You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbtrf.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. static integer c__65 = 65;
  489. /* > \brief \b ZGBTRF */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZGBTRF + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtrf.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtrf.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtrf.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO ) */
  508. /* INTEGER INFO, KL, KU, LDAB, M, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 AB( LDAB, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZGBTRF computes an LU factorization of a complex m-by-n band matrix A */
  517. /* > using partial pivoting with row interchanges. */
  518. /* > */
  519. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] M */
  524. /* > \verbatim */
  525. /* > M is INTEGER */
  526. /* > The number of rows of the matrix A. M >= 0. */
  527. /* > \endverbatim */
  528. /* > */
  529. /* > \param[in] N */
  530. /* > \verbatim */
  531. /* > N is INTEGER */
  532. /* > The number of columns of the matrix A. N >= 0. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] KL */
  536. /* > \verbatim */
  537. /* > KL is INTEGER */
  538. /* > The number of subdiagonals within the band of A. KL >= 0. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] KU */
  542. /* > \verbatim */
  543. /* > KU is INTEGER */
  544. /* > The number of superdiagonals within the band of A. KU >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in,out] AB */
  548. /* > \verbatim */
  549. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  550. /* > On entry, the matrix A in band storage, in rows KL+1 to */
  551. /* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */
  552. /* > The j-th column of A is stored in the j-th column of the */
  553. /* > array AB as follows: */
  554. /* > AB(kl+ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl) */
  555. /* > */
  556. /* > On exit, details of the factorization: U is stored as an */
  557. /* > upper triangular band matrix with KL+KU superdiagonals in */
  558. /* > rows 1 to KL+KU+1, and the multipliers used during the */
  559. /* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
  560. /* > See below for further details. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] LDAB */
  564. /* > \verbatim */
  565. /* > LDAB is INTEGER */
  566. /* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] IPIV */
  570. /* > \verbatim */
  571. /* > IPIV is INTEGER array, dimension (f2cmin(M,N)) */
  572. /* > The pivot indices; for 1 <= i <= f2cmin(M,N), row i of the */
  573. /* > matrix was interchanged with row IPIV(i). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] INFO */
  577. /* > \verbatim */
  578. /* > INFO is INTEGER */
  579. /* > = 0: successful exit */
  580. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  581. /* > > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
  582. /* > has been completed, but the factor U is exactly */
  583. /* > singular, and division by zero will occur if it is used */
  584. /* > to solve a system of equations. */
  585. /* > \endverbatim */
  586. /* Authors: */
  587. /* ======== */
  588. /* > \author Univ. of Tennessee */
  589. /* > \author Univ. of California Berkeley */
  590. /* > \author Univ. of Colorado Denver */
  591. /* > \author NAG Ltd. */
  592. /* > \date December 2016 */
  593. /* > \ingroup complex16GBcomputational */
  594. /* > \par Further Details: */
  595. /* ===================== */
  596. /* > */
  597. /* > \verbatim */
  598. /* > */
  599. /* > The band storage scheme is illustrated by the following example, when */
  600. /* > M = N = 6, KL = 2, KU = 1: */
