* > \endverbatim */
  778. /* > */
  779. /* ===================================================================== */
  780. /* Subroutine */ int sgegv_(char *jobvl, char *jobvr, integer *n, real *a,
  781. integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real
  782. *beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work,
  783. integer *lwork, integer *info)
  784. {
  785. /* System generated locals */
  786. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  787. vr_offset, i__1, i__2;
  788. real r__1, r__2, r__3, r__4;
  789. /* Local variables */
  790. real absb, anrm, bnrm;
  791. integer itau;
  792. real temp;
  793. logical ilvl, ilvr;
  794. integer lopt;
  795. real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
  796. extern logical lsame_(char *, char *);
  797. integer ileft, iinfo, icols, iwork, irows, jc, nb, in, jr;
  798. real salfai;
  799. extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *,
  800. integer *, real *, real *, integer *, real *, integer *, integer *
  801. ), sggbal_(char *, integer *, real *, integer *,
  802. real *, integer *, integer *, integer *, real *, real *, real *,
  803. integer *);
  804. real salfar;
  805. extern real slamch_(char *), slange_(char *, integer *, integer *,
  806. real *, integer *, real *);
  807. real safmin;
  808. extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *,
  809. integer *, real *, integer *, real *, integer *, real *, integer *
  810. , real *, integer *, integer *);
  811. real safmax;
  812. char chtemp[1];
  813. logical ldumma[1];
  814. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  815. real *, integer *, integer *, real *, integer *, integer *), xerbla_(char *, integer *);
  816. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  817. integer *, integer *, ftnlen, ftnlen);
  818. integer ijobvl, iright;
  819. logical ilimit;
  820. extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
  821. *, real *, real *, integer *, integer *);
  822. integer ijobvr;
  823. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  824. integer *, real *, integer *), slaset_(char *, integer *,
  825. integer *, real *, real *, real *, integer *), stgevc_(
  826. char *, char *, logical *, integer *, real *, integer *, real *,
  827. integer *, real *, integer *, real *, integer *, integer *,
  828. integer *, real *, integer *);
  829. real onepls;
  830. integer lwkmin, nb1, nb2, nb3;
  831. extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
  832. integer *, integer *, real *, integer *, real *, integer *, real *
  833. , real *, real *, real *, integer *, real *, integer *, real *,
  834. integer *, integer *), sorgqr_(integer *,
  835. integer *, integer *, real *, integer *, real *, real *, integer *
  836. , integer *);
  837. integer lwkopt;
  838. logical lquery;
  839. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  840. integer *, real *, integer *, real *, real *, integer *, real *,
  841. integer *, integer *);
  842. integer ihi, ilo;
  843. real eps;
  844. logical ilv;
  845. /* -- LAPACK driver routine (version 3.7.0) -- */
  846. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  847. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  848. /* December 2016 */
  849. /* ===================================================================== */
  850. /* Decode the input arguments */
  851. /* Parameter adjustments */
  852. a_dim1 = *lda;
