You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtzrqf.c 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef char integer1;
  52. #define TRUE_ (1)
  53. #define FALSE_ (0)
  54. /* Extern is for use with -E */
  55. #ifndef Extern
  56. #define Extern extern
  57. #endif
  58. /* I/O stuff */
  59. typedef int flag;
  60. typedef int ftnlen;
  61. typedef int ftnint;
  62. /*external read, write*/
  63. typedef struct
  64. { flag cierr;
  65. ftnint ciunit;
  66. flag ciend;
  67. char *cifmt;
  68. ftnint cirec;
  69. } cilist;
  70. /*internal read, write*/
  71. typedef struct
  72. { flag icierr;
  73. char *iciunit;
  74. flag iciend;
  75. char *icifmt;
  76. ftnint icirlen;
  77. ftnint icirnum;
  78. } icilist;
  79. /*open*/
  80. typedef struct
  81. { flag oerr;
  82. ftnint ounit;
  83. char *ofnm;
  84. ftnlen ofnmlen;
  85. char *osta;
  86. char *oacc;
  87. char *ofm;
  88. ftnint orl;
  89. char *oblnk;
  90. } olist;
  91. /*close*/
  92. typedef struct
  93. { flag cerr;
  94. ftnint cunit;
  95. char *csta;
  96. } cllist;
  97. /*rewind, backspace, endfile*/
  98. typedef struct
  99. { flag aerr;
  100. ftnint aunit;
  101. } alist;
  102. /* inquire */
  103. typedef struct
  104. { flag inerr;
  105. ftnint inunit;
  106. char *infile;
  107. ftnlen infilen;
  108. ftnint *inex; /*parameters in standard's order*/
  109. ftnint *inopen;
  110. ftnint *innum;
  111. ftnint *innamed;
  112. char *inname;
  113. ftnlen innamlen;
  114. char *inacc;
  115. ftnlen inacclen;
  116. char *inseq;
  117. ftnlen inseqlen;
  118. char *indir;
  119. ftnlen indirlen;
  120. char *infmt;
  121. ftnlen infmtlen;
  122. char *inform;
  123. ftnint informlen;
  124. char *inunf;
  125. ftnlen inunflen;
  126. ftnint *inrecl;
  127. ftnint *innrec;
  128. char *inblank;
  129. ftnlen inblanklen;
  130. } inlist;
  131. #define VOID void
  132. union Multitype { /* for multiple entry points */
  133. integer1 g;
  134. shortint h;
  135. integer i;
  136. /* longint j; */
  137. real r;
  138. doublereal d;
  139. complex c;
  140. doublecomplex z;
  141. };
  142. typedef union Multitype Multitype;
  143. struct Vardesc { /* for Namelist */
  144. char *name;
  145. char *addr;
  146. ftnlen *dims;
  147. int type;
  148. };
  149. typedef struct Vardesc Vardesc;
  150. struct Namelist {
  151. char *name;
  152. Vardesc **vars;
  153. int nvars;
  154. };
  155. typedef struct Namelist Namelist;
  156. #define abs(x) ((x) >= 0 ? (x) : -(x))
  157. #define dabs(x) (fabs(x))
  158. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  159. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  160. #define dmin(a,b) (f2cmin(a,b))
  161. #define dmax(a,b) (f2cmax(a,b))
  162. #define bit_test(a,b) ((a) >> (b) & 1)
  163. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  164. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  165. #define abort_() { sig_die("Fortran abort routine called", 1); }
  166. #define c_abs(z) (cabsf(Cf(z)))
  167. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  168. #ifdef _MSC_VER
  169. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  170. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  171. #else
  172. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  173. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  174. #endif
  175. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  176. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  177. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  178. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  179. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  180. #define d_abs(x) (fabs(*(x)))
  181. #define d_acos(x) (acos(*(x)))
  182. #define d_asin(x) (asin(*(x)))
  183. #define d_atan(x) (atan(*(x)))
  184. #define d_atn2(x, y) (atan2(*(x),*(y)))
  185. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  186. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  187. #define d_cos(x) (cos(*(x)))
  188. #define d_cosh(x) (cosh(*(x)))
  189. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  190. #define d_exp(x) (exp(*(x)))
  191. #define d_imag(z) (cimag(Cd(z)))
  192. #define r_imag(z) (cimagf(Cf(z)))
  193. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  194. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  195. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  196. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  197. #define d_log(x) (log(*(x)))
  198. #define d_mod(x, y) (fmod(*(x), *(y)))
  199. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  200. #define d_nint(x) u_nint(*(x))
  201. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  202. #define d_sign(a,b) u_sign(*(a),*(b))
  203. #define r_sign(a,b) u_sign(*(a),*(b))
  204. #define d_sin(x) (sin(*(x)))
  205. #define d_sinh(x) (sinh(*(x)))