  601. /* > */
  602. /* > On entry: On exit: */
  603. /* > */
  604. /* > * * * + + + * * * u14 u25 u36 */
  605. /* > * * + + + + * * u13 u24 u35 u46 */
  606. /* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
  607. /* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
  608. /* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
  609. /* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
  610. /* > */
  611. /* > Array elements marked * are not used by the routine; elements marked */
  612. /* > + need not be set on entry, but are required by the routine to store */
  613. /* > elements of U because of fill-in resulting from the row interchanges. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* ===================================================================== */
  617. /* Subroutine */ void zgbtrf_(integer *m, integer *n, integer *kl, integer *ku,
  618. doublecomplex *ab, integer *ldab, integer *ipiv, integer *info)
  619. {
  620. /* System generated locals */
  621. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  622. doublecomplex z__1;
  623. /* Local variables */
  624. doublecomplex temp;
  625. integer i__, j;
  626. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  627. doublecomplex *, integer *), zgemm_(char *, char *, integer *,
  628. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  629. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  630. integer *);
  631. doublecomplex work13[4160] /* was [65][64] */, work31[4160] /*
  632. was [65][64] */;
  633. integer i2, i3, j2, j3, k2;
  634. extern /* Subroutine */ void zgeru_(integer *, integer *, doublecomplex *,
  635. doublecomplex *, integer *, doublecomplex *, integer *,
  636. doublecomplex *, integer *), zcopy_(integer *, doublecomplex *,
  637. integer *, doublecomplex *, integer *), zswap_(integer *,
  638. doublecomplex *, integer *, doublecomplex *, integer *), ztrsm_(
  639. char *, char *, char *, char *, integer *, integer *,
  640. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  641. integer *), zgbtf2_(integer *,
  642. integer *, integer *, integer *, doublecomplex *, integer *,
  643. integer *, integer *);
  644. integer jb, nb, ii, jj, jm, ip, jp, km, ju, kv, nw;
  645. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  646. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  647. integer *, integer *, ftnlen, ftnlen), izamax_(integer *,
  648. doublecomplex *, integer *);
  649. extern /* Subroutine */ int zlaswp_(integer *, doublecomplex *, integer *,
  650. integer *, integer *, integer *, integer *);
  651. /* -- LAPACK computational routine (version 3.7.0) -- */
  652. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  653. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  654. /* December 2016 */
  655. /* ===================================================================== */
  656. /* KV is the number of superdiagonals in the factor U, allowing for */
  657. /* fill-in */
  658. /* Parameter adjustments */
  659. ab_dim1 = *ldab;
  660. ab_offset = 1 + ab_dim1 * 1;
  661. ab -= ab_offset;
  662. --ipiv;
  663. /* Function Body */
  664. kv = *ku + *kl;
  665. /* Test the input parameters. */
  666. *info = 0;
  667. if (*m < 0) {
  668. *info = -1;
  669. } else if (*n < 0) {
  670. *info = -2;
  671. } else if (*kl < 0) {
  672. *info = -3;
  673. } else if (*ku < 0) {
  674. *info = -4;
  675. } else if (*ldab < *kl + kv + 1) {
  676. *info = -6;
  677. }
  678. if (*info != 0) {
  679. i__1 = -(*info);
  680. xerbla_("ZGBTRF", &i__1, (ftnlen)6);
  681. return;
  682. }
  683. /* Quick return if possible */
  684. if (*m == 0 || *n == 0) {
  685. return;
  686. }
  687. /* Determine the block size for this environment */
