You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgbsvx.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief <b> SGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b> */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download SGBSVX + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbsvx.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbsvx.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbsvx.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE SGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, */
  506. /* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, */
  507. /* RCOND, FERR, BERR, WORK, IWORK, INFO ) */
  508. /* CHARACTER EQUED, FACT, TRANS */
  509. /* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS */
  510. /* REAL RCOND */
  511. /* INTEGER IPIV( * ), IWORK( * ) */
  512. /* REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
  513. /* $ BERR( * ), C( * ), FERR( * ), R( * ), */
  514. /* $ WORK( * ), X( LDX, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SGBSVX uses the LU factorization to compute the solution to a real */
  521. /* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
  522. /* > where A is a band matrix of order N with KL subdiagonals and KU */
  523. /* > superdiagonals, and X and B are N-by-NRHS matrices. */
  524. /* > */
  525. /* > Error bounds on the solution and a condition estimate are also */
  526. /* > provided. */
  527. /* > \endverbatim */
  528. /* > \par Description: */
  529. /* ================= */
  530. /* > */
  531. /* > \verbatim */
  532. /* > */
  533. /* > The following steps are performed by this subroutine: */
  534. /* > */
  535. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  536. /* > the system: */
  537. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  538. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  539. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  540. /* > Whether or not the system will be equilibrated depends on the */
  541. /* > scaling of the matrix A, but if equilibration is used, A is */
  542. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  543. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  544. /* > */
  545. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
  546. /* > matrix A (after equilibration if FACT = 'E') as */
  547. /* > A = L * U, */
  548. /* > where L is a product of permutation and unit lower triangular */
  549. /* > matrices with KL subdiagonals, and U is upper triangular with */
  550. /* > KL+KU superdiagonals. */
  551. /* > */
  552. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
  553. /* > returns with INFO = i. Otherwise, the factored form of A is used */
  554. /* > to estimate the condition number of the matrix A. If the */
  555. /* > reciprocal of the condition number is less than machine precision, */
  556. /* > INFO = N+1 is returned as a warning, but the routine still goes on */
  557. /* > to solve for X and compute error bounds as described below. */
  558. /* > */
  559. /* > 4. The system of equations is solved for X using the factored form */
  560. /* > of A. */
  561. /* > */
  562. /* > 5. Iterative refinement is applied to improve the computed solution */
  563. /* > matrix and calculate error bounds and backward error estimates */
  564. /* > for it. */
  565. /* > */
  566. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  567. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  568. /* > that it solves the original system before equilibration. */
  569. /* > \endverbatim */
  570. /* Arguments: */
  571. /* ========== */
  572. /* > \param[in] FACT */
  573. /* > \verbatim */
  574. /* > FACT is CHARACTER*1 */
  575. /* > Specifies whether or not the factored form of the matrix A is */
  576. /* > supplied on entry, and if not, whether the matrix A should be */
  577. /* > equilibrated before it is factored. */
  578. /* > = 'F': On entry, AFB and IPIV contain the factored form of */
  579. /* > A. If EQUED is not 'N', the matrix A has been */
  580. /* > equilibrated with scaling factors given by R and C. */
  581. /* > AB, AFB, and IPIV are not modified. */
  582. /* > = 'N': The matrix A will be copied to AFB and factored. */
  583. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  584. /* > copied to AFB and factored. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] TRANS */
  588. /* > \verbatim */
  589. /* > TRANS is CHARACTER*1 */
  590. /* > Specifies the form of the system of equations. */
  591. /* > = 'N': A * X = B (No transpose) */
  592. /* > = 'T': A**T * X = B (Transpose) */
  593. /* > = 'C': A**H * X = B (Transpose) */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] N */
  597. /* > \verbatim */
  598. /* > N is INTEGER */