  853. a_offset = 1 + a_dim1 * 1;
  854. a -= a_offset;
  855. b_dim1 = *ldb;
  856. b_offset = 1 + b_dim1 * 1;
  857. b -= b_offset;
  858. --alphar;
  859. --alphai;
  860. --beta;
  861. vl_dim1 = *ldvl;
  862. vl_offset = 1 + vl_dim1 * 1;
  863. vl -= vl_offset;
  864. vr_dim1 = *ldvr;
  865. vr_offset = 1 + vr_dim1 * 1;
  866. vr -= vr_offset;
  867. --work;
  868. /* Function Body */
  869. if (lsame_(jobvl, "N")) {
  870. ijobvl = 1;
  871. ilvl = FALSE_;
  872. } else if (lsame_(jobvl, "V")) {
  873. ijobvl = 2;
  874. ilvl = TRUE_;
  875. } else {
  876. ijobvl = -1;
  877. ilvl = FALSE_;
  878. }
  879. if (lsame_(jobvr, "N")) {
  880. ijobvr = 1;
  881. ilvr = FALSE_;
  882. } else if (lsame_(jobvr, "V")) {
  883. ijobvr = 2;
  884. ilvr = TRUE_;
  885. } else {
  886. ijobvr = -1;
  887. ilvr = FALSE_;
  888. }
  889. ilv = ilvl || ilvr;
  890. /* Test the input arguments */
  891. /* Computing MAX */
  892. i__1 = *n << 3;
  893. lwkmin = f2cmax(i__1,1);
  894. lwkopt = lwkmin;
  895. work[1] = (real) lwkopt;
  896. lquery = *lwork == -1;
  897. *info = 0;
  898. if (ijobvl <= 0) {
  899. *info = -1;
  900. } else if (ijobvr <= 0) {
  901. *info = -2;
  902. } else if (*n < 0) {
  903. *info = -3;
  904. } else if (*lda < f2cmax(1,*n)) {
  905. *info = -5;
  906. } else if (*ldb < f2cmax(1,*n)) {
  907. *info = -7;
  908. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  909. *info = -12;
  910. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  911. *info = -14;
  912. } else if (*lwork < lwkmin && ! lquery) {
  913. *info = -16;
  914. }
  915. if (*info == 0) {
  916. nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
  917. ftnlen)1);
  918. nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  919. ftnlen)1);
  920. nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  921. ftnlen)1);
  922. /* Computing MAX */
  923. i__1 = f2cmax(nb1,nb2);
  924. nb = f2cmax(i__1,nb3);
  925. /* Computing MAX */
  926. i__1 = *n * 6, i__2 = *n * (nb + 1);
  927. lopt = (*n << 1) + f2cmax(i__1,i__2);
  928. work[1] = (real) lopt;
  929. }
  930. if (*info != 0) {
  931. i__1 = -(*info);
  932. xerbla_("SGEGV ", &i__1);
  933. return 0;
  934. } else if (lquery) {
  935. return 0;
  936. }
  937. /* Quick return if possible */
  938. if (*n == 0) {
  939. return 0;
  940. }
  941. /* Get machine constants */
  942. eps = slamch_("E") * slamch_("B");
  943. safmin = slamch_("S");
  944. safmin += safmin;
  945. safmax = 1.f / safmin;
  946. onepls = eps * 4 + 1.f;
  947. /* Scale A */
  948. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  949. anrm1 = anrm;
  950. anrm2 = 1.f;
  951. if (anrm < 1.f) {
  952. if (safmax * anrm < 1.f) {
  953. anrm1 = safmin;
  954. anrm2 = safmax * anrm;
  955. }
  956. }
  957. if (anrm > 0.f) {
  958. slascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
  959. iinfo);
  960. if (iinfo != 0) {
  961. *info = *n + 10;
  962. return 0;
  963. }
  964. }
  965. /* Scale B */
  966. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  967. bnrm1 = bnrm;
  968. bnrm2 = 1.f;
  969. if (bnrm < 1.f) {
  970. if (safmax * bnrm < 1.f) {
  971. bnrm1 = safmin;
  972. bnrm2 = safmax * bnrm;
  973. }
  974. }
  975. if (bnrm > 0.f) {
  976. slascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
  977. iinfo);
  978. if (iinfo != 0) {
  979. *info = *n + 10;
  980. return 0;
  981. }
  982. }
  983. /* Permute the matrix to make it more nearly triangular */
