You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsptrf.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b DSPTRF */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DSPTRF + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, N */
  508. /* INTEGER IPIV( * ) */
  509. /* DOUBLE PRECISION AP( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > DSPTRF computes the factorization of a real symmetric matrix A stored */
  516. /* > in packed format using the Bunch-Kaufman diagonal pivoting method: */
  517. /* > */
  518. /* > A = U*D*U**T or A = L*D*L**T */
  519. /* > */
  520. /* > where U (or L) is a product of permutation and unit upper (lower) */
  521. /* > triangular matrices, and D is symmetric and block diagonal with */
  522. /* > 1-by-1 and 2-by-2 diagonal blocks. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] UPLO */
  527. /* > \verbatim */
  528. /* > UPLO is CHARACTER*1 */
  529. /* > = 'U': Upper triangle of A is stored; */
  530. /* > = 'L': Lower triangle of A is stored. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The order of the matrix A. N >= 0. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in,out] AP */
  540. /* > \verbatim */
  541. /* > AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) */
  542. /* > On entry, the upper or lower triangle of the symmetric matrix */
  543. /* > A, packed columnwise in a linear array. The j-th column of A */
  544. /* > is stored in the array AP as follows: */
  545. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  546. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  547. /* > */
  548. /* > On exit, the block diagonal matrix D and the multipliers used */
  549. /* > to obtain the factor U or L, stored as a packed triangular */
  550. /* > matrix overwriting A (see below for further details). */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[out] IPIV */
  554. /* > \verbatim */
  555. /* > IPIV is INTEGER array, dimension (N) */
  556. /* > Details of the interchanges and the block structure of D. */
  557. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  558. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  559. /* > If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
  560. /* > columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  561. /* > is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
  562. /* > IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
  563. /* > interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[out] INFO */
  567. /* > \verbatim */
  568. /* > INFO is INTEGER */
  569. /* > = 0: successful exit */
  570. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  571. /* > > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
  572. /* > has been completed, but the block diagonal matrix D is */
  573. /* > exactly singular, and division by zero will occur if it */
  574. /* > is used to solve a system of equations. */
  575. /* > \endverbatim */
  576. /* Authors: */
  577. /* ======== */
  578. /* > \author Univ. of Tennessee */
  579. /* > \author Univ. of California Berkeley */
  580. /* > \author Univ. of Colorado Denver */
  581. /* > \author NAG Ltd. */
  582. /* > \date December 2016 */
  583. /* > \ingroup doubleOTHERcomputational */
  584. /* > \par Further Details: */
  585. /* ===================== */
  586. /* > */
  587. /* > \verbatim */
  588. /* > */
  589. /* > If UPLO = 'U', then A = U*D*U**T, where */
  590. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  591. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  592. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  593. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  594. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  595. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  596. /* > */
  597. /* > ( I v 0 ) k-s */
  598. /* > U(k) = ( 0 I 0 ) s */
  599. /* > ( 0 0 I ) n-k */
  600. /* > k-s s n-k */
  601. /* > */
  602. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  603. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  604. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  605. /* > */
  606. /* > If UPLO = 'L', then A = L*D*L**T, where */
  607. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  608. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  609. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  610. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  611. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  612. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  613. /* > */
