You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgelsx.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* -- translated by f2c (version 20000121).
  241. You must link the resulting object file with the libraries:
  242. -lf2c -lm (in that order)
  243. */
  244. /* Table of constant values */
  245. static doublecomplex c_b1 = {0.,0.};
  246. static doublecomplex c_b2 = {1.,0.};
  247. static integer c__0 = 0;
  248. static integer c__2 = 2;
  249. static integer c__1 = 1;
  250. /* > \brief <b> ZGELSX solves overdetermined or underdetermined systems for GE matrices</b> */
  251. /* =========== DOCUMENTATION =========== */
  252. /* Online html documentation available at */
  253. /* http://www.netlib.org/lapack/explore-html/ */
  254. /* > \htmlonly */
  255. /* > Download ZGELSX + dependencies */
  256. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsx.
  257. f"> */
  258. /* > [TGZ]</a> */
  259. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsx.
  260. f"> */
  261. /* > [ZIP]</a> */
  262. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsx.
  263. f"> */
  264. /* > [TXT]</a> */
  265. /* > \endhtmlonly */
  266. /* Definition: */
  267. /* =========== */
  268. /* SUBROUTINE ZGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
  269. /* WORK, RWORK, INFO ) */
  270. /* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
  271. /* DOUBLE PRECISION RCOND */
  272. /* INTEGER JPVT( * ) */
  273. /* DOUBLE PRECISION RWORK( * ) */
  274. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */
  275. /* > \par Purpose: */
  276. /* ============= */
  277. /* > */
  278. /* > \verbatim */
  279. /* > */
  280. /* > This routine is deprecated and has been replaced by routine ZGELSY. */
  281. /* > */
  282. /* > ZGELSX computes the minimum-norm solution to a complex linear least */
  283. /* > squares problem: */
  284. /* > minimize || A * X - B || */
  285. /* > using a complete orthogonal factorization of A. A is an M-by-N */
  286. /* > matrix which may be rank-deficient. */
  287. /* > */
  288. /* > Several right hand side vectors b and solution vectors x can be */
  289. /* > handled in a single call; they are stored as the columns of the */
  290. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  291. /* > matrix X. */
  292. /* > */
  293. /* > The routine first computes a QR factorization with column pivoting: */
  294. /* > A * P = Q * [ R11 R12 ] */
  295. /* > [ 0 R22 ] */
  296. /* > with R11 defined as the largest leading submatrix whose estimated */
  297. /* > condition number is less than 1/RCOND. The order of R11, RANK, */
  298. /* > is the effective rank of A. */
  299. /* > */
  300. /* > Then, R22 is considered to be negligible, and R12 is annihilated */
  301. /* > by unitary transformations from the right, arriving at the */
  302. /* > complete orthogonal factorization: */
  303. /* > A * P = Q * [ T11 0 ] * Z */
  304. /* > [ 0 0 ] */
  305. /* > The minimum-norm solution is then */
  306. /* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
  307. /* > [ 0 ] */
  308. /* > where Q1 consists of the first RANK columns of Q. */
  309. /* > \endverbatim */
  310. /* Arguments: */
  311. /* ========== */
  312. /* > \param[in] M */
  313. /* > \verbatim */
  314. /* > M is INTEGER */
  315. /* > The number of rows of the matrix A. M >= 0. */
  316. /* > \endverbatim */
  317. /* > */
  318. /* > \param[in] N */
  319. /* > \verbatim */
  320. /* > N is INTEGER */
  321. /* > The number of columns of the matrix A. N >= 0. */
  322. /* > \endverbatim */
  323. /* > */
  324. /* > \param[in] NRHS */
  325. /* > \verbatim */
  326. /* > NRHS is INTEGER */
  327. /* > The number of right hand sides, i.e., the number of */
  328. /* > columns of matrices B and X. NRHS >= 0. */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[in,out] A */
  332. /* > \verbatim */
  333. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  334. /* > On entry, the M-by-N matrix A. */
  335. /* > On exit, A has been overwritten by details of its */
  336. /* > complete orthogonal factorization. */
  337. /* > \endverbatim */
  338. /* > */
  339. /* > \param[in] LDA */
  340. /* > \verbatim */
  341. /* > LDA is INTEGER */
  342. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  343. /* > \endverbatim */