  984. /* Workspace layout: (8*N words -- "work" requires 6*N words) */
  985. /* left_permutation, right_permutation, work... */
  986. ileft = 1;
  987. iright = *n + 1;
  988. iwork = iright + *n;
  989. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  990. ileft], &work[iright], &work[iwork], &iinfo);
  991. if (iinfo != 0) {
  992. *info = *n + 1;
  993. goto L120;
  994. }
  995. /* Reduce B to triangular form, and initialize VL and/or VR */
  996. /* Workspace layout: ("work..." must have at least N words) */
  997. /* left_permutation, right_permutation, tau, work... */
  998. irows = ihi + 1 - ilo;
  999. if (ilv) {
  1000. icols = *n + 1 - ilo;
  1001. } else {
  1002. icols = irows;
  1003. }
  1004. itau = iwork;
  1005. iwork = itau + irows;
  1006. i__1 = *lwork + 1 - iwork;
  1007. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  1008. iwork], &i__1, &iinfo);
  1009. if (iinfo >= 0) {
  1010. /* Computing MAX */
  1011. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  1012. lwkopt = f2cmax(i__1,i__2);
  1013. }
  1014. if (iinfo != 0) {
  1015. *info = *n + 2;
  1016. goto L120;
  1017. }
  1018. i__1 = *lwork + 1 - iwork;
  1019. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  1020. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
  1021. iinfo);
  1022. if (iinfo >= 0) {
  1023. /* Computing MAX */
  1024. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  1025. lwkopt = f2cmax(i__1,i__2);
  1026. }
  1027. if (iinfo != 0) {
  1028. *info = *n + 3;
  1029. goto L120;
  1030. }
  1031. if (ilvl) {
  1032. slaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
  1033. ;
  1034. i__1 = irows - 1;
  1035. i__2 = irows - 1;
  1036. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
  1037. 1 + ilo * vl_dim1], ldvl);
  1038. i__1 = *lwork + 1 - iwork;
  1039. sorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  1040. itau], &work[iwork], &i__1, &iinfo);
  1041. if (iinfo >= 0) {
  1042. /* Computing MAX */
  1043. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  1044. lwkopt = f2cmax(i__1,i__2);
  1045. }
  1046. if (iinfo != 0) {
  1047. *info = *n + 4;
  1048. goto L120;
  1049. }
  1050. }
  1051. if (ilvr) {
  1052. slaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
  1053. ;
  1054. }
  1055. /* Reduce to generalized Hessenberg form */
  1056. if (ilv) {
  1057. /* Eigenvectors requested -- work on whole matrix. */
  1058. sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1059. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
  1060. } else {
  1061. sgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  1062. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1063. vr_offset], ldvr, &iinfo);
  1064. }
  1065. if (iinfo != 0) {
  1066. *info = *n + 5;
  1067. goto L120;
  1068. }
  1069. /* Perform QZ algorithm */
  1070. /* Workspace layout: ("work..." must have at least 1 word) */
  1071. /* left_permutation, right_permutation, work... */
  1072. iwork = itau;
  1073. if (ilv) {
  1074. *(unsigned char *)chtemp = 'S';
  1075. } else {
  1076. *(unsigned char *)chtemp = 'E';
  1077. }
  1078. i__1 = *lwork + 1 - iwork;
  1079. shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1080. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  1081. ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
  1082. if (iinfo >= 0) {
  1083. /* Computing MAX */
  1084. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  1085. lwkopt = f2cmax(i__1,i__2);