  206. #define d_sqrt(x) (sqrt(*(x)))
  207. #define d_tan(x) (tan(*(x)))
  208. #define d_tanh(x) (tanh(*(x)))
  209. #define i_abs(x) abs(*(x))
  210. #define i_dnnt(x) ((integer)u_nint(*(x)))
  211. #define i_len(s, n) (n)
  212. #define i_nint(x) ((integer)u_nint(*(x)))
  213. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  214. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  215. #define pow_si(B,E) spow_ui(*(B),*(E))
  216. #define pow_ri(B,E) spow_ui(*(B),*(E))
  217. #define pow_di(B,E) dpow_ui(*(B),*(E))
  218. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  219. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  220. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  221. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  222. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  223. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  224. #define sig_die(s, kill) { exit(1); }
  225. #define s_stop(s, n) {exit(0);}
  226. #define z_abs(z) (cabs(Cd(z)))
  227. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  228. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  229. #define myexit_() break;
  230. #define mycycle() continue;
  231. #define myceiling(w) {ceil(w)}
  232. #define myhuge(w) {HUGE_VAL}
  233. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  234. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  235. /* procedure parameter types for -A and -C++ */
  236. /* Table of constant values */
  237. static integer c__1 = 1;
  238. static doublereal c_b8 = 1.;
  239. /* > \brief \b DTZRQF */
  240. /* =========== DOCUMENTATION =========== */
  241. /* Online html documentation available at */
  242. /* http://www.netlib.org/lapack/explore-html/ */
  243. /* > \htmlonly */
  244. /* > Download DTZRQF + dependencies */
  245. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrqf.
  246. f"> */
  247. /* > [TGZ]</a> */
  248. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrqf.
  249. f"> */
  250. /* > [ZIP]</a> */
  251. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrqf.
  252. f"> */
  253. /* > [TXT]</a> */
  254. /* > \endhtmlonly */
  255. /* Definition: */
  256. /* =========== */
  257. /* SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO ) */
  258. /* INTEGER INFO, LDA, M, N */
  259. /* DOUBLE PRECISION A( LDA, * ), TAU( * ) */
  260. /* > \par Purpose: */
  261. /* ============= */
  262. /* > */
  263. /* > \verbatim */
  264. /* > */
  265. /* > This routine is deprecated and has been replaced by routine DTZRZF. */
  266. /* > */
  267. /* > DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
  268. /* > to upper triangular form by means of orthogonal transformations. */
  269. /* > */
  270. /* > The upper trapezoidal matrix A is factored as */
  271. /* > */
  272. /* > A = ( R 0 ) * Z, */
  273. /* > */
  274. /* > where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
  275. /* > triangular matrix. */
  276. /* > \endverbatim */
  277. /* Arguments: */
  278. /* ========== */
  279. /* > \param[in] M */
  280. /* > \verbatim */
  281. /* > M is INTEGER */
  282. /* > The number of rows of the matrix A. M >= 0. */
  283. /* > \endverbatim */
  284. /* > */
  285. /* > \param[in] N */
  286. /* > \verbatim */
  287. /* > N is INTEGER */
  288. /* > The number of columns of the matrix A. N >= M. */
  289. /* > \endverbatim */
  290. /* > */
  291. /* > \param[in,out] A */
  292. /* > \verbatim */
  293. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  294. /* > On entry, the leading M-by-N upper trapezoidal part of the */
  295. /* > array A must contain the matrix to be factorized. */
  296. /* > On exit, the leading M-by-M upper triangular part of A */
  297. /* > contains the upper triangular matrix R, and elements M+1 to */
  298. /* > N of the first M rows of A, with the array TAU, represent the */
  299. /* > orthogonal matrix Z as a product of M elementary reflectors. */
  300. /* > \endverbatim */
  301. /* > */
  302. /* > \param[in] LDA */
  303. /* > \verbatim */
  304. /* > LDA is INTEGER */
  305. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  306. /* > \endverbatim */
  307. /* > */
  308. /* > \param[out] TAU */
  309. /* > \verbatim */
  310. /* > TAU is DOUBLE PRECISION array, dimension (M) */
  311. /* > The scalar factors of the elementary reflectors. */
  312. /* > \endverbatim */
  313. /* > */
  314. /* > \param[out] INFO */
  315. /* > \verbatim */
  316. /* > INFO is INTEGER */
  317. /* > = 0: successful exit */
  318. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  319. /* > \endverbatim */
  320. /* Authors: */
  321. /* ======== */
  322. /* > \author Univ. of Tennessee */
  323. /* > \author Univ. of California Berkeley */
  324. /* > \author Univ. of Colorado Denver */
  325. /* > \author NAG Ltd. */
  326. /* > \date December 2016 */