  344. /* > */
  345. /* > \param[in,out] B */
  346. /* > \verbatim */
  347. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  348. /* > On entry, the M-by-NRHS right hand side matrix B. */
  349. /* > On exit, the N-by-NRHS solution matrix X. */
  350. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  351. /* > the solution in the i-th column is given by the sum of */
  352. /* > squares of elements N+1:M in that column. */
  353. /* > \endverbatim */
  354. /* > */
  355. /* > \param[in] LDB */
  356. /* > \verbatim */
  357. /* > LDB is INTEGER */
  358. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  359. /* > \endverbatim */
  360. /* > */
  361. /* > \param[in,out] JPVT */
  362. /* > \verbatim */
  363. /* > JPVT is INTEGER array, dimension (N) */
  364. /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
  365. /* > initial column, otherwise it is a free column. Before */
  366. /* > the QR factorization of A, all initial columns are */
  367. /* > permuted to the leading positions; only the remaining */
  368. /* > free columns are moved as a result of column pivoting */
  369. /* > during the factorization. */
  370. /* > On exit, if JPVT(i) = k, then the i-th column of A*P */
  371. /* > was the k-th column of A. */
  372. /* > \endverbatim */
  373. /* > */
  374. /* > \param[in] RCOND */
  375. /* > \verbatim */
  376. /* > RCOND is DOUBLE PRECISION */
  377. /* > RCOND is used to determine the effective rank of A, which */
  378. /* > is defined as the order of the largest leading triangular */
  379. /* > submatrix R11 in the QR factorization with pivoting of A, */
  380. /* > whose estimated condition number < 1/RCOND. */
  381. /* > \endverbatim */
  382. /* > */
  383. /* > \param[out] RANK */
  384. /* > \verbatim */
  385. /* > RANK is INTEGER */
  386. /* > The effective rank of A, i.e., the order of the submatrix */
  387. /* > R11. This is the same as the order of the submatrix T11 */
  388. /* > in the complete orthogonal factorization of A. */
  389. /* > \endverbatim */
  390. /* > */
  391. /* > \param[out] WORK */
  392. /* > \verbatim */
  393. /* > WORK is COMPLEX*16 array, dimension */
  394. /* > (f2cmin(M,N) + f2cmax( N, 2*f2cmin(M,N)+NRHS )), */
  395. /* > \endverbatim */
  396. /* > */
  397. /* > \param[out] RWORK */
  398. /* > \verbatim */
  399. /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
  400. /* > \endverbatim */
  401. /* > */
  402. /* > \param[out] INFO */
  403. /* > \verbatim */
  404. /* > INFO is INTEGER */
  405. /* > = 0: successful exit */
  406. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  407. /* > \endverbatim */
  408. /* Authors: */
  409. /* ======== */
  410. /* > \author Univ. of Tennessee */
  411. /* > \author Univ. of California Berkeley */
  412. /* > \author Univ. of Colorado Denver */
  413. /* > \author NAG Ltd. */
  414. /* > \date December 2016 */
  415. /* > \ingroup complex16GEsolve */
  416. /* ===================================================================== */
  417. /* Subroutine */ void zgelsx_(integer *m, integer *n, integer *nrhs,
  418. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  419. integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work,
  420. doublereal *rwork, integer *info)
  421. {
  422. /* System generated locals */
  423. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  424. doublecomplex z__1;
  425. /* Local variables */
  426. doublereal anrm, bnrm, smin, smax;
  427. integer i__, j, k, iascl, ibscl, ismin, ismax;
  428. doublecomplex c1, c2, s1, s2, t1, t2;
  429. extern /* Subroutine */ void ztrsm_(char *, char *, char *, char *,
  430. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  431. doublecomplex *, integer *),
  432. zlaic1_(integer *, integer *, doublecomplex *, doublereal *,
  433. doublecomplex *, doublecomplex *, doublereal *, doublecomplex *,
  434. doublecomplex *), dlabad_(doublereal *, doublereal *);
  435. extern doublereal dlamch_(char *);
  436. integer mn;
  437. extern /* Subroutine */ void zunm2r_(char *, char *, integer *, integer *,
  438. integer *, doublecomplex *, integer *, doublecomplex *,
  439. doublecomplex *, integer *, doublecomplex *, integer *);
  440. extern int xerbla_(char *, integer *, ftnlen);
  441. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  442. integer *, doublereal *);