  599. /* > The number of linear equations, i.e., the order of the */
  600. /* > matrix A. N >= 0. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] KL */
  604. /* > \verbatim */
  605. /* > KL is INTEGER */
  606. /* > The number of subdiagonals within the band of A. KL >= 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] KU */
  610. /* > \verbatim */
  611. /* > KU is INTEGER */
  612. /* > The number of superdiagonals within the band of A. KU >= 0. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] NRHS */
  616. /* > \verbatim */
  617. /* > NRHS is INTEGER */
  618. /* > The number of right hand sides, i.e., the number of columns */
  619. /* > of the matrices B and X. NRHS >= 0. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in,out] AB */
  623. /* > \verbatim */
  624. /* > AB is REAL array, dimension (LDAB,N) */
  625. /* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
  626. /* > The j-th column of A is stored in the j-th column of the */
  627. /* > array AB as follows: */
  628. /* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
  629. /* > */
  630. /* > If FACT = 'F' and EQUED is not 'N', then A must have been */
  631. /* > equilibrated by the scaling factors in R and/or C. AB is not */
  632. /* > modified if FACT = 'F' or 'N', or if FACT = 'E' and */
  633. /* > EQUED = 'N' on exit. */
  634. /* > */
  635. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  636. /* > EQUED = 'R': A := diag(R) * A */
  637. /* > EQUED = 'C': A := A * diag(C) */
  638. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDAB */
  642. /* > \verbatim */
  643. /* > LDAB is INTEGER */
  644. /* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in,out] AFB */
  648. /* > \verbatim */
  649. /* > AFB is REAL array, dimension (LDAFB,N) */
  650. /* > If FACT = 'F', then AFB is an input argument and on entry */
  651. /* > contains details of the LU factorization of the band matrix */
  652. /* > A, as computed by SGBTRF. U is stored as an upper triangular */
  653. /* > band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
  654. /* > and the multipliers used during the factorization are stored */
  655. /* > in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
  656. /* > the factored form of the equilibrated matrix A. */
  657. /* > */
  658. /* > If FACT = 'N', then AFB is an output argument and on exit */
  659. /* > returns details of the LU factorization of A. */
  660. /* > */
  661. /* > If FACT = 'E', then AFB is an output argument and on exit */
  662. /* > returns details of the LU factorization of the equilibrated */
  663. /* > matrix A (see the description of AB for the form of the */
  664. /* > equilibrated matrix). */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[in] LDAFB */
  668. /* > \verbatim */
  669. /* > LDAFB is INTEGER */
  670. /* > The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in,out] IPIV */
  674. /* > \verbatim */
  675. /* > IPIV is INTEGER array, dimension (N) */
  676. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  677. /* > contains the pivot indices from the factorization A = L*U */
  678. /* > as computed by SGBTRF; row i of the matrix was interchanged */
  679. /* > with row IPIV(i). */
  680. /* > */
  681. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  682. /* > contains the pivot indices from the factorization A = L*U */
  683. /* > of the original matrix A. */
  684. /* > */
  685. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  686. /* > contains the pivot indices from the factorization A = L*U */
  687. /* > of the equilibrated matrix A. */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[in,out] EQUED */
  691. /* > \verbatim */
  692. /* > EQUED is CHARACTER*1 */
  693. /* > Specifies the form of equilibration that was done. */
  694. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  695. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  696. /* > diag(R). */
  697. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  698. /* > by diag(C). */
  699. /* > = 'B': Both row and column equilibration, i.e., A has been */
  700. /* > replaced by diag(R) * A * diag(C). */
  701. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  702. /* > output argument. */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[in,out] R */
  706. /* > \verbatim */
  707. /* > R is REAL array, dimension (N) */
  708. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  709. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  710. /* > is not accessed. R is an input argument if FACT = 'F'; */
  711. /* > otherwise, R is an output argument. If FACT = 'F' and */
  712. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[in,out] C */
  716. /* > \verbatim */
