You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlahrd.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #define F2C_proc_par_types 1
  240. /* Table of constant values */
  241. static doublereal c_b4 = -1.;
  242. static doublereal c_b5 = 1.;
  243. static integer c__1 = 1;
  244. static doublereal c_b38 = 0.;
  245. /* > \brief \b DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below th
  246. e k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformati
  247. on to the unreduced part of A. */
  248. /* =========== DOCUMENTATION =========== */
  249. /* Online html documentation available at */
  250. /* http://www.netlib.org/lapack/explore-html/ */
  251. /* > \htmlonly */
  252. /* > Download DLAHRD + dependencies */
  253. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahrd.
  254. f"> */
  255. /* > [TGZ]</a> */
  256. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahrd.
  257. f"> */
  258. /* > [ZIP]</a> */
  259. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahrd.
  260. f"> */
  261. /* > [TXT]</a> */
  262. /* > \endhtmlonly */
  263. /* Definition: */
  264. /* =========== */
  265. /* SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */
  266. /* INTEGER K, LDA, LDT, LDY, N, NB */
  267. /* DOUBLE PRECISION A( LDA, * ), T( LDT, NB ), TAU( NB ), */
  268. /* $ Y( LDY, NB ) */
  269. /* > \par Purpose: */
  270. /* ============= */
  271. /* > */
  272. /* > \verbatim */
  273. /* > */
  274. /* > This routine is deprecated and has been replaced by routine DLAHR2. */
  275. /* > */
  276. /* > DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */
  277. /* > matrix A so that elements below the k-th subdiagonal are zero. The */
  278. /* > reduction is performed by an orthogonal similarity transformation */
  279. /* > Q**T * A * Q. The routine returns the matrices V and T which determine */
  280. /* > Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. */
  281. /* > \endverbatim */
  282. /* Arguments: */
  283. /* ========== */
  284. /* > \param[in] N */
  285. /* > \verbatim */
  286. /* > N is INTEGER */
  287. /* > The order of the matrix A. */
  288. /* > \endverbatim */
  289. /* > */
  290. /* > \param[in] K */
  291. /* > \verbatim */
  292. /* > K is INTEGER */
  293. /* > The offset for the reduction. Elements below the k-th */
  294. /* > subdiagonal in the first NB columns are reduced to zero. */
  295. /* > \endverbatim */
  296. /* > */
  297. /* > \param[in] NB */
  298. /* > \verbatim */
  299. /* > NB is INTEGER */
  300. /* > The number of columns to be reduced. */
  301. /* > \endverbatim */
  302. /* > */
  303. /* > \param[in,out] A */
  304. /* > \verbatim */
  305. /* > A is DOUBLE PRECISION array, dimension (LDA,N-K+1) */
  306. /* > On entry, the n-by-(n-k+1) general matrix A. */
  307. /* > On exit, the elements on and above the k-th subdiagonal in */
  308. /* > the first NB columns are overwritten with the corresponding */
  309. /* > elements of the reduced matrix; the elements below the k-th */
  310. /* > subdiagonal, with the array TAU, represent the matrix Q as a */
  311. /* > product of elementary reflectors. The other columns of A are */
  312. /* > unchanged. See Further Details. */
  313. /* > \endverbatim */
  314. /* > */
  315. /* > \param[in] LDA */
  316. /* > \verbatim */
  317. /* > LDA is INTEGER */
  318. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  319. /* > \endverbatim */
  320. /* > */
  321. /* > \param[out] TAU */
  322. /* > \verbatim */
  323. /* > TAU is DOUBLE PRECISION array, dimension (NB) */
  324. /* > The scalar factors of the elementary reflectors. See Further */
  325. /* > Details. */
  326. /* > \endverbatim */
  327. /* > */
  328. /* > \param[out] T */
  329. /* > \verbatim */
  330. /* > T is DOUBLE PRECISION array, dimension (LDT,NB) */
  331. /* > The upper triangular matrix T. */
  332. /* > \endverbatim */
  333. /* > */
  334. /* > \param[in] LDT */
  335. /* > \verbatim */
  336. /* > LDT is INTEGER */
  337. /* > The leading dimension of the array T. LDT >= NB. */
  338. /* > \endverbatim */
  339. /* > */
  340. /* > \param[out] Y */
  341. /* > \verbatim */
  342. /* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */
  343. /* > The n-by-nb matrix Y. */
  344. /* > \endverbatim */
  345. /* > */
  346. /* > \param[in] LDY */
  347. /* > \verbatim */
  348. /* > LDY is INTEGER */
  349. /* > The leading dimension of the array Y. LDY >= N. */
  350. /* > \endverbatim */
  351. /* Authors: */
  352. /* ======== */
  353. /* > \author Univ. of Tennessee */
  354. /* > \author Univ. of California Berkeley */
  355. /* > \author Univ. of Colorado Denver */
  356. /* > \author NAG Ltd. */
  357. /* > \date December 2016 */
  358. /* > \ingroup doubleOTHERauxiliary */
  359. /* > \par Further Details: */
  360. /* ===================== */
  361. /* > */
  362. /* > \verbatim */
  363. /* > */
  364. /* > The matrix Q is represented as a product of nb elementary reflectors */
  365. /* > */
  366. /* > Q = H(1) H(2) . . . H(nb). */
  367. /* > */
  368. /* > Each H(i) has the form */
  369. /* > */
  370. /* > H(i) = I - tau * v * v**T */
  371. /* > */
  372. /* > where tau is a real scalar, and v is a real vector with */
  373. /* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
  374. /* > A(i+k+1:n,i), and tau in TAU(i). */
  375. /* > */
  376. /* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */
  377. /* > V which is needed, with T and Y, to apply the transformation to the */
  378. /* > unreduced part of the matrix, using an update of the form: */
  379. /* > A := (I - V*T*V**T) * (A - Y*V**T). */
  380. /* > */
