You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgegs.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static real c_b36 = 0.f;
  489. static real c_b37 = 1.f;
  490. /* > \brief <b> SGEGS computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  491. ices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SGEGS + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegs.f
  498. "> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegs.f
  501. "> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegs.f
  504. "> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, */
  510. /* ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */
  511. /* LWORK, INFO ) */
  512. /* CHARACTER JOBVSL, JOBVSR */
  513. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
  514. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  515. /* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
  516. /* $ VSR( LDVSR, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > This routine is deprecated and has been replaced by routine SGGES. */
  523. /* > */
  524. /* > SGEGS computes the eigenvalues, real Schur form, and, optionally, */
  525. /* > left and or/right Schur vectors of a real matrix pair (A,B). */
  526. /* > Given two square matrices A and B, the generalized real Schur */
  527. /* > factorization has the form */
  528. /* > */
  529. /* > A = Q*S*Z**T, B = Q*T*Z**T */
  530. /* > */
  531. /* > where Q and Z are orthogonal matrices, T is upper triangular, and S */
  532. /* > is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */
  533. /* > blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */
  534. /* > of eigenvalues of (A,B). The columns of Q are the left Schur vectors */
  535. /* > and the columns of Z are the right Schur vectors. */
  536. /* > */
  537. /* > If only the eigenvalues of (A,B) are needed, the driver routine */
  538. /* > SGEGV should be used instead. See SGEGV for a description of the */
  539. /* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
  540. /* > (GNEP). */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] JOBVSL */
  545. /* > \verbatim */
  546. /* > JOBVSL is CHARACTER*1 */
  547. /* > = 'N': do not compute the left Schur vectors; */
  548. /* > = 'V': compute the left Schur vectors (returned in VSL). */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] JOBVSR */
  552. /* > \verbatim */
  553. /* > JOBVSR is CHARACTER*1 */
  554. /* > = 'N': do not compute the right Schur vectors; */
  555. /* > = 'V': compute the right Schur vectors (returned in VSR). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] A */
  565. /* > \verbatim */
  566. /* > A is REAL array, dimension (LDA, N) */
  567. /* > On entry, the matrix A. */
  568. /* > On exit, the upper quasi-triangular matrix S from the */
  569. /* > generalized real Schur factorization. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDA */
  573. /* > \verbatim */
  574. /* > LDA is INTEGER */
  575. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in,out] B */
  579. /* > \verbatim */
  580. /* > B is REAL array, dimension (LDB, N) */
  581. /* > On entry, the matrix B. */
  582. /* > On exit, the upper triangular matrix T from the generalized */
  583. /* > real Schur factorization. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDB */
  587. /* > \verbatim */
  588. /* > LDB is INTEGER */
  589. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] ALPHAR */
  593. /* > \verbatim */
  594. /* > ALPHAR is REAL array, dimension (N) */
  595. /* > The real parts of each scalar alpha defining an eigenvalue */
  596. /* > of GNEP. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] ALPHAI */
  600. /* > \verbatim */
  601. /* > ALPHAI is REAL array, dimension (N) */
  602. /* > The imaginary parts of each scalar alpha defining an */
  603. /* > eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
  604. /* > eigenvalue is real; if positive, then the j-th and (j+1)-st */
  605. /* > eigenvalues are a complex conjugate pair, with */
  606. /* > ALPHAI(j+1) = -ALPHAI(j). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] BETA */
  610. /* > \verbatim */
  611. /* > BETA is REAL array, dimension (N) */
  612. /* > The scalars beta that define the eigenvalues of GNEP. */
  613. /* > Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
  614. /* > beta = BETA(j) represent the j-th eigenvalue of the matrix */
  615. /* > pair (A,B), in one of the forms lambda = alpha/beta or */
  616. /* > mu = beta/alpha. Since either lambda or mu may overflow, */
  617. /* > they should not, in general, be computed. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] VSL */
  621. /* > \verbatim */
  622. /* > VSL is REAL array, dimension (LDVSL,N) */