  717. /* > C is REAL array, dimension (N) */
  718. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  719. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  720. /* > is not accessed. C is an input argument if FACT = 'F'; */
  721. /* > otherwise, C is an output argument. If FACT = 'F' and */
  722. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  723. /* > \endverbatim */
  724. /* > */
  725. /* > \param[in,out] B */
  726. /* > \verbatim */
  727. /* > B is REAL array, dimension (LDB,NRHS) */
  728. /* > On entry, the right hand side matrix B. */
  729. /* > On exit, */
  730. /* > if EQUED = 'N', B is not modified; */
  731. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  732. /* > diag(R)*B; */
  733. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  734. /* > overwritten by diag(C)*B. */
  735. /* > \endverbatim */
  736. /* > */
  737. /* > \param[in] LDB */
  738. /* > \verbatim */
  739. /* > LDB is INTEGER */
  740. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  741. /* > \endverbatim */
  742. /* > */
  743. /* > \param[out] X */
  744. /* > \verbatim */
  745. /* > X is REAL array, dimension (LDX,NRHS) */
  746. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
  747. /* > to the original system of equations. Note that A and B are */
  748. /* > modified on exit if EQUED .ne. 'N', and the solution to the */
  749. /* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
  750. /* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
  751. /* > and EQUED = 'R' or 'B'. */
  752. /* > \endverbatim */
  753. /* > */
  754. /* > \param[in] LDX */
  755. /* > \verbatim */
  756. /* > LDX is INTEGER */
  757. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  758. /* > \endverbatim */
  759. /* > */
  760. /* > \param[out] RCOND */
  761. /* > \verbatim */
  762. /* > RCOND is REAL */
  763. /* > The estimate of the reciprocal condition number of the matrix */
  764. /* > A after equilibration (if done). If RCOND is less than the */
  765. /* > machine precision (in particular, if RCOND = 0), the matrix */
  766. /* > is singular to working precision. This condition is */
  767. /* > indicated by a return code of INFO > 0. */
  768. /* > \endverbatim */
  769. /* > */
  770. /* > \param[out] FERR */
  771. /* > \verbatim */
  772. /* > FERR is REAL array, dimension (NRHS) */
  773. /* > The estimated forward error bound for each solution vector */
  774. /* > X(j) (the j-th column of the solution matrix X). */
  775. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  776. /* > is an estimated upper bound for the magnitude of the largest */
  777. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  778. /* > largest element in X(j). The estimate is as reliable as */
  779. /* > the estimate for RCOND, and is almost always a slight */
  780. /* > overestimate of the true error. */
  781. /* > \endverbatim */
  782. /* > */
  783. /* > \param[out] BERR */
  784. /* > \verbatim */
  785. /* > BERR is REAL array, dimension (NRHS) */
  786. /* > The componentwise relative backward error of each solution */
  787. /* > vector X(j) (i.e., the smallest relative change in */
  788. /* > any element of A or B that makes X(j) an exact solution). */
  789. /* > \endverbatim */
  790. /* > */
  791. /* > \param[out] WORK */
  792. /* > \verbatim */
  793. /* > WORK is REAL array, dimension (3*N) */
  794. /* > On exit, WORK(1) contains the reciprocal pivot growth */
  795. /* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
  796. /* > used. If WORK(1) is much less than 1, then the stability */
  797. /* > of the LU factorization of the (equilibrated) matrix A */
  798. /* > could be poor. This also means that the solution X, condition */
  799. /* > estimator RCOND, and forward error bound FERR could be */
  800. /* > unreliable. If factorization fails with 0<INFO<=N, then */
  801. /* > WORK(1) contains the reciprocal pivot growth factor for the */
  802. /* > leading INFO columns of A. */
  803. /* > \endverbatim */
  804. /* > */
  805. /* > \param[out] IWORK */
  806. /* > \verbatim */
  807. /* > IWORK is INTEGER array, dimension (N) */
  808. /* > \endverbatim */
  809. /* > */
  810. /* > \param[out] INFO */
  811. /* > \verbatim */
  812. /* > INFO is INTEGER */
  813. /* > = 0: successful exit */
  814. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  815. /* > > 0: if INFO = i, and i is */
  816. /* > <= N: U(i,i) is exactly zero. The factorization */
  817. /* > has been completed, but the factor U is exactly */
  818. /* > singular, so the solution and error bounds */
  819. /* > could not be computed. RCOND = 0 is returned. */
  820. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  821. /* > precision, meaning that the matrix is singular */