  1086. }
  1087. if (iinfo != 0) {
  1088. if (iinfo > 0 && iinfo <= *n) {
  1089. *info = iinfo;
  1090. } else if (iinfo > *n && iinfo <= *n << 1) {
  1091. *info = iinfo - *n;
  1092. } else {
  1093. *info = *n + 6;
  1094. }
  1095. goto L120;
  1096. }
  1097. if (ilv) {
  1098. /* Compute Eigenvectors (STGEVC requires 6*N words of workspace) */
  1099. if (ilvl) {
  1100. if (ilvr) {
  1101. *(unsigned char *)chtemp = 'B';
  1102. } else {
  1103. *(unsigned char *)chtemp = 'L';
  1104. }
  1105. } else {
  1106. *(unsigned char *)chtemp = 'R';
  1107. }
  1108. stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  1109. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1110. iwork], &iinfo);
  1111. if (iinfo != 0) {
  1112. *info = *n + 7;
  1113. goto L120;
  1114. }
  1115. /* Undo balancing on VL and VR, rescale */
  1116. if (ilvl) {
  1117. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1118. vl[vl_offset], ldvl, &iinfo);
  1119. if (iinfo != 0) {
  1120. *info = *n + 8;
  1121. goto L120;
  1122. }
  1123. i__1 = *n;
  1124. for (jc = 1; jc <= i__1; ++jc) {
  1125. if (alphai[jc] < 0.f) {
  1126. goto L50;
  1127. }
  1128. temp = 0.f;
  1129. if (alphai[jc] == 0.f) {
  1130. i__2 = *n;
  1131. for (jr = 1; jr <= i__2; ++jr) {
  1132. /* Computing MAX */
  1133. r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1],
  1134. abs(r__1));
  1135. temp = f2cmax(r__2,r__3);
  1136. /* L10: */
  1137. }
  1138. } else {
  1139. i__2 = *n;
  1140. for (jr = 1; jr <= i__2; ++jr) {
  1141. /* Computing MAX */
  1142. r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1],
  1143. abs(r__1)) + (r__2 = vl[jr + (jc + 1) *
  1144. vl_dim1], abs(r__2));
  1145. temp = f2cmax(r__3,r__4);
  1146. /* L20: */
  1147. }
  1148. }
  1149. if (temp < safmin) {
  1150. goto L50;
  1151. }
  1152. temp = 1.f / temp;
  1153. if (alphai[jc] == 0.f) {
  1154. i__2 = *n;
  1155. for (jr = 1; jr <= i__2; ++jr) {
  1156. vl[jr + jc * vl_dim1] *= temp;
  1157. /* L30: */
  1158. }
  1159. } else {
  1160. i__2 = *n;
  1161. for (jr = 1; jr <= i__2; ++jr) {
  1162. vl[jr + jc * vl_dim1] *= temp;
  1163. vl[jr + (jc + 1) * vl_dim1] *= temp;
  1164. /* L40: */
  1165. }
  1166. }
  1167. L50:
  1168. ;
  1169. }
  1170. }
  1171. if (ilvr) {
  1172. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  1173. vr[vr_offset], ldvr, &iinfo);
  1174. if (iinfo != 0) {
  1175. *info = *n + 9;
  1176. goto L120;
  1177. }
  1178. i__1 = *n;
  1179. for (jc = 1; jc <= i__1; ++jc) {
  1180. if (alphai[jc] < 0.f) {
  1181. goto L100;
  1182. }
  1183. temp = 0.f;
  1184. if (alphai[jc] == 0.f) {
  1185. i__2 = *n;
  1186. for (jr = 1; jr <= i__2; ++jr) {
  1187. /* Computing MAX */
  1188. r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1],
  1189. abs(r__1));
  1190. temp = f2cmax(r__2,r__3);
  1191. /* L60: */
  1192. }
  1193. } else {
  1194. i__2 = *n;
  1195. for (jr = 1; jr <= i__2; ++jr) {
  1196. /* Computing MAX */
  1197. r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1],
  1198. abs(r__1)) + (r__2 = vr[jr + (jc + 1) *
  1199. vr_dim1], abs(r__2));
  1200. temp = f2cmax(r__3,r__4);
  1201. /* L70: */
  1202. }
  1203. }
  1204. if (temp < safmin) {
  1205. goto L100;
  1206. }
  1207. temp = 1.f / temp;
  1208. if (alphai[jc] == 0.f) {
  1209. i__2 = *n;
  1210. for (jr = 1; jr <= i__2; ++jr) {
  1211. vr[jr + jc * vr_dim1] *= temp;
  1212. /* L80: */