  688. nb = ilaenv_(&c__1, "ZGBTRF", " ", m, n, kl, ku, (ftnlen)6, (ftnlen)1);
  689. /* The block size must not exceed the limit set by the size of the */
  690. /* local arrays WORK13 and WORK31. */
  691. nb = f2cmin(nb,64);
  692. if (nb <= 1 || nb > *kl) {
  693. /* Use unblocked code */
  694. zgbtf2_(m, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
  695. } else {
  696. /* Use blocked code */
  697. /* Zero the superdiagonal elements of the work array WORK13 */
  698. i__1 = nb;
  699. for (j = 1; j <= i__1; ++j) {
  700. i__2 = j - 1;
  701. for (i__ = 1; i__ <= i__2; ++i__) {
  702. i__3 = i__ + j * 65 - 66;
  703. work13[i__3].r = 0., work13[i__3].i = 0.;
  704. /* L10: */
  705. }
  706. /* L20: */
  707. }
  708. /* Zero the subdiagonal elements of the work array WORK31 */
  709. i__1 = nb;
  710. for (j = 1; j <= i__1; ++j) {
  711. i__2 = nb;
  712. for (i__ = j + 1; i__ <= i__2; ++i__) {
  713. i__3 = i__ + j * 65 - 66;
  714. work31[i__3].r = 0., work31[i__3].i = 0.;
  715. /* L30: */
  716. }
  717. /* L40: */
  718. }
  719. /* Gaussian elimination with partial pivoting */
  720. /* Set fill-in elements in columns KU+2 to KV to zero */
  721. i__1 = f2cmin(kv,*n);
  722. for (j = *ku + 2; j <= i__1; ++j) {
  723. i__2 = *kl;
  724. for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
  725. i__3 = i__ + j * ab_dim1;
  726. ab[i__3].r = 0., ab[i__3].i = 0.;
  727. /* L50: */
  728. }
  729. /* L60: */
  730. }
  731. /* JU is the index of the last column affected by the current */
  732. /* stage of the factorization */
  733. ju = 1;
  734. i__1 = f2cmin(*m,*n);
  735. i__2 = nb;
  736. for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  737. /* Computing MIN */
  738. i__3 = nb, i__4 = f2cmin(*m,*n) - j + 1;
  739. jb = f2cmin(i__3,i__4);
  740. /* The active part of the matrix is partitioned */
  741. /* A11 A12 A13 */
  742. /* A21 A22 A23 */
  743. /* A31 A32 A33 */
  744. /* Here A11, A21 and A31 denote the current block of JB columns */
  745. /* which is about to be factorized. The number of rows in the */
  746. /* partitioning are JB, I2, I3 respectively, and the numbers */
  747. /* of columns are JB, J2, J3. The superdiagonal elements of A13 */
  748. /* and the subdiagonal elements of A31 lie outside the band. */
  749. /* Computing MIN */
  750. i__3 = *kl - jb, i__4 = *m - j - jb + 1;
  751. i2 = f2cmin(i__3,i__4);
  752. /* Computing MIN */
  753. i__3 = jb, i__4 = *m - j - *kl + 1;
  754. i3 = f2cmin(i__3,i__4);
  755. /* J2 and J3 are computed after JU has been updated. */
  756. /* Factorize the current block of JB columns */
  757. i__3 = j + jb - 1;
  758. for (jj = j; jj <= i__3; ++jj) {
  759. /* Set fill-in elements in column JJ+KV to zero */
  760. if (jj + kv <= *n) {
  761. i__4 = *kl;
  762. for (i__ = 1; i__ <= i__4; ++i__) {
  763. i__5 = i__ + (jj + kv) * ab_dim1;
  764. ab[i__5].r = 0., ab[i__5].i = 0.;
  765. /* L70: */
  766. }
  767. }
  768. /* Find pivot and test for singularity. KM is the number of */
  769. /* subdiagonal elements in the current column. */
  770. /* Computing MIN */
  771. i__4 = *kl, i__5 = *m - jj;
  772. km = f2cmin(i__4,i__5);
  773. i__4 = km + 1;
  774. jp = izamax_(&i__4, &ab[kv + 1 + jj * ab_dim1], &c__1);
  775. ipiv[jj] = jp + jj - j;
  776. i__4 = kv + jp + jj * ab_dim1;
  777. if (ab[i__4].r != 0. || ab[i__4].i != 0.) {
  778. /* Computing MAX */
  779. /* Computing MIN */
  780. i__6 = jj + *ku + jp - 1;
  781. i__4 = ju, i__5 = f2cmin(i__6,*n);
  782. ju = f2cmax(i__4,i__5);
  783. if (jp != 1) {
  784. /* Apply interchange to columns J to J+JB-1 */
  785. if (jp + jj - 1 < j + *kl) {
  786. i__4 = *ldab - 1;
  787. i__5 = *ldab - 1;
  788. zswap_(&jb, &ab[kv + 1 + jj - j + j * ab_dim1], &