  822. /* > to working precision. Nevertheless, the */
  823. /* > solution and error bounds are computed because */
  824. /* > there are a number of situations where the */
  825. /* > computed solution can be more accurate than the */
  826. /* > \endverbatim */
  827. /* Authors: */
  828. /* ======== */
  829. /* > \author Univ. of Tennessee */
  830. /* > \author Univ. of California Berkeley */
  831. /* > \author Univ. of Colorado Denver */
  832. /* > \author NAG Ltd. */
  833. /* > \date April 2012 */
  834. /* > \ingroup realGBsolve */
  835. /* ===================================================================== */
  836. /* Subroutine */ void sgbsvx_(char *fact, char *trans, integer *n, integer *kl,
  837. integer *ku, integer *nrhs, real *ab, integer *ldab, real *afb,
  838. integer *ldafb, integer *ipiv, char *equed, real *r__, real *c__,
  839. real *b, integer *ldb, real *x, integer *ldx, real *rcond, real *ferr,
  840. real *berr, real *work, integer *iwork, integer *info)
  841. {
  842. /* System generated locals */
  843. integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
  844. x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  845. real r__1, r__2, r__3;
  846. /* Local variables */
  847. real amax;
  848. char norm[1];
  849. integer i__, j;
  850. extern logical lsame_(char *, char *);
  851. real rcmin, rcmax, anorm;
  852. logical equil;
  853. integer j1, j2;
  854. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  855. integer *);
  856. real colcnd;
  857. extern real slangb_(char *, integer *, integer *, integer *, real *,
  858. integer *, real *), slamch_(char *);
  859. extern /* Subroutine */ void slaqgb_(integer *, integer *, integer *,
  860. integer *, real *, integer *, real *, real *, real *, real *,
  861. real *, char *);
  862. logical nofact;
  863. extern /* Subroutine */ void sgbcon_(char *, integer *, integer *, integer
  864. *, real *, integer *, integer *, real *, real *, real *, integer *
  865. , integer *);
  866. extern int xerbla_(char *, integer *, ftnlen);
  867. real bignum;
  868. extern real slantb_(char *, char *, char *, integer *, integer *, real *,
  869. integer *, real *);
  870. extern /* Subroutine */ void sgbequ_(integer *, integer *, integer *,
  871. integer *, real *, integer *, real *, real *, real *, real *,
  872. real *, integer *);
  873. integer infequ;
  874. logical colequ;
  875. extern /* Subroutine */ void sgbrfs_(char *, integer *, integer *, integer
  876. *, integer *, real *, integer *, real *, integer *, integer *,
  877. real *, integer *, real *, integer *, real *, real *, real *,
  878. integer *, integer *), sgbtrf_(integer *, integer *,
  879. integer *, integer *, real *, integer *, integer *, integer *),
  880. slacpy_(char *, integer *, integer *, real *, integer *, real *,
  881. integer *);
  882. real rowcnd;
  883. logical notran;
  884. extern /* Subroutine */ void sgbtrs_(char *, integer *, integer *, integer
  885. *, integer *, real *, integer *, integer *, real *, integer *,
  886. integer *);
  887. real smlnum;
  888. logical rowequ;
  889. real rpvgrw;
  890. /* -- LAPACK driver routine (version 3.7.0) -- */
  891. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  892. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  893. /* April 2012 */
  894. /* ===================================================================== */
  895. /* Moved setting of INFO = N+1 so INFO does not subsequently get */
  896. /* overwritten. Sven, 17 Mar 05. */
  897. /* ===================================================================== */
  898. /* Parameter adjustments */
  899. ab_dim1 = *ldab;
  900. ab_offset = 1 + ab_dim1 * 1;
  901. ab -= ab_offset;
  902. afb_dim1 = *ldafb;
  903. afb_offset = 1 + afb_dim1 * 1;
  904. afb -= afb_offset;
  905. --ipiv;
  906. --r__;
  907. --c__;
  908. b_dim1 = *ldb;
  909. b_offset = 1 + b_dim1 * 1;
  910. b -= b_offset;
  911. x_dim1 = *ldx;
  912. x_offset = 1 + x_dim1 * 1;
  913. x -= x_offset;
  914. --ferr;
  915. --berr;
  916. --work;
  917. --iwork;
  918. /* Function Body */
  919. *info = 0;
  920. nofact = lsame_(fact, "N");
  921. equil = lsame_(fact, "E");
  922. notran = lsame_(trans, "N");
  923. if (nofact || equil) {
  924. *(unsigned char *)equed = 'N';
  925. rowequ = FALSE_;
  926. colequ = FALSE_;
  927. } else {
  928. rowequ = lsame_(equed, "R") || lsame_(equed,
  929. "B");
  930. colequ = lsame_(equed, "C") || lsame_(equed,
  931. "B");
  932. smlnum = slamch_("Safe minimum");
  933. bignum = 1.f / smlnum;
  934. }
  935. /* Test the input parameters. */
  936. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  937. *info = -1;
  938. } else if (! notran && ! lsame_(trans, "T") && !