  381. /* > The contents of A on exit are illustrated by the following example */
  382. /* > with n = 7, k = 3 and nb = 2: */
  383. /* > */
  384. /* > ( a h a a a ) */
  385. /* > ( a h a a a ) */
  386. /* > ( a h a a a ) */
  387. /* > ( h h a a a ) */
  388. /* > ( v1 h a a a ) */
  389. /* > ( v1 v2 a a a ) */
  390. /* > ( v1 v2 a a a ) */
  391. /* > */
  392. /* > where a denotes an element of the original matrix A, h denotes a */
  393. /* > modified element of the upper Hessenberg matrix H, and vi denotes an */
  394. /* > element of the vector defining H(i). */
  395. /* > \endverbatim */
  396. /* > */
  397. /* ===================================================================== */
  398. /* Subroutine */ void dlahrd_(integer *n, integer *k, integer *nb, doublereal *
  399. a, integer *lda, doublereal *tau, doublereal *t, integer *ldt,
  400. doublereal *y, integer *ldy)
  401. {
  402. /* System generated locals */
  403. integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2,
  404. i__3;
  405. doublereal d__1;
  406. /* Local variables */
  407. integer i__;
  408. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  409. integer *), dgemv_(char *, integer *, integer *, doublereal *,
  410. doublereal *, integer *, doublereal *, integer *, doublereal *,
  411. doublereal *, integer *), dcopy_(integer *, doublereal *,
  412. integer *, doublereal *, integer *), daxpy_(integer *, doublereal
  413. *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char
  414. *, char *, char *, integer *, doublereal *, integer *, doublereal
  415. *, integer *);
  416. doublereal ei;
  417. extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
  418. integer *, doublereal *);
  419. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  420. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  421. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  422. /* December 2016 */
  423. /* ===================================================================== */
  424. /* Quick return if possible */
  425. /* Parameter adjustments */
  426. --tau;
  427. a_dim1 = *lda;
  428. a_offset = 1 + a_dim1 * 1;
  429. a -= a_offset;
  430. t_dim1 = *ldt;
  431. t_offset = 1 + t_dim1 * 1;
  432. t -= t_offset;
  433. y_dim1 = *ldy;
  434. y_offset = 1 + y_dim1 * 1;
  435. y -= y_offset;
  436. /* Function Body */
  437. if (*n <= 1) {
  438. return;
  439. }
  440. i__1 = *nb;
  441. for (i__ = 1; i__ <= i__1; ++i__) {
  442. if (i__ > 1) {
  443. /* Update A(1:n,i) */
  444. /* Compute i-th column of A - Y * V**T */
  445. i__2 = i__ - 1;
  446. dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k
  447. + i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], &
  448. c__1);
  449. /* Apply I - V * T**T * V**T to this column (call it b) from the */
  450. /* left, using the last column of T as workspace */
  451. /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */
  452. /* ( V2 ) ( b2 ) */
  453. /* where V1 is unit lower triangular */
  454. /* w := V1**T * b1 */
  455. i__2 = i__ - 1;
  456. dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 +
  457. 1], &c__1);
  458. i__2 = i__ - 1;
  459. dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1],
  460. lda, &t[*nb * t_dim1 + 1], &c__1);
  461. /* w := w + V2**T *b2 */
  462. i__2 = *n - *k - i__ + 1;
  463. i__3 = i__ - 1;
  464. dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1],
  465. lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb *
  466. t_dim1 + 1], &c__1);
  467. /* w := T**T *w */
  468. i__2 = i__ - 1;
  469. dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt,
  470. &t[*nb * t_dim1 + 1], &c__1);
  471. /* b2 := b2 - V2*w */
  472. i__2 = *n - *k - i__ + 1;
  473. i__3 = i__ - 1;
  474. dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1],
  475. lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ +
  476. i__ * a_dim1], &c__1);
  477. /* b1 := b1 - V1*w */
  478. i__2 = i__ - 1;
  479. dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1]
  480. , lda, &t[*nb * t_dim1 + 1], &c__1);
  481. i__2 = i__ - 1;
  482. daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__
  483. * a_dim1], &c__1);
  484. a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
  485. }
  486. /* Generate the elementary reflector H(i) to annihilate */
  487. /* A(k+i+1:n,i) */
  488. i__2 = *n - *k - i__ + 1;
  489. /* Computing MIN */
  490. i__3 = *k + i__ + 1;
  491. dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ *
  492. a_dim1], &c__1, &tau[i__]);
  493. ei = a[*k + i__ + i__ * a_dim1];
  494. a[*k + i__ + i__ * a_dim1] = 1.;
  495. /* Compute Y(1:n,i) */
  496. i__2 = *n - *k - i__ + 1;
  497. dgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1],
  498. lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ *
  499. y_dim1 + 1], &c__1);
  500. i__2 = *n - *k - i__ + 1;
  501. i__3 = i__ - 1;
  502. dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
  503. a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 +
  504. 1], &c__1);
  505. i__2 = i__ - 1;
  506. dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ *
  507. t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1);
  508. dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1);
  509. /* Compute T(1:i,i) */
  510. i__2 = i__ - 1;
  511. d__1 = -tau[i__];
  512. dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
  513. i__2 = i__ - 1;
  514. dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt,
  515. &t[i__ * t_dim1 + 1], &c__1)
  516. ;
  517. t[i__ + i__ * t_dim1] = tau[i__];
  518. /* L10: */
  519. }
  520. a[*k + *nb + *nb * a_dim1] = ei;
  521. return;
  522. /* End of DLAHRD */
  523. } /* dlahrd_ */