  614. /* > ( I 0 0 ) k-1 */
  615. /* > L(k) = ( 0 I 0 ) s */
  616. /* > ( 0 v I ) n-k-s+1 */
  617. /* > k-1 s n-k-s+1 */
  618. /* > */
  619. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  620. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  621. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  622. /* > \endverbatim */
  623. /* > \par Contributors: */
  624. /* ================== */
  625. /* > */
  626. /* > J. Lewis, Boeing Computer Services Company */
  627. /* > */
  628. /* ===================================================================== */
  629. /* Subroutine */ void dsptrf_(char *uplo, integer *n, doublereal *ap, integer *
  630. ipiv, integer *info)
  631. {
  632. /* System generated locals */
  633. integer i__1, i__2;
  634. doublereal d__1, d__2, d__3;
  635. /* Local variables */
  636. integer imax, jmax;
  637. extern /* Subroutine */ void dspr_(char *, integer *, doublereal *,
  638. doublereal *, integer *, doublereal *);
  639. integer i__, j, k;
  640. doublereal t, alpha;
  641. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  642. integer *);
  643. extern logical lsame_(char *, char *);
  644. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  645. doublereal *, integer *);
  646. integer kstep;
  647. logical upper;
  648. doublereal r1, d11, d12, d21, d22;
  649. integer kc, kk, kp;
  650. doublereal absakk, wk;
  651. integer kx;
  652. extern integer idamax_(integer *, doublereal *, integer *);
  653. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  654. doublereal colmax, rowmax;
  655. integer knc, kpc, npp;
  656. doublereal wkm1, wkp1;
  657. /* -- LAPACK computational routine (version 3.7.0) -- */
  658. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  659. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  660. /* December 2016 */
  661. /* ===================================================================== */
  662. /* Test the input parameters. */
  663. /* Parameter adjustments */
  664. --ipiv;
  665. --ap;
  666. /* Function Body */
  667. *info = 0;
  668. upper = lsame_(uplo, "U");
  669. if (! upper && ! lsame_(uplo, "L")) {
  670. *info = -1;
  671. } else if (*n < 0) {
  672. *info = -2;
  673. }
  674. if (*info != 0) {
  675. i__1 = -(*info);
  676. xerbla_("DSPTRF", &i__1, (ftnlen)6);
  677. return;
  678. }
  679. /* Initialize ALPHA for use in choosing pivot block size. */
  680. alpha = (sqrt(17.) + 1.) / 8.;
  681. if (upper) {
  682. /* Factorize A as U*D*U**T using the upper triangle of A */
  683. /* K is the main loop index, decreasing from N to 1 in steps of */
  684. /* 1 or 2 */
  685. k = *n;
  686. kc = (*n - 1) * *n / 2 + 1;
  687. L10:
  688. knc = kc;
  689. /* If K < 1, exit from loop */
  690. if (k < 1) {
  691. goto L110;
  692. }
  693. kstep = 1;
  694. /* Determine rows and columns to be interchanged and whether */
  695. /* a 1-by-1 or 2-by-2 pivot block will be used */
  696. absakk = (d__1 = ap[kc + k - 1], abs(d__1));
  697. /* IMAX is the row-index of the largest off-diagonal element in */
  698. /* column K, and COLMAX is its absolute value */
  699. if (k > 1) {
  700. i__1 = k - 1;
  701. imax = idamax_(&i__1, &ap[kc], &c__1);
  702. colmax = (d__1 = ap[kc + imax - 1], abs(d__1));
  703. } else {
  704. colmax = 0.;
  705. }
  706. if (f2cmax(absakk,colmax) == 0.) {
  707. /* Column K is zero: set INFO and continue */
  708. if (*info == 0) {
  709. *info = k;
  710. }
  711. kp = k;
  712. } else {
  713. if (absakk >= alpha * colmax) {
  714. /* no interchange, use 1-by-1 pivot block */
  715. kp = k;
  716. } else {
  717. rowmax = 0.;
  718. jmax = imax;
  719. kx = imax * (imax + 1) / 2 + imax;
  720. i__1 = k;
  721. for (j = imax + 1; j <= i__1; ++j) {
  722. if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
  723. rowmax = (d__1 = ap[kx], abs(d__1));
  724. jmax = j;
  725. }
  726. kx += j;
  727. /* L20: */
  728. }
  729. kpc = (imax - 1) * imax / 2 + 1;
  730. if (imax > 1) {
  731. i__1 = imax - 1;
  732. jmax = idamax_(&i__1, &ap[kpc], &c__1);
  733. /* Computing MAX */
  734. d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - 1], abs(
  735. d__1));
  736. rowmax = f2cmax(d__2,d__3);
  737. }
  738. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  739. /* no interchange, use 1-by-1 pivot block */