  623. /* > If JOBVSL = 'V', the matrix of left Schur vectors Q. */
  624. /* > Not referenced if JOBVSL = 'N'. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDVSL */
  628. /* > \verbatim */
  629. /* > LDVSL is INTEGER */
  630. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  631. /* > if JOBVSL = 'V', LDVSL >= N. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] VSR */
  635. /* > \verbatim */
  636. /* > VSR is REAL array, dimension (LDVSR,N) */
  637. /* > If JOBVSR = 'V', the matrix of right Schur vectors Z. */
  638. /* > Not referenced if JOBVSR = 'N'. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDVSR */
  642. /* > \verbatim */
  643. /* > LDVSR is INTEGER */
  644. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  645. /* > if JOBVSR = 'V', LDVSR >= N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] WORK */
  649. /* > \verbatim */
  650. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  651. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LWORK */
  655. /* > \verbatim */
  656. /* > LWORK is INTEGER */
  657. /* > The dimension of the array WORK. LWORK >= f2cmax(1,4*N). */
  658. /* > For good performance, LWORK must generally be larger. */
  659. /* > To compute the optimal value of LWORK, call ILAENV to get */
  660. /* > blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: */
  661. /* > NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR */
  662. /* > The optimal LWORK is 2*N + N*(NB+1). */
  663. /* > */
  664. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  665. /* > only calculates the optimal size of the WORK array, returns */
  666. /* > this value as the first entry of the WORK array, and no error */
  667. /* > message related to LWORK is issued by XERBLA. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] INFO */
  671. /* > \verbatim */
  672. /* > INFO is INTEGER */
  673. /* > = 0: successful exit */
  674. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  675. /* > = 1,...,N: */
  676. /* > The QZ iteration failed. (A,B) are not in Schur */
  677. /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
  678. /* > be correct for j=INFO+1,...,N. */
  679. /* > > N: errors that usually indicate LAPACK problems: */
  680. /* > =N+1: error return from SGGBAL */
  681. /* > =N+2: error return from SGEQRF */
  682. /* > =N+3: error return from SORMQR */
  683. /* > =N+4: error return from SORGQR */
  684. /* > =N+5: error return from SGGHRD */
  685. /* > =N+6: error return from SHGEQZ (other than failed */
  686. /* > iteration) */
  687. /* > =N+7: error return from SGGBAK (computing VSL) */
  688. /* > =N+8: error return from SGGBAK (computing VSR) */
  689. /* > =N+9: error return from SLASCL (various places) */
  690. /* > \endverbatim */
  691. /* Authors: */
  692. /* ======== */
  693. /* > \author Univ. of Tennessee */
  694. /* > \author Univ. of California Berkeley */
  695. /* > \author Univ. of Colorado Denver */
  696. /* > \author NAG Ltd. */
  697. /* > \date December 2016 */
  698. /* > \ingroup realGEeigen */
  699. /* ===================================================================== */
  700. /* Subroutine */ int sgegs_(char *jobvsl, char *jobvsr, integer *n, real *a,
  701. integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real
  702. *beta, real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *
  703. work, integer *lwork, integer *info)
  704. {
  705. /* System generated locals */
  706. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  707. vsr_dim1, vsr_offset, i__1, i__2;
  708. /* Local variables */
  709. real anrm, bnrm;
  710. integer itau, lopt;
  711. extern logical lsame_(char *, char *);
  712. integer ileft, iinfo, icols;
  713. logical ilvsl;
  714. integer iwork;
  715. logical ilvsr;
  716. integer irows, nb;
  717. extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *,
  718. integer *, real *, real *, integer *, real *, integer *, integer *
  719. ), sggbal_(char *, integer *, real *, integer *,
  720. real *, integer *, integer *, integer *, real *, real *, real *,
  721. integer *);
  722. logical ilascl, ilbscl;
  723. extern real slamch_(char *), slange_(char *, integer *, integer *,
  724. real *, integer *, real *);
  725. real safmin;
  726. extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *,
  727. integer *, real *, integer *, real *, integer *, real *, integer *
  728. , real *, integer *, integer *), xerbla_(char *,
  729. integer *);
  730. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  731. integer *, integer *, ftnlen, ftnlen);
  732. real bignum;
  733. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  734. real *, integer *, integer *, real *, integer *, integer *);
  735. integer ijobvl, iright;
  736. extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