  443. doublereal bignum;
  444. extern /* Subroutine */ void zlascl_(char *, integer *, integer *,
  445. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  446. integer *, integer *), zgeqpf_(integer *, integer *,
  447. doublecomplex *, integer *, integer *, doublecomplex *,
  448. doublecomplex *, doublereal *, integer *), zlaset_(char *,
  449. integer *, integer *, doublecomplex *, doublecomplex *,
  450. doublecomplex *, integer *);
  451. doublereal sminpr, smaxpr, smlnum;
  452. extern /* Subroutine */ void zlatzm_(char *, integer *, integer *,
  453. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  454. doublecomplex *, integer *, doublecomplex *), ztzrqf_(
  455. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  456. integer *);
  457. /* -- LAPACK driver routine (version 3.7.0) -- */
  458. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  459. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  460. /* December 2016 */
  461. /* ===================================================================== */
  462. /* Parameter adjustments */
  463. a_dim1 = *lda;
  464. a_offset = 1 + a_dim1 * 1;
  465. a -= a_offset;
  466. b_dim1 = *ldb;
  467. b_offset = 1 + b_dim1 * 1;
  468. b -= b_offset;
  469. --jpvt;
  470. --work;
  471. --rwork;
  472. /* Function Body */
  473. mn = f2cmin(*m,*n);
  474. ismin = mn + 1;
  475. ismax = (mn << 1) + 1;
  476. /* Test the input arguments. */
  477. *info = 0;
  478. if (*m < 0) {
  479. *info = -1;
  480. } else if (*n < 0) {
  481. *info = -2;
  482. } else if (*nrhs < 0) {
  483. *info = -3;
  484. } else if (*lda < f2cmax(1,*m)) {
  485. *info = -5;
  486. } else /* if(complicated condition) */ {
  487. /* Computing MAX */
  488. i__1 = f2cmax(1,*m);
  489. if (*ldb < f2cmax(i__1,*n)) {
  490. *info = -7;
  491. }
  492. }
  493. if (*info != 0) {
  494. i__1 = -(*info);
  495. xerbla_("ZGELSX", &i__1, 6);
  496. return;
  497. }
  498. /* Quick return if possible */
  499. /* Computing MIN */
  500. i__1 = f2cmin(*m,*n);
  501. if (f2cmin(i__1,*nrhs) == 0) {
  502. *rank = 0;
  503. return;
  504. }
  505. /* Get machine parameters */
  506. smlnum = dlamch_("S") / dlamch_("P");
  507. bignum = 1. / smlnum;
  508. dlabad_(&smlnum, &bignum);
  509. /* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */
  510. anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  511. iascl = 0;
  512. if (anrm > 0. && anrm < smlnum) {
  513. /* Scale matrix norm up to SMLNUM */
  514. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  515. info);
  516. iascl = 1;
  517. } else if (anrm > bignum) {
  518. /* Scale matrix norm down to BIGNUM */
  519. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  520. info);
  521. iascl = 2;
  522. } else if (anrm == 0.) {
  523. /* Matrix all zero. Return zero solution. */
  524. i__1 = f2cmax(*m,*n);
  525. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  526. *rank = 0;
  527. goto L100;
  528. }
  529. bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  530. ibscl = 0;
  531. if (bnrm > 0. && bnrm < smlnum) {
  532. /* Scale matrix norm up to SMLNUM */
  533. zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  534. info);
  535. ibscl = 1;
  536. } else if (bnrm > bignum) {
  537. /* Scale matrix norm down to BIGNUM */
  538. zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  539. info);
  540. ibscl = 2;
  541. }
  542. /* Compute QR factorization with column pivoting of A: */
  543. /* A * P = Q * R */
  544. zgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &
  545. rwork[1], info);
  546. /* complex workspace MN+N. Real workspace 2*N. Details of Householder */
  547. /* rotations stored in WORK(1:MN). */
  548. /* Determine RANK using incremental condition estimation */
  549. i__1 = ismin;
  550. work[i__1].r = 1., work[i__1].i = 0.;
  551. i__1 = ismax;
  552. work[i__1].r = 1., work[i__1].i = 0.;
  553. smax = z_abs(&a[a_dim1 + 1]);
  554. smin = smax;
  555. if (z_abs(&a[a_dim1 + 1]) == 0.) {
  556. *rank = 0;
  557. i__1 = f2cmax(*m,*n);
  558. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  559. goto L100;
  560. } else {
  561. *rank = 1;
  562. }
  563. L10:
  564. if (*rank < mn) {
  565. i__ = *rank + 1;
  566. zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