  740. kp = k;
  741. } else if ((d__1 = ap[kpc + imax - 1], abs(d__1)) >= alpha *
  742. rowmax) {
  743. /* interchange rows and columns K and IMAX, use 1-by-1 */
  744. /* pivot block */
  745. kp = imax;
  746. } else {
  747. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  748. /* pivot block */
  749. kp = imax;
  750. kstep = 2;
  751. }
  752. }
  753. kk = k - kstep + 1;
  754. if (kstep == 2) {
  755. knc = knc - k + 1;
  756. }
  757. if (kp != kk) {
  758. /* Interchange rows and columns KK and KP in the leading */
  759. /* submatrix A(1:k,1:k) */
  760. i__1 = kp - 1;
  761. dswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
  762. kx = kpc + kp - 1;
  763. i__1 = kk - 1;
  764. for (j = kp + 1; j <= i__1; ++j) {
  765. kx = kx + j - 1;
  766. t = ap[knc + j - 1];
  767. ap[knc + j - 1] = ap[kx];
  768. ap[kx] = t;
  769. /* L30: */
  770. }
  771. t = ap[knc + kk - 1];
  772. ap[knc + kk - 1] = ap[kpc + kp - 1];
  773. ap[kpc + kp - 1] = t;
  774. if (kstep == 2) {
  775. t = ap[kc + k - 2];
  776. ap[kc + k - 2] = ap[kc + kp - 1];
  777. ap[kc + kp - 1] = t;
  778. }
  779. }
  780. /* Update the leading submatrix */
  781. if (kstep == 1) {
  782. /* 1-by-1 pivot block D(k): column k now holds */
  783. /* W(k) = U(k)*D(k) */
  784. /* where U(k) is the k-th column of U */
  785. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  786. /* A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T */
  787. r1 = 1. / ap[kc + k - 1];
  788. i__1 = k - 1;
  789. d__1 = -r1;
  790. dspr_(uplo, &i__1, &d__1, &ap[kc], &c__1, &ap[1]);
  791. /* Store U(k) in column k */
  792. i__1 = k - 1;
  793. dscal_(&i__1, &r1, &ap[kc], &c__1);
  794. } else {
  795. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  796. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  797. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  798. /* of U */
  799. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  800. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  801. /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T */
  802. if (k > 2) {
  803. d12 = ap[k - 1 + (k - 1) * k / 2];
  804. d22 = ap[k - 1 + (k - 2) * (k - 1) / 2] / d12;
  805. d11 = ap[k + (k - 1) * k / 2] / d12;
  806. t = 1. / (d11 * d22 - 1.);
  807. d12 = t / d12;
  808. for (j = k - 2; j >= 1; --j) {
  809. wkm1 = d12 * (d11 * ap[j + (k - 2) * (k - 1) / 2] -
  810. ap[j + (k - 1) * k / 2]);
  811. wk = d12 * (d22 * ap[j + (k - 1) * k / 2] - ap[j + (k
  812. - 2) * (k - 1) / 2]);
  813. for (i__ = j; i__ >= 1; --i__) {
  814. ap[i__ + (j - 1) * j / 2] = ap[i__ + (j - 1) * j /
  815. 2] - ap[i__ + (k - 1) * k / 2] * wk - ap[
  816. i__ + (k - 2) * (k - 1) / 2] * wkm1;
  817. /* L40: */
  818. }
  819. ap[j + (k - 1) * k / 2] = wk;
  820. ap[j + (k - 2) * (k - 1) / 2] = wkm1;
  821. /* L50: */
  822. }
  823. }
  824. }
  825. }
  826. /* Store details of the interchanges in IPIV */
  827. if (kstep == 1) {
  828. ipiv[k] = kp;
  829. } else {
  830. ipiv[k] = -kp;
  831. ipiv[k - 1] = -kp;
  832. }
  833. /* Decrease K and return to the start of the main loop */
  834. k -= kstep;
  835. kc = knc - k;
  836. goto L10;
  837. } else {
  838. /* Factorize A as L*D*L**T using the lower triangle of A */
  839. /* K is the main loop index, increasing from 1 to N in steps of */
  840. /* 1 or 2 */
  841. k = 1;
  842. kc = 1;
  843. npp = *n * (*n + 1) / 2;
  844. L60:
  845. knc = kc;
  846. /* If K > N, exit from loop */
  847. if (k > *n) {
  848. goto L110;
  849. }
  850. kstep = 1;
  851. /* Determine rows and columns to be interchanged and whether */
  852. /* a 1-by-1 or 2-by-2 pivot block will be used */
  853. absakk = (d__1 = ap[kc], abs(d__1));
  854. /* IMAX is the row-index of the largest off-diagonal element in */
  855. /* column K, and COLMAX is its absolute value */
  856. if (k < *n) {
  857. i__1 = *n - k;
  858. imax = k + idamax_(&i__1, &ap[kc + 1], &c__1);
  859. colmax = (d__1 = ap[kc + imax - k], abs(d__1));
  860. } else {
  861. colmax = 0.;
  862. }
  863. if (f2cmax(absakk,colmax) == 0.) {
  864. /* Column K is zero: set INFO and continue */
  865. if (*info == 0) {
  866. *info = k;
  867. }
  868. kp = k;
  869. } else {
  870. if (absakk >= alpha * colmax) {
  871. /* no interchange, use 1-by-1 pivot block */
  872. kp = k;
  873. } else {
  874. /* JMAX is the column-index of the largest off-diagonal */