  737. *, real *, real *, integer *, integer *);
  738. integer ijobvr;
  739. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  740. integer *, real *, integer *), slaset_(char *, integer *,
  741. integer *, real *, real *, real *, integer *);
  742. real anrmto;
  743. integer lwkmin, nb1, nb2, nb3;
  744. real bnrmto;
  745. extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
  746. integer *, integer *, real *, integer *, real *, integer *, real *
  747. , real *, real *, real *, integer *, real *, integer *, real *,
  748. integer *, integer *);
  749. real smlnum;
  750. extern /* Subroutine */ int sorgqr_(integer *, integer *, integer *, real
  751. *, integer *, real *, real *, integer *, integer *);
  752. integer lwkopt;
  753. logical lquery;
  754. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  755. integer *, real *, integer *, real *, real *, integer *, real *,
  756. integer *, integer *);
  757. integer ihi, ilo;
  758. real eps;
  759. /* -- LAPACK driver routine (version 3.7.0) -- */
  760. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  761. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  762. /* December 2016 */
  763. /* ===================================================================== */
  764. /* Decode the input arguments */
  765. /* Parameter adjustments */
  766. a_dim1 = *lda;
  767. a_offset = 1 + a_dim1 * 1;
  768. a -= a_offset;
  769. b_dim1 = *ldb;
  770. b_offset = 1 + b_dim1 * 1;
  771. b -= b_offset;
  772. --alphar;
  773. --alphai;
  774. --beta;
  775. vsl_dim1 = *ldvsl;
  776. vsl_offset = 1 + vsl_dim1 * 1;
  777. vsl -= vsl_offset;
  778. vsr_dim1 = *ldvsr;
  779. vsr_offset = 1 + vsr_dim1 * 1;
  780. vsr -= vsr_offset;
  781. --work;
  782. /* Function Body */
  783. if (lsame_(jobvsl, "N")) {
  784. ijobvl = 1;
  785. ilvsl = FALSE_;
  786. } else if (lsame_(jobvsl, "V")) {
  787. ijobvl = 2;
  788. ilvsl = TRUE_;
  789. } else {
  790. ijobvl = -1;
  791. ilvsl = FALSE_;
  792. }
  793. if (lsame_(jobvsr, "N")) {
  794. ijobvr = 1;
  795. ilvsr = FALSE_;
  796. } else if (lsame_(jobvsr, "V")) {
  797. ijobvr = 2;
  798. ilvsr = TRUE_;
  799. } else {
  800. ijobvr = -1;
  801. ilvsr = FALSE_;
  802. }
  803. /* Test the input arguments */
  804. /* Computing MAX */
  805. i__1 = *n << 2;
  806. lwkmin = f2cmax(i__1,1);
  807. lwkopt = lwkmin;
  808. work[1] = (real) lwkopt;
  809. lquery = *lwork == -1;
  810. *info = 0;
  811. if (ijobvl <= 0) {
  812. *info = -1;
  813. } else if (ijobvr <= 0) {
  814. *info = -2;
  815. } else if (*n < 0) {
  816. *info = -3;
  817. } else if (*lda < f2cmax(1,*n)) {
  818. *info = -5;
  819. } else if (*ldb < f2cmax(1,*n)) {
  820. *info = -7;
  821. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  822. *info = -12;
  823. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  824. *info = -14;
  825. } else if (*lwork < lwkmin && ! lquery) {
  826. *info = -16;
  827. }
  828. if (*info == 0) {
  829. nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
  830. ftnlen)1);
  831. nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  832. ftnlen)1);
  833. nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  834. ftnlen)1);
  835. /* Computing MAX */
  836. i__1 = f2cmax(nb1,nb2);
  837. nb = f2cmax(i__1,nb3);
  838. lopt = (*n << 1) + *n * (nb + 1);
  839. work[1] = (real) lopt;
  840. }
  841. if (*info != 0) {
  842. i__1 = -(*info);
  843. xerbla_("SGEGS ", &i__1);
  844. return 0;
  845. } else if (lquery) {
  846. return 0;
  847. }
  848. /* Quick return if possible */
  849. if (*n == 0) {
  850. return 0;
  851. }
  852. /* Get machine constants */
  853. eps = slamch_("E") * slamch_("B");
  854. safmin = slamch_("S");
  855. smlnum = *n * safmin / eps;
  856. bignum = 1.f / smlnum;
  857. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  858. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  859. ilascl = FALSE_;
  860. if (anrm > 0.f && anrm < smlnum) {
  861. anrmto = smlnum;
  862. ilascl = TRUE_;
  863. } else if (anrm > bignum) {
  864. anrmto = bignum;
  865. ilascl = TRUE_;
  866. }
  867. if (ilascl) {
  868. slascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  869. iinfo);
  870. if (iinfo != 0) {
  871. *info = *n + 9;
  872. return 0;
  873. }
  874. }
  875. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  876. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  877. ilbscl = FALSE_;
  878. if (bnrm > 0.f && bnrm < smlnum) {
  879. bnrmto = smlnum;
  880. ilbscl = TRUE_;
  881. } else if (bnrm > bignum) {
  882. bnrmto = bignum;
  883. ilbscl = TRUE_;
  884. }
  885. if (ilbscl) {
  886. slascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  887. iinfo);
  888. if (iinfo != 0) {
  889. *info = *n + 9;