  939. lsame_(trans, "C")) {
  940. *info = -2;
  941. } else if (*n < 0) {
  942. *info = -3;
  943. } else if (*kl < 0) {
  944. *info = -4;
  945. } else if (*ku < 0) {
  946. *info = -5;
  947. } else if (*nrhs < 0) {
  948. *info = -6;
  949. } else if (*ldab < *kl + *ku + 1) {
  950. *info = -8;
  951. } else if (*ldafb < (*kl << 1) + *ku + 1) {
  952. *info = -10;
  953. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  954. || lsame_(equed, "N"))) {
  955. *info = -12;
  956. } else {
  957. if (rowequ) {
  958. rcmin = bignum;
  959. rcmax = 0.f;
  960. i__1 = *n;
  961. for (j = 1; j <= i__1; ++j) {
  962. /* Computing MIN */
  963. r__1 = rcmin, r__2 = r__[j];
  964. rcmin = f2cmin(r__1,r__2);
  965. /* Computing MAX */
  966. r__1 = rcmax, r__2 = r__[j];
  967. rcmax = f2cmax(r__1,r__2);
  968. /* L10: */
  969. }
  970. if (rcmin <= 0.f) {
  971. *info = -13;
  972. } else if (*n > 0) {
  973. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  974. } else {
  975. rowcnd = 1.f;
  976. }
  977. }
  978. if (colequ && *info == 0) {
  979. rcmin = bignum;
  980. rcmax = 0.f;
  981. i__1 = *n;
  982. for (j = 1; j <= i__1; ++j) {
  983. /* Computing MIN */
  984. r__1 = rcmin, r__2 = c__[j];
  985. rcmin = f2cmin(r__1,r__2);
  986. /* Computing MAX */
  987. r__1 = rcmax, r__2 = c__[j];
  988. rcmax = f2cmax(r__1,r__2);
  989. /* L20: */
  990. }
  991. if (rcmin <= 0.f) {
  992. *info = -14;
  993. } else if (*n > 0) {
  994. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  995. } else {
  996. colcnd = 1.f;
  997. }
  998. }
  999. if (*info == 0) {
  1000. if (*ldb < f2cmax(1,*n)) {
  1001. *info = -16;
  1002. } else if (*ldx < f2cmax(1,*n)) {
  1003. *info = -18;
  1004. }
  1005. }
  1006. }
  1007. if (*info != 0) {
  1008. i__1 = -(*info);
  1009. xerbla_("SGBSVX", &i__1, (ftnlen)6);
  1010. return;
  1011. }
  1012. if (equil) {
  1013. /* Compute row and column scalings to equilibrate the matrix A. */
  1014. sgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd,
  1015. &colcnd, &amax, &infequ);
  1016. if (infequ == 0) {
  1017. /* Equilibrate the matrix. */
  1018. slaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
  1019. rowcnd, &colcnd, &amax, equed);
  1020. rowequ = lsame_(equed, "R") || lsame_(equed,
  1021. "B");
  1022. colequ = lsame_(equed, "C") || lsame_(equed,
  1023. "B");
  1024. }
  1025. }
  1026. /* Scale the right hand side. */
  1027. if (notran) {
  1028. if (rowequ) {
  1029. i__1 = *nrhs;
  1030. for (j = 1; j <= i__1; ++j) {
  1031. i__2 = *n;
  1032. for (i__ = 1; i__ <= i__2; ++i__) {
  1033. b[i__ + j * b_dim1] = r__[i__] * b[i__ + j * b_dim1];
  1034. /* L30: */
  1035. }
  1036. /* L40: */
  1037. }
  1038. }
  1039. } else if (colequ) {
  1040. i__1 = *nrhs;
  1041. for (j = 1; j <= i__1; ++j) {
  1042. i__2 = *n;
  1043. for (i__ = 1; i__ <= i__2; ++i__) {
  1044. b[i__ + j * b_dim1] = c__[i__] * b[i__ + j * b_dim1];
  1045. /* L50: */
  1046. }
  1047. /* L60: */
  1048. }
  1049. }
  1050. if (nofact || equil) {
  1051. /* Compute the LU factorization of the band matrix A. */
  1052. i__1 = *n;
  1053. for (j = 1; j <= i__1; ++j) {
  1054. /* Computing MAX */
  1055. i__2 = j - *ku;
  1056. j1 = f2cmax(i__2,1);
  1057. /* Computing MIN */
  1058. i__2 = j + *kl;
  1059. j2 = f2cmin(i__2,*n);
  1060. i__2 = j2 - j1 + 1;
  1061. scopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[*
  1062. kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1);
  1063. /* L70: */
  1064. }
  1065. sgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
  1066. /* Return if INFO is non-zero. */
