|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
- e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
- on to the unreduced part of A. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLAHRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */
-
- /* INTEGER K, LDA, LDT, LDY, N, NB */
- /* COMPLEX*16 A( LDA, * ), T( LDT, NB ), TAU( NB ), */
- /* $ Y( LDY, NB ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine is deprecated and has been replaced by routine ZLAHR2. */
- /* > */
- /* > ZLAHRD reduces the first NB columns of a complex general n-by-(n-k+1) */
- /* > matrix A so that elements below the k-th subdiagonal are zero. The */
- /* > reduction is performed by a unitary similarity transformation */
- /* > Q**H * A * Q. The routine returns the matrices V and T which determine */
- /* > Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > The offset for the reduction. Elements below the k-th */
- /* > subdiagonal in the first NB columns are reduced to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The number of columns to be reduced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N-K+1) */
- /* > On entry, the n-by-(n-k+1) general matrix A. */
- /* > On exit, the elements on and above the k-th subdiagonal in */
- /* > the first NB columns are overwritten with the corresponding */
- /* > elements of the reduced matrix; the elements below the k-th */
- /* > subdiagonal, with the array TAU, represent the matrix Q as a */
- /* > product of elementary reflectors. The other columns of A are */
- /* > unchanged. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAU */
- /* > \verbatim */
- /* > TAU is COMPLEX*16 array, dimension (NB) */
- /* > The scalar factors of the elementary reflectors. See Further */
- /* > Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] T */
- /* > \verbatim */
- /* > T is COMPLEX*16 array, dimension (LDT,NB) */
- /* > The upper triangular matrix T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= NB. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Y */
- /* > \verbatim */
- /* > Y is COMPLEX*16 array, dimension (LDY,NB) */
- /* > The n-by-nb matrix Y. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDY */
- /* > \verbatim */
- /* > LDY is INTEGER */
- /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The matrix Q is represented as a product of nb elementary reflectors */
- /* > */
- /* > Q = H(1) H(2) . . . H(nb). */
- /* > */
- /* > Each H(i) has the form */
- /* > */
- /* > H(i) = I - tau * v * v**H */
- /* > */
- /* > where tau is a complex scalar, and v is a complex vector with */
- /* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
- /* > A(i+k+1:n,i), and tau in TAU(i). */
- /* > */
- /* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
- /* > V which is needed, with T and Y, to apply the transformation to the */
- /* > unreduced part of the matrix, using an update of the form: */
- /* > A := (I - V*T*V**H) * (A - Y*V**H). */
- /* > */
- /* > The contents of A on exit are illustrated by the following example */
- /* > with n = 7, k = 3 and nb = 2: */
- /* > */
- /* > ( a h a a a ) */
- /* > ( a h a a a ) */
- /* > ( a h a a a ) */
- /* > ( h h a a a ) */
- /* > ( v1 h a a a ) */
- /* > ( v1 v2 a a a ) */
- /* > ( v1 v2 a a a ) */
- /* > */
- /* > where a denotes an element of the original matrix A, h denotes a */
- /* > modified element of the upper Hessenberg matrix H, and vi denotes an */
- /* > element of the vector defining H(i). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void zlahrd_(integer *n, integer *k, integer *nb,
- doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *t,
- integer *ldt, doublecomplex *y, integer *ldy)
- {
- /* System generated locals */
- integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublecomplex z__1;
-
- /* Local variables */
- integer i__;
- extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zcopy_(integer *, doublecomplex *, integer *, doublecomplex *,
- integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *,
- integer *, doublecomplex *, integer *), ztrmv_(char *, char *,
- char *, integer *, doublecomplex *, integer *, doublecomplex *,
- integer *);
- doublecomplex ei;
- extern /* Subroutine */ void zlarfg_(integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *,
- doublecomplex *, integer *);
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Quick return if possible */
-
- /* Parameter adjustments */
- --tau;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*n <= 1) {
- return;
- }
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ > 1) {
-
- /* Update A(1:n,i) */
-
- /* Compute i-th column of A - Y * V**H */
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &a[*k
- + i__ - 1 + a_dim1], lda, &c_b2, &a[i__ * a_dim1 + 1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda);
-
- /* Apply I - V * T**H * V**H to this column (call it b) from the */
- /* left, using the last column of T as workspace */
-
- /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
- /* ( V2 ) ( b2 ) */
-
- /* where V1 is unit lower triangular */
-
- /* w := V1**H * b1 */
-
- i__2 = i__ - 1;
- zcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
- 1], &c__1);
- i__2 = i__ - 1;
- ztrmv_("Lower", "Conjugate transpose", "Unit", &i__2, &a[*k + 1 +
- a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1);
-
- /* w := w + V2**H *b2 */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
- a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, &
- t[*nb * t_dim1 + 1], &c__1);
-
- /* w := T**H *w */
-
- i__2 = i__ - 1;
- ztrmv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &t[
- t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1);
-
- /* b2 := b2 - V2*w */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[*k + i__ + a_dim1],
- lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ +
- i__ * a_dim1], &c__1);
-
- /* b1 := b1 - V1*w */
-
- i__2 = i__ - 1;
- ztrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
- , lda, &t[*nb * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zaxpy_(&i__2, &z__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
- * a_dim1], &c__1);
-
- i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1;
- a[i__2].r = ei.r, a[i__2].i = ei.i;
- }
-
- /* Generate the elementary reflector H(i) to annihilate */
- /* A(k+i+1:n,i) */
-
- i__2 = *k + i__ + i__ * a_dim1;
- ei.r = a[i__2].r, ei.i = a[i__2].i;
- i__2 = *n - *k - i__ + 1;
- /* Computing MIN */
- i__3 = *k + i__ + 1;
- zlarfg_(&i__2, &ei, &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__])
- ;
- i__2 = *k + i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
- /* Compute Y(1:n,i) */
-
- i__2 = *n - *k - i__ + 1;
- zgemv_("No transpose", n, &i__2, &c_b2, &a[(i__ + 1) * a_dim1 + 1],
- lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = *n - *k - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ +
- a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[
- i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", n, &i__2, &z__1, &y[y_offset], ldy, &t[i__ *
- t_dim1 + 1], &c__1, &c_b2, &y[i__ * y_dim1 + 1], &c__1);
- zscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
-
- /* Compute T(1:i,i) */
-
- i__2 = i__ - 1;
- i__3 = i__;
- z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i;
- zscal_(&i__2, &z__1, &t[i__ * t_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- ztrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
- &t[i__ * t_dim1 + 1], &c__1)
- ;
- i__2 = i__ + i__ * t_dim1;
- i__3 = i__;
- t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i;
-
- /* L10: */
- }
- i__1 = *k + *nb + *nb * a_dim1;
- a[i__1].r = ei.r, a[i__1].i = ei.i;
-
- return;
-
- /* End of ZLAHRD */
-
- } /* zlahrd_ */
-
|