  890. return 0;
  891. }
  892. }
  893. /* Permute the matrix to make it more nearly triangular */
  894. /* Workspace layout: (2*N words -- "work..." not actually used) */
  895. /* left_permutation, right_permutation, work... */
  896. ileft = 1;
  897. iright = *n + 1;
  898. iwork = iright + *n;
  899. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  900. ileft], &work[iright], &work[iwork], &iinfo);
  901. if (iinfo != 0) {
  902. *info = *n + 1;
  903. goto L10;
  904. }
  905. /* Reduce B to triangular form, and initialize VSL and/or VSR */
  906. /* Workspace layout: ("work..." must have at least N words) */
  907. /* left_permutation, right_permutation, tau, work... */
  908. irows = ihi + 1 - ilo;
  909. icols = *n + 1 - ilo;
  910. itau = iwork;
  911. iwork = itau + irows;
  912. i__1 = *lwork + 1 - iwork;
  913. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  914. iwork], &i__1, &iinfo);
  915. if (iinfo >= 0) {
  916. /* Computing MAX */
  917. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  918. lwkopt = f2cmax(i__1,i__2);
  919. }
  920. if (iinfo != 0) {
  921. *info = *n + 2;
  922. goto L10;
  923. }
  924. i__1 = *lwork + 1 - iwork;
  925. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  926. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
  927. iinfo);
  928. if (iinfo >= 0) {
  929. /* Computing MAX */
  930. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  931. lwkopt = f2cmax(i__1,i__2);
  932. }
  933. if (iinfo != 0) {
  934. *info = *n + 3;
  935. goto L10;
  936. }
  937. if (ilvsl) {
  938. slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
  939. i__1 = irows - 1;
  940. i__2 = irows - 1;
  941. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo
  942. + 1 + ilo * vsl_dim1], ldvsl);
  943. i__1 = *lwork + 1 - iwork;
  944. sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  945. work[itau], &work[iwork], &i__1, &iinfo);
  946. if (iinfo >= 0) {
  947. /* Computing MAX */
  948. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  949. lwkopt = f2cmax(i__1,i__2);
  950. }
  951. if (iinfo != 0) {
  952. *info = *n + 4;
  953. goto L10;
  954. }
  955. }
  956. if (ilvsr) {
  957. slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
  958. }
  959. /* Reduce to generalized Hessenberg form */
  960. sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  961. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
  962. if (iinfo != 0) {
  963. *info = *n + 5;
  964. goto L10;
  965. }
  966. /* Perform QZ algorithm, computing Schur vectors if desired */
  967. /* Workspace layout: ("work..." must have at least 1 word) */
  968. /* left_permutation, right_permutation, work... */
  969. iwork = itau;
  970. i__1 = *lwork + 1 - iwork;
  971. shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  972. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
  973. , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo);
  974. if (iinfo >= 0) {
  975. /* Computing MAX */
  976. i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
  977. lwkopt = f2cmax(i__1,i__2);
  978. }
  979. if (iinfo != 0) {
  980. if (iinfo > 0 && iinfo <= *n) {
  981. *info = iinfo;
  982. } else if (iinfo > *n && iinfo <= *n << 1) {
  983. *info = iinfo - *n;
  984. } else {
  985. *info = *n + 6;
  986. }
  987. goto L10;
  988. }
  989. /* Apply permutation to VSL and VSR */
  990. if (ilvsl) {
  991. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
  992. vsl_offset], ldvsl, &iinfo);
  993. if (iinfo != 0) {
  994. *info = *n + 7;
  995. goto L10;
  996. }
  997. }
  998. if (ilvsr) {
  999. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
  1000. vsr_offset], ldvsr, &iinfo);
  1001. if (iinfo != 0) {
  1002. *info = *n + 8;
  1003. goto L10;
  1004. }
  1005. }
  1006. /* Undo scaling */
  1007. if (ilascl) {
  1008. slascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1009. iinfo);
  1010. if (iinfo != 0) {
  1011. *info = *n + 9;
  1012. return 0;
  1013. }
  1014. slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1015. iinfo);
  1016. if (iinfo != 0) {
  1017. *info = *n + 9;
  1018. return 0;
  1019. }
  1020. slascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1021. iinfo);
  1022. if (iinfo != 0) {
  1023. *info = *n + 9;
  1024. return 0;
  1025. }
  1026. }
  1027. if (ilbscl) {
  1028. slascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1029. iinfo);
  1030. if (iinfo != 0) {
  1031. *info = *n + 9;
  1032. return 0;
  1033. }
  1034. slascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1035. iinfo);
  1036. if (iinfo != 0) {
  1037. *info = *n + 9;
  1038. return 0;
  1039. }
  1040. }
  1041. L10:
  1042. work[1] = (real) lwkopt;
  1043. return 0;
  1044. /* End of SGEGS */
  1045. } /* sgegs_ */