  1213. }
  1214. } else {
  1215. i__2 = *n;
  1216. for (jr = 1; jr <= i__2; ++jr) {
  1217. vr[jr + jc * vr_dim1] *= temp;
  1218. vr[jr + (jc + 1) * vr_dim1] *= temp;
  1219. /* L90: */
  1220. }
  1221. }
  1222. L100:
  1223. ;
  1224. }
  1225. }
  1226. /* End of eigenvector calculation */
  1227. }
  1228. /* Undo scaling in alpha, beta */
  1229. /* Note: this does not give the alpha and beta for the unscaled */
  1230. /* problem. */
  1231. /* Un-scaling is limited to avoid underflow in alpha and beta */
  1232. /* if they are significant. */
  1233. i__1 = *n;
  1234. for (jc = 1; jc <= i__1; ++jc) {
  1235. absar = (r__1 = alphar[jc], abs(r__1));
  1236. absai = (r__1 = alphai[jc], abs(r__1));
  1237. absb = (r__1 = beta[jc], abs(r__1));
  1238. salfar = anrm * alphar[jc];
  1239. salfai = anrm * alphai[jc];
  1240. sbeta = bnrm * beta[jc];
  1241. ilimit = FALSE_;
  1242. scale = 1.f;
  1243. /* Check for significant underflow in ALPHAI */
  1244. /* Computing MAX */
  1245. r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1246. absb;
  1247. if (abs(salfai) < safmin && absai >= f2cmax(r__1,r__2)) {
  1248. ilimit = TRUE_;
  1249. /* Computing MAX */
  1250. r__1 = onepls * safmin, r__2 = anrm2 * absai;
  1251. scale = onepls * safmin / anrm1 / f2cmax(r__1,r__2);
  1252. } else if (salfai == 0.f) {
  1253. /* If insignificant underflow in ALPHAI, then make the */
  1254. /* conjugate eigenvalue real. */
  1255. if (alphai[jc] < 0.f && jc > 1) {
  1256. alphai[jc - 1] = 0.f;
  1257. } else if (alphai[jc] > 0.f && jc < *n) {
  1258. alphai[jc + 1] = 0.f;
  1259. }
  1260. }
  1261. /* Check for significant underflow in ALPHAR */
  1262. /* Computing MAX */
  1263. r__1 = safmin, r__2 = eps * absai, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1264. absb;
  1265. if (abs(salfar) < safmin && absar >= f2cmax(r__1,r__2)) {
  1266. ilimit = TRUE_;
  1267. /* Computing MAX */
  1268. /* Computing MAX */
  1269. r__3 = onepls * safmin, r__4 = anrm2 * absar;
  1270. r__1 = scale, r__2 = onepls * safmin / anrm1 / f2cmax(r__3,r__4);
  1271. scale = f2cmax(r__1,r__2);
  1272. }
  1273. /* Check for significant underflow in BETA */
  1274. /* Computing MAX */
  1275. r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1276. absai;
  1277. if (abs(sbeta) < safmin && absb >= f2cmax(r__1,r__2)) {
  1278. ilimit = TRUE_;
  1279. /* Computing MAX */
  1280. /* Computing MAX */
  1281. r__3 = onepls * safmin, r__4 = bnrm2 * absb;
  1282. r__1 = scale, r__2 = onepls * safmin / bnrm1 / f2cmax(r__3,r__4);
  1283. scale = f2cmax(r__1,r__2);
  1284. }
  1285. /* Check for possible overflow when limiting scaling */
  1286. if (ilimit) {
  1287. /* Computing MAX */
  1288. r__1 = abs(salfar), r__2 = abs(salfai), r__1 = f2cmax(r__1,r__2),
  1289. r__2 = abs(sbeta);
  1290. temp = scale * safmin * f2cmax(r__1,r__2);
  1291. if (temp > 1.f) {
  1292. scale /= temp;
  1293. }
  1294. if (scale < 1.f) {
  1295. ilimit = FALSE_;
  1296. }
  1297. }
  1298. /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
  1299. if (ilimit) {
  1300. salfar = scale * alphar[jc] * anrm;
  1301. salfai = scale * alphai[jc] * anrm;
  1302. sbeta = scale * beta[jc] * bnrm;
  1303. }
  1304. alphar[jc] = salfar;
  1305. alphai[jc] = salfai;
  1306. beta[jc] = sbeta;
  1307. /* L110: */
  1308. }
  1309. L120:
  1310. work[1] = (real) lwkopt;
  1311. return 0;
  1312. /* End of SGEGV */
  1313. } /* sgegv_ */