  567. i__ + i__ * a_dim1], &sminpr, &s1, &c1);
  568. zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
  569. i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
  570. if (smaxpr * *rcond <= sminpr) {
  571. i__1 = *rank;
  572. for (i__ = 1; i__ <= i__1; ++i__) {
  573. i__2 = ismin + i__ - 1;
  574. i__3 = ismin + i__ - 1;
  575. z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i =
  576. s1.r * work[i__3].i + s1.i * work[i__3].r;
  577. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  578. i__2 = ismax + i__ - 1;
  579. i__3 = ismax + i__ - 1;
  580. z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i =
  581. s2.r * work[i__3].i + s2.i * work[i__3].r;
  582. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  583. /* L20: */
  584. }
  585. i__1 = ismin + *rank;
  586. work[i__1].r = c1.r, work[i__1].i = c1.i;
  587. i__1 = ismax + *rank;
  588. work[i__1].r = c2.r, work[i__1].i = c2.i;
  589. smin = sminpr;
  590. smax = smaxpr;
  591. ++(*rank);
  592. goto L10;
  593. }
  594. }
  595. /* Logically partition R = [ R11 R12 ] */
  596. /* [ 0 R22 ] */
  597. /* where R11 = R(1:RANK,1:RANK) */
  598. /* [R11,R12] = [ T11, 0 ] * Y */
  599. if (*rank < *n) {
  600. ztzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
  601. }
  602. /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
  603. /* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */
  604. zunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
  605. work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info);
  606. /* workspace NRHS */
  607. /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
  608. ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
  609. a_offset], lda, &b[b_offset], ldb);
  610. i__1 = *n;
  611. for (i__ = *rank + 1; i__ <= i__1; ++i__) {
  612. i__2 = *nrhs;
  613. for (j = 1; j <= i__2; ++j) {
  614. i__3 = i__ + j * b_dim1;
  615. b[i__3].r = 0., b[i__3].i = 0.;
  616. /* L30: */
  617. }
  618. /* L40: */
  619. }
  620. /* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */
  621. if (*rank < *n) {
  622. i__1 = *rank;
  623. for (i__ = 1; i__ <= i__1; ++i__) {
  624. i__2 = *n - *rank + 1;
  625. d_cnjg(&z__1, &work[mn + i__]);
  626. zlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
  627. &z__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, &
  628. work[(mn << 1) + 1]);
  629. /* L50: */
  630. }
  631. }
  632. /* workspace NRHS */
  633. /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
  634. i__1 = *nrhs;
  635. for (j = 1; j <= i__1; ++j) {
  636. i__2 = *n;
  637. for (i__ = 1; i__ <= i__2; ++i__) {
  638. i__3 = (mn << 1) + i__;
  639. work[i__3].r = 1., work[i__3].i = 0.;
  640. /* L60: */
  641. }
  642. i__2 = *n;
  643. for (i__ = 1; i__ <= i__2; ++i__) {
  644. i__3 = (mn << 1) + i__;
  645. if (work[i__3].r == 1. && work[i__3].i == 0.) {
  646. if (jpvt[i__] != i__) {
  647. k = i__;
  648. i__3 = k + j * b_dim1;
  649. t1.r = b[i__3].r, t1.i = b[i__3].i;
  650. i__3 = jpvt[k] + j * b_dim1;
  651. t2.r = b[i__3].r, t2.i = b[i__3].i;
  652. L70:
  653. i__3 = jpvt[k] + j * b_dim1;
  654. b[i__3].r = t1.r, b[i__3].i = t1.i;
  655. i__3 = (mn << 1) + k;
  656. work[i__3].r = 0., work[i__3].i = 0.;
  657. t1.r = t2.r, t1.i = t2.i;
  658. k = jpvt[k];
  659. i__3 = jpvt[k] + j * b_dim1;
  660. t2.r = b[i__3].r, t2.i = b[i__3].i;
  661. if (jpvt[k] != i__) {
  662. goto L70;
  663. }
  664. i__3 = i__ + j * b_dim1;
  665. b[i__3].r = t1.r, b[i__3].i = t1.i;
  666. i__3 = (mn << 1) + k;
  667. work[i__3].r = 0., work[i__3].i = 0.;
  668. }
  669. }
  670. /* L80: */
  671. }
  672. /* L90: */
  673. }
  674. /* Undo scaling */
  675. if (iascl == 1) {
  676. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  677. info);
  678. zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
  679. lda, info);
  680. } else if (iascl == 2) {
  681. zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  682. info);
  683. zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
  684. lda, info);
  685. }
  686. if (ibscl == 1) {
  687. zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  688. info);
  689. } else if (ibscl == 2) {
  690. zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  691. info);
  692. }
  693. L100:
  694. return;
  695. /* End of ZGELSX */
  696. } /* zgelsx_ */