  327. /* > \ingroup doubleOTHERcomputational */
  328. /* > \par Further Details: */
  329. /* ===================== */
  330. /* > */
  331. /* > \verbatim */
  332. /* > */
  333. /* > The factorization is obtained by Householder's method. The kth */
  334. /* > transformation matrix, Z( k ), which is used to introduce zeros into */
  335. /* > the ( m - k + 1 )th row of A, is given in the form */
  336. /* > */
  337. /* > Z( k ) = ( I 0 ), */
  338. /* > ( 0 T( k ) ) */
  339. /* > */
  340. /* > where */
  341. /* > */
  342. /* > T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), */
  343. /* > ( 0 ) */
  344. /* > ( z( k ) ) */
  345. /* > */
  346. /* > tau is a scalar and z( k ) is an ( n - m ) element vector. */
  347. /* > tau and z( k ) are chosen to annihilate the elements of the kth row */
  348. /* > of X. */
  349. /* > */
  350. /* > The scalar tau is returned in the kth element of TAU and the vector */
  351. /* > u( k ) in the kth row of A, such that the elements of z( k ) are */
  352. /* > in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
  353. /* > the upper triangular part of A. */
  354. /* > */
  355. /* > Z is given by */
  356. /* > */
  357. /* > Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
  358. /* > \endverbatim */
  359. /* > */
  360. /* ===================================================================== */
  361. /* Subroutine */ void dtzrqf_(integer *m, integer *n, doublereal *a, integer *
  362. lda, doublereal *tau, integer *info)
  363. {
  364. /* System generated locals */
  365. integer a_dim1, a_offset, i__1, i__2;
  366. doublereal d__1;
  367. /* Local variables */
  368. extern /* Subroutine */ void dger_(integer *, integer *, doublereal *,
  369. doublereal *, integer *, doublereal *, integer *, doublereal *,
  370. integer *);
  371. integer i__, k;
  372. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  373. doublereal *, doublereal *, integer *, doublereal *, integer *,
  374. doublereal *, doublereal *, integer *), dcopy_(integer *,
  375. doublereal *, integer *, doublereal *, integer *), daxpy_(integer
  376. *, doublereal *, doublereal *, integer *, doublereal *, integer *)
  377. ;
  378. integer m1;
  379. extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
  380. integer *, doublereal *);
  381. extern int xerbla_(char *, integer *, ftnlen);
  382. /* -- LAPACK computational routine (version 3.7.0) -- */
  383. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  384. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  385. /* December 2016 */
  386. /* ===================================================================== */
  387. /* Test the input parameters. */
  388. /* Parameter adjustments */
  389. a_dim1 = *lda;
  390. a_offset = 1 + a_dim1 * 1;
  391. a -= a_offset;
  392. --tau;
  393. /* Function Body */
  394. *info = 0;
  395. if (*m < 0) {
  396. *info = -1;
  397. } else if (*n < *m) {
  398. *info = -2;
  399. } else if (*lda < f2cmax(1,*m)) {
  400. *info = -4;
  401. }
  402. if (*info != 0) {
  403. i__1 = -(*info);
  404. xerbla_("DTZRQF", &i__1, 6);
  405. return;
  406. }
  407. /* Perform the factorization. */
  408. if (*m == 0) {
  409. return;
  410. }
  411. if (*m == *n) {
  412. i__1 = *n;
  413. for (i__ = 1; i__ <= i__1; ++i__) {
  414. tau[i__] = 0.;
  415. /* L10: */
  416. }
  417. } else {
  418. /* Computing MIN */
  419. i__1 = *m + 1;
  420. m1 = f2cmin(i__1,*n);
  421. for (k = *m; k >= 1; --k) {
  422. /* Use a Householder reflection to zero the kth row of A. */
  423. /* First set up the reflection. */
  424. i__1 = *n - *m + 1;
  425. dlarfg_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
  426. k]);
  427. if (tau[k] != 0. && k > 1) {
  428. /* We now perform the operation A := A*P( k ). */
  429. /* Use the first ( k - 1 ) elements of TAU to store a( k ), */
  430. /* where a( k ) consists of the first ( k - 1 ) elements of */
  431. /* the kth column of A. Also let B denote the first */
  432. /* ( k - 1 ) rows of the last ( n - m ) columns of A. */
  433. i__1 = k - 1;
  434. dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
  435. /* Form w = a( k ) + B*z( k ) in TAU. */
  436. i__1 = k - 1;
  437. i__2 = *n - *m;
  438. dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 +
  439. 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
  440. c__1);
  441. /* Now form a( k ) := a( k ) - tau*w */
  442. /* and B := B - tau*w*z( k )**T. */
  443. i__1 = k - 1;
  444. d__1 = -tau[k];
  445. daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
  446. c__1);
  447. i__1 = k - 1;
  448. i__2 = *n - *m;
  449. d__1 = -tau[k];
  450. dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
  451. , lda, &a[m1 * a_dim1 + 1], lda);
  452. }
  453. /* L20: */
  454. }
  455. }
  456. return;
  457. /* End of DTZRQF */
  458. } /* dtzrqf_ */