  1067. if (*info > 0) {
  1068. /* Compute the reciprocal pivot growth factor of the */
  1069. /* leading rank-deficient INFO columns of A. */
  1070. anorm = 0.f;
  1071. i__1 = *info;
  1072. for (j = 1; j <= i__1; ++j) {
  1073. /* Computing MAX */
  1074. i__2 = *ku + 2 - j;
  1075. /* Computing MIN */
  1076. i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
  1077. i__3 = f2cmin(i__4,i__5);
  1078. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  1079. /* Computing MAX */
  1080. r__2 = anorm, r__3 = (r__1 = ab[i__ + j * ab_dim1], abs(
  1081. r__1));
  1082. anorm = f2cmax(r__2,r__3);
  1083. /* L80: */
  1084. }
  1085. /* L90: */
  1086. }
  1087. /* Computing MIN */
  1088. i__3 = *info - 1, i__2 = *kl + *ku;
  1089. i__1 = f2cmin(i__3,i__2);
  1090. /* Computing MAX */
  1091. i__4 = 1, i__5 = *kl + *ku + 2 - *info;
  1092. rpvgrw = slantb_("M", "U", "N", info, &i__1, &afb[f2cmax(i__4,i__5)
  1093. + afb_dim1], ldafb, &work[1]);
  1094. if (rpvgrw == 0.f) {
  1095. rpvgrw = 1.f;
  1096. } else {
  1097. rpvgrw = anorm / rpvgrw;
  1098. }
  1099. work[1] = rpvgrw;
  1100. *rcond = 0.f;
  1101. return;
  1102. }
  1103. }
  1104. /* Compute the norm of the matrix A and the */
  1105. /* reciprocal pivot growth factor RPVGRW. */
  1106. if (notran) {
  1107. *(unsigned char *)norm = '1';
  1108. } else {
  1109. *(unsigned char *)norm = 'I';
  1110. }
  1111. anorm = slangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]);
  1112. i__1 = *kl + *ku;
  1113. rpvgrw = slantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &work[
  1114. 1]);
  1115. if (rpvgrw == 0.f) {
  1116. rpvgrw = 1.f;
  1117. } else {
  1118. rpvgrw = slangb_("M", n, kl, ku, &ab[ab_offset], ldab, &work[1]) / rpvgrw;
  1119. }
  1120. /* Compute the reciprocal of the condition number of A. */
  1121. sgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
  1122. &work[1], &iwork[1], info);
  1123. /* Compute the solution matrix X. */
  1124. slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1125. sgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
  1126. x_offset], ldx, info);
  1127. /* Use iterative refinement to improve the computed solution and */
  1128. /* compute error bounds and backward error estimates for it. */
  1129. sgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset],
  1130. ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &
  1131. berr[1], &work[1], &iwork[1], info);
  1132. /* Transform the solution matrix X to a solution of the original */
  1133. /* system. */
  1134. if (notran) {
  1135. if (colequ) {
  1136. i__1 = *nrhs;
  1137. for (j = 1; j <= i__1; ++j) {
  1138. i__3 = *n;
  1139. for (i__ = 1; i__ <= i__3; ++i__) {
  1140. x[i__ + j * x_dim1] = c__[i__] * x[i__ + j * x_dim1];
  1141. /* L100: */
  1142. }
  1143. /* L110: */
  1144. }
  1145. i__1 = *nrhs;
  1146. for (j = 1; j <= i__1; ++j) {
  1147. ferr[j] /= colcnd;
  1148. /* L120: */
  1149. }
  1150. }
  1151. } else if (rowequ) {
  1152. i__1 = *nrhs;
  1153. for (j = 1; j <= i__1; ++j) {
  1154. i__3 = *n;
  1155. for (i__ = 1; i__ <= i__3; ++i__) {
  1156. x[i__ + j * x_dim1] = r__[i__] * x[i__ + j * x_dim1];
  1157. /* L130: */
  1158. }
  1159. /* L140: */
  1160. }
  1161. i__1 = *nrhs;
  1162. for (j = 1; j <= i__1; ++j) {
  1163. ferr[j] /= rowcnd;
  1164. /* L150: */
  1165. }
  1166. }
  1167. /* Set INFO = N+1 if the matrix is singular to working precision. */
  1168. if (*rcond < slamch_("Epsilon")) {
  1169. *info = *n + 1;
  1170. }
  1171. work[1] = rpvgrw;
  1172. return;
  1173. /* End of SGBSVX */
  1174. } /* sgbsvx_ */