  875. /* element in row IMAX, and ROWMAX is its absolute value */
  876. rowmax = 0.;
  877. kx = kc + imax - k;
  878. i__1 = imax - 1;
  879. for (j = k; j <= i__1; ++j) {
  880. if ((d__1 = ap[kx], abs(d__1)) > rowmax) {
  881. rowmax = (d__1 = ap[kx], abs(d__1));
  882. jmax = j;
  883. }
  884. kx = kx + *n - j;
  885. /* L70: */
  886. }
  887. kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
  888. if (imax < *n) {
  889. i__1 = *n - imax;
  890. jmax = imax + idamax_(&i__1, &ap[kpc + 1], &c__1);
  891. /* Computing MAX */
  892. d__2 = rowmax, d__3 = (d__1 = ap[kpc + jmax - imax], abs(
  893. d__1));
  894. rowmax = f2cmax(d__2,d__3);
  895. }
  896. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  897. /* no interchange, use 1-by-1 pivot block */
  898. kp = k;
  899. } else if ((d__1 = ap[kpc], abs(d__1)) >= alpha * rowmax) {
  900. /* interchange rows and columns K and IMAX, use 1-by-1 */
  901. /* pivot block */
  902. kp = imax;
  903. } else {
  904. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  905. /* pivot block */
  906. kp = imax;
  907. kstep = 2;
  908. }
  909. }
  910. kk = k + kstep - 1;
  911. if (kstep == 2) {
  912. knc = knc + *n - k + 1;
  913. }
  914. if (kp != kk) {
  915. /* Interchange rows and columns KK and KP in the trailing */
  916. /* submatrix A(k:n,k:n) */
  917. if (kp < *n) {
  918. i__1 = *n - kp;
  919. dswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
  920. &c__1);
  921. }
  922. kx = knc + kp - kk;
  923. i__1 = kp - 1;
  924. for (j = kk + 1; j <= i__1; ++j) {
  925. kx = kx + *n - j + 1;
  926. t = ap[knc + j - kk];
  927. ap[knc + j - kk] = ap[kx];
  928. ap[kx] = t;
  929. /* L80: */
  930. }
  931. t = ap[knc];
  932. ap[knc] = ap[kpc];
  933. ap[kpc] = t;
  934. if (kstep == 2) {
  935. t = ap[kc + 1];
  936. ap[kc + 1] = ap[kc + kp - k];
  937. ap[kc + kp - k] = t;
  938. }
  939. }
  940. /* Update the trailing submatrix */
  941. if (kstep == 1) {
  942. /* 1-by-1 pivot block D(k): column k now holds */
  943. /* W(k) = L(k)*D(k) */
  944. /* where L(k) is the k-th column of L */
  945. if (k < *n) {
  946. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  947. /* A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T */
  948. r1 = 1. / ap[kc];
  949. i__1 = *n - k;
  950. d__1 = -r1;
  951. dspr_(uplo, &i__1, &d__1, &ap[kc + 1], &c__1, &ap[kc + *n
  952. - k + 1]);
  953. /* Store L(k) in column K */
  954. i__1 = *n - k;
  955. dscal_(&i__1, &r1, &ap[kc + 1], &c__1);
  956. }
  957. } else {
  958. /* 2-by-2 pivot block D(k): columns K and K+1 now hold */
  959. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  960. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  961. /* of L */
  962. if (k < *n - 1) {
  963. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  964. /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T */
  965. /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T */
  966. /* where L(k) and L(k+1) are the k-th and (k+1)-th */
  967. /* columns of L */
  968. d21 = ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2];
  969. d11 = ap[k + 1 + k * ((*n << 1) - k - 1) / 2] / d21;
  970. d22 = ap[k + (k - 1) * ((*n << 1) - k) / 2] / d21;
  971. t = 1. / (d11 * d22 - 1.);
  972. d21 = t / d21;
  973. i__1 = *n;
  974. for (j = k + 2; j <= i__1; ++j) {
  975. wk = d21 * (d11 * ap[j + (k - 1) * ((*n << 1) - k) /
  976. 2] - ap[j + k * ((*n << 1) - k - 1) / 2]);
  977. wkp1 = d21 * (d22 * ap[j + k * ((*n << 1) - k - 1) /
  978. 2] - ap[j + (k - 1) * ((*n << 1) - k) / 2]);
  979. i__2 = *n;
  980. for (i__ = j; i__ <= i__2; ++i__) {
  981. ap[i__ + (j - 1) * ((*n << 1) - j) / 2] = ap[i__
  982. + (j - 1) * ((*n << 1) - j) / 2] - ap[i__
  983. + (k - 1) * ((*n << 1) - k) / 2] * wk -
  984. ap[i__ + k * ((*n << 1) - k - 1) / 2] *
  985. wkp1;
  986. /* L90: */
  987. }
  988. ap[j + (k - 1) * ((*n << 1) - k) / 2] = wk;
  989. ap[j + k * ((*n << 1) - k - 1) / 2] = wkp1;
  990. /* L100: */
  991. }
  992. }
  993. }
  994. }
  995. /* Store details of the interchanges in IPIV */
  996. if (kstep == 1) {
  997. ipiv[k] = kp;
  998. } else {
  999. ipiv[k] = -kp;
  1000. ipiv[k + 1] = -kp;
  1001. }
  1002. /* Increase K and return to the start of the main loop */
  1003. k += kstep;
  1004. kc = knc + *n - k + 2;
  1005. goto L60;
  1006. }
  1007. L110:
  1008. return;
  1009. /* End of DSPTRF */
  1010. } /* dsptrf_ */