  789. i__4, &ab[kv + jp + jj - j + j * ab_dim1],
  790. &i__5);
  791. } else {
  792. /* The interchange affects columns J to JJ-1 of A31 */
  793. /* which are stored in the work array WORK31 */
  794. i__4 = jj - j;
  795. i__5 = *ldab - 1;
  796. zswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1],
  797. &i__5, &work31[jp + jj - j - *kl - 1], &
  798. c__65);
  799. i__4 = j + jb - jj;
  800. i__5 = *ldab - 1;
  801. i__6 = *ldab - 1;
  802. zswap_(&i__4, &ab[kv + 1 + jj * ab_dim1], &i__5, &
  803. ab[kv + jp + jj * ab_dim1], &i__6);
  804. }
  805. }
  806. /* Compute multipliers */
  807. z_div(&z__1, &c_b1, &ab[kv + 1 + jj * ab_dim1]);
  808. zscal_(&km, &z__1, &ab[kv + 2 + jj * ab_dim1], &c__1);
  809. /* Update trailing submatrix within the band and within */
  810. /* the current block. JM is the index of the last column */
  811. /* which needs to be updated. */
  812. /* Computing MIN */
  813. i__4 = ju, i__5 = j + jb - 1;
  814. jm = f2cmin(i__4,i__5);
  815. if (jm > jj) {
  816. i__4 = jm - jj;
  817. z__1.r = -1., z__1.i = 0.;
  818. i__5 = *ldab - 1;
  819. i__6 = *ldab - 1;
  820. zgeru_(&km, &i__4, &z__1, &ab[kv + 2 + jj * ab_dim1],
  821. &c__1, &ab[kv + (jj + 1) * ab_dim1], &i__5, &
  822. ab[kv + 1 + (jj + 1) * ab_dim1], &i__6);
  823. }
  824. } else {
  825. /* If pivot is zero, set INFO to the index of the pivot */
  826. /* unless a zero pivot has already been found. */
  827. if (*info == 0) {
  828. *info = jj;
  829. }
  830. }
  831. /* Copy current column of A31 into the work array WORK31 */
  832. /* Computing MIN */
  833. i__4 = jj - j + 1;
  834. nw = f2cmin(i__4,i3);
  835. if (nw > 0) {
  836. zcopy_(&nw, &ab[kv + *kl + 1 - jj + j + jj * ab_dim1], &
  837. c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
  838. }
  839. /* L80: */
  840. }
  841. if (j + jb <= *n) {
  842. /* Apply the row interchanges to the other blocks. */
  843. /* Computing MIN */
  844. i__3 = ju - j + 1;
  845. j2 = f2cmin(i__3,kv) - jb;
  846. /* Computing MAX */
  847. i__3 = 0, i__4 = ju - j - kv + 1;
  848. j3 = f2cmax(i__3,i__4);
  849. /* Use ZLASWP to apply the row interchanges to A12, A22, and */
  850. /* A32. */
  851. i__3 = *ldab - 1;
  852. zlaswp_(&j2, &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__3, &
  853. c__1, &jb, &ipiv[j], &c__1);
  854. /* Adjust the pivot indices. */
  855. i__3 = j + jb - 1;
  856. for (i__ = j; i__ <= i__3; ++i__) {
  857. ipiv[i__] = ipiv[i__] + j - 1;
  858. /* L90: */
  859. }
  860. /* Apply the row interchanges to A13, A23, and A33 */
  861. /* columnwise. */
  862. k2 = j - 1 + jb + j2;
  863. i__3 = j3;
  864. for (i__ = 1; i__ <= i__3; ++i__) {
  865. jj = k2 + i__;
  866. i__4 = j + jb - 1;
  867. for (ii = j + i__ - 1; ii <= i__4; ++ii) {
  868. ip = ipiv[ii];
  869. if (ip != ii) {
  870. i__5 = kv + 1 + ii - jj + jj * ab_dim1;
  871. temp.r = ab[i__5].r, temp.i = ab[i__5].i;
  872. i__5 = kv + 1 + ii - jj + jj * ab_dim1;
  873. i__6 = kv + 1 + ip - jj + jj * ab_dim1;
  874. ab[i__5].r = ab[i__6].r, ab[i__5].i = ab[i__6].i;
  875. i__5 = kv + 1 + ip - jj + jj * ab_dim1;
  876. ab[i__5].r = temp.r, ab[i__5].i = temp.i;
  877. }
  878. /* L100: */
  879. }
  880. /* L110: */
  881. }
  882. /* Update the relevant part of the trailing submatrix */
  883. if (j2 > 0) {
  884. /* Update A12 */
  885. i__3 = *ldab - 1;
  886. i__4 = *ldab - 1;
  887. ztrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2,
  888. &c_b1, &ab[kv + 1 + j * ab_dim1], &i__3, &ab[kv +
  889. 1 - jb + (j + jb) * ab_dim1], &i__4);
  890. if (i2 > 0) {
  891. /* Update A22 */
  892. z__1.r = -1., z__1.i = 0.;
  893. i__3 = *ldab - 1;
  894. i__4 = *ldab - 1;
  895. i__5 = *ldab - 1;
  896. zgemm_("No transpose", "No transpose", &i2, &j2, &jb,
  897. &z__1, &ab[kv + 1 + jb + j * ab_dim1], &i__3,
  898. &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__4,
  899. &c_b1, &ab[kv + 1 + (j + jb) * ab_dim1], &
  900. i__5);
  901. }
  902. if (i3 > 0) {
  903. /* Update A32 */
  904. z__1.r = -1., z__1.i = 0.;
  905. i__3 = *ldab - 1;
  906. i__4 = *ldab - 1;
  907. zgemm_("No transpose", "No transpose", &i3, &j2, &jb,
  908. &z__1, work31, &c__65, &ab[kv + 1 - jb + (j +
  909. jb) * ab_dim1], &i__3, &c_b1, &ab[kv + *kl +
  910. 1 - jb + (j + jb) * ab_dim1], &i__4);
  911. }
  912. }
  913. if (j3 > 0) {
  914. /* Copy the lower triangle of A13 into the work array */
  915. /* WORK13 */
  916. i__3 = j3;
  917. for (jj = 1; jj <= i__3; ++jj) {
  918. i__4 = jb;
  919. for (ii = jj; ii <= i__4; ++ii) {
  920. i__5 = ii + jj * 65 - 66;
  921. i__6 = ii - jj + 1 + (jj + j + kv - 1) * ab_dim1;
  922. work13[i__5].r = ab[i__6].r, work13[i__5].i = ab[
  923. i__6].i;
  924. /* L120: */
  925. }
  926. /* L130: */
  927. }
  928. /* Update A13 in the work array */
  929. i__3 = *ldab - 1;
  930. ztrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3,
  931. &c_b1, &ab[kv + 1 + j * ab_dim1], &i__3, work13, &
  932. c__65);
  933. if (i2 > 0) {
  934. /* Update A23 */
  935. z__1.r = -1., z__1.i = 0.;
  936. i__3 = *ldab - 1;
  937. i__4 = *ldab - 1;
  938. zgemm_("No transpose", "No transpose", &i2, &j3, &jb,
  939. &z__1, &ab[kv + 1 + jb + j * ab_dim1], &i__3,
  940. work13, &c__65, &c_b1, &ab[jb + 1 + (j + kv) *
  941. ab_dim1], &i__4);
  942. }
  943. if (i3 > 0) {
  944. /* Update A33 */
  945. z__1.r = -1., z__1.i = 0.;
  946. i__3 = *ldab - 1;
  947. zgemm_("No transpose", "No transpose", &i3, &j3, &jb,
  948. &z__1, work31, &c__65, work13, &c__65, &c_b1,
  949. &ab[*kl + 1 + (j + kv) * ab_dim1], &i__3);
  950. }
  951. /* Copy the lower triangle of A13 back into place */
  952. i__3 = j3;
  953. for (jj = 1; jj <= i__3; ++jj) {
  954. i__4 = jb;
  955. for (ii = jj; ii <= i__4; ++ii) {
  956. i__5 = ii - jj + 1 + (jj + j + kv - 1) * ab_dim1;
  957. i__6 = ii + jj * 65 - 66;
  958. ab[i__5].r = work13[i__6].r, ab[i__5].i = work13[
  959. i__6].i;
  960. /* L140: */
  961. }
  962. /* L150: */
  963. }
  964. }
  965. } else {
  966. /* Adjust the pivot indices. */
  967. i__3 = j + jb - 1;
  968. for (i__ = j; i__ <= i__3; ++i__) {
  969. ipiv[i__] = ipiv[i__] + j - 1;
  970. /* L160: */
  971. }
  972. }
  973. /* Partially undo the interchanges in the current block to */
  974. /* restore the upper triangular form of A31 and copy the upper */
  975. /* triangle of A31 back into place */
  976. i__3 = j;
  977. for (jj = j + jb - 1; jj >= i__3; --jj) {
  978. jp = ipiv[jj] - jj + 1;
  979. if (jp != 1) {
  980. /* Apply interchange to columns J to JJ-1 */
  981. if (jp + jj - 1 < j + *kl) {
  982. /* The interchange does not affect A31 */
  983. i__4 = jj - j;
  984. i__5 = *ldab - 1;
  985. i__6 = *ldab - 1;
  986. zswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
  987. i__5, &ab[kv + jp + jj - j + j * ab_dim1], &
  988. i__6);
  989. } else {
  990. /* The interchange does affect A31 */
  991. i__4 = jj - j;
  992. i__5 = *ldab - 1;
  993. zswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
  994. i__5, &work31[jp + jj - j - *kl - 1], &c__65);
  995. }
  996. }
  997. /* Copy the current column of A31 back into place */
  998. /* Computing MIN */
  999. i__4 = i3, i__5 = jj - j + 1;
  1000. nw = f2cmin(i__4,i__5);
  1001. if (nw > 0) {
  1002. zcopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &ab[
  1003. kv + *kl + 1 - jj + j + jj * ab_dim1], &c__1);
  1004. }
  1005. /* L170: */
  1006. }
  1007. /* L180: */
  1008. }
  1009. }
  1010. return;
  1011. /* End of ZGBTRF */
  1012. } /* zgbtrf_ */