You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorbdb4.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b5 = -1.;
  488. /* > \brief \b DORBDB4 */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DORBDB4 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb4
  495. .f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb4
  498. .f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb4
  501. .f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, */
  507. /* TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, */
  508. /* INFO ) */
  509. /* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 */
  510. /* DOUBLE PRECISION PHI(*), THETA(*) */
  511. /* DOUBLE PRECISION PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), */
  512. /* $ WORK(*), X11(LDX11,*), X21(LDX21,*) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* >\verbatim */
  517. /* > */
  518. /* > DORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny */
  519. /* > matrix X with orthonomal columns: */
  520. /* > */
  521. /* > [ B11 ] */
  522. /* > [ X11 ] [ P1 | ] [ 0 ] */
  523. /* > [-----] = [---------] [-----] Q1**T . */
  524. /* > [ X21 ] [ | P2 ] [ B21 ] */
  525. /* > [ 0 ] */
  526. /* > */
  527. /* > X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, */
  528. /* > M-P, or Q. Routines DORBDB1, DORBDB2, and DORBDB3 handle cases in */
  529. /* > which M-Q is not the minimum dimension. */
  530. /* > */
  531. /* > The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), */
  532. /* > and (M-Q)-by-(M-Q), respectively. They are represented implicitly by */
  533. /* > Householder vectors. */
  534. /* > */
  535. /* > B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented */
  536. /* > implicitly by angles THETA, PHI. */
  537. /* > */
  538. /* >\endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] M */
  542. /* > \verbatim */
  543. /* > M is INTEGER */
  544. /* > The number of rows X11 plus the number of rows in X21. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] P */
  548. /* > \verbatim */
  549. /* > P is INTEGER */
  550. /* > The number of rows in X11. 0 <= P <= M. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] Q */
  554. /* > \verbatim */
  555. /* > Q is INTEGER */
  556. /* > The number of columns in X11 and X21. 0 <= Q <= M and */
  557. /* > M-Q <= f2cmin(P,M-P,Q). */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] X11 */
  561. /* > \verbatim */
  562. /* > X11 is DOUBLE PRECISION array, dimension (LDX11,Q) */
  563. /* > On entry, the top block of the matrix X to be reduced. On */
  564. /* > exit, the columns of tril(X11) specify reflectors for P1 and */
  565. /* > the rows of triu(X11,1) specify reflectors for Q1. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDX11 */
  569. /* > \verbatim */
  570. /* > LDX11 is INTEGER */
  571. /* > The leading dimension of X11. LDX11 >= P. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] X21 */
  575. /* > \verbatim */
  576. /* > X21 is DOUBLE PRECISION array, dimension (LDX21,Q) */
  577. /* > On entry, the bottom block of the matrix X to be reduced. On */
  578. /* > exit, the columns of tril(X21) specify reflectors for P2. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDX21 */
  582. /* > \verbatim */
  583. /* > LDX21 is INTEGER */
  584. /* > The leading dimension of X21. LDX21 >= M-P. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] THETA */
  588. /* > \verbatim */
  589. /* > THETA is DOUBLE PRECISION array, dimension (Q) */
  590. /* > The entries of the bidiagonal blocks B11, B21 are defined by */
  591. /* > THETA and PHI. See Further Details. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] PHI */
  595. /* > \verbatim */
  596. /* > PHI is DOUBLE PRECISION array, dimension (Q-1) */
  597. /* > The entries of the bidiagonal blocks B11, B21 are defined by */
  598. /* > THETA and PHI. See Further Details. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] TAUP1 */
  602. /* > \verbatim */
  603. /* > TAUP1 is DOUBLE PRECISION array, dimension (P) */
  604. /* > The scalar factors of the elementary reflectors that define */
  605. /* > P1. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] TAUP2 */
  609. /* > \verbatim */
  610. /* > TAUP2 is DOUBLE PRECISION array, dimension (M-P) */
  611. /* > The scalar factors of the elementary reflectors that define */
  612. /* > P2. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] TAUQ1 */
  616. /* > \verbatim */
  617. /* > TAUQ1 is DOUBLE PRECISION array, dimension (Q) */
  618. /* > The scalar factors of the elementary reflectors that define */
  619. /* > Q1. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] PHANTOM */
  623. /* > \verbatim */
  624. /* > PHANTOM is DOUBLE PRECISION array, dimension (M) */
  625. /* > The routine computes an M-by-1 column vector Y that is */
  626. /* > orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and */
  627. /* > PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and */
  628. /* > Y(P+1:M), respectively. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] WORK */
  632. /* > \verbatim */
  633. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] LWORK */
  637. /* > \verbatim */
  638. /* > LWORK is INTEGER */
  639. /* > The dimension of the array WORK. LWORK >= M-Q. */
  640. /* > */
  641. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  642. /* > only calculates the optimal size of the WORK array, returns */
  643. /* > this value as the first entry of the WORK array, and no error */
  644. /* > message related to LWORK is issued by XERBLA. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] INFO */
  648. /* > \verbatim */
  649. /* > INFO is INTEGER */
  650. /* > = 0: successful exit. */
  651. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  652. /* > \endverbatim */
  653. /* Authors: */
  654. /* ======== */
  655. /* > \author Univ. of Tennessee */
  656. /* > \author Univ. of California Berkeley */
  657. /* > \author Univ. of Colorado Denver */
  658. /* > \author NAG Ltd. */
  659. /* > \date July 2012 */
  660. /* > \ingroup doubleOTHERcomputational */
  661. /* > \par Further Details: */
  662. /* ===================== */
  663. /* > */
  664. /* > \verbatim */
  665. /* > */
  666. /* > The upper-bidiagonal blocks B11, B21 are represented implicitly by */
  667. /* > angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry */
  668. /* > in each bidiagonal band is a product of a sine or cosine of a THETA */
  669. /* > with a sine or cosine of a PHI. See [1] or DORCSD for details. */
  670. /* > */
  671. /* > P1, P2, and Q1 are represented as products of elementary reflectors. */
  672. /* > See DORCSD2BY1 for details on generating P1, P2, and Q1 using DORGQR */
  673. /* > and DORGLQ. */
  674. /* > \endverbatim */
  675. /* > \par References: */
  676. /* ================ */
  677. /* > */
  678. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  679. /* > Algorithms, 50(1):33-65, 2009. */
  680. /* > */
  681. /* ===================================================================== */
  682. /* Subroutine */ void dorbdb4_(integer *m, integer *p, integer *q, doublereal *
  683. x11, integer *ldx11, doublereal *x21, integer *ldx21, doublereal *
  684. theta, doublereal *phi, doublereal *taup1, doublereal *taup2,
  685. doublereal *tauq1, doublereal *phantom, doublereal *work, integer *
  686. lwork, integer *info)
  687. {
  688. /* System generated locals */
  689. integer x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3,
  690. i__4;
  691. doublereal d__1, d__2;
  692. /* Local variables */
  693. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  694. doublereal *, integer *, doublereal *, doublereal *);
  695. integer lworkmin;
  696. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  697. integer lworkopt;
  698. doublereal c__;
  699. integer i__, j;
  700. doublereal s;
  701. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  702. integer *), dlarf_(char *, integer *, integer *, doublereal *,
  703. integer *, doublereal *, doublereal *, integer *, doublereal *);
  704. integer ilarf, llarf, childinfo;
  705. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  706. logical lquery;
  707. extern /* Subroutine */ void dorbdb5_(integer *, integer *, integer *,
  708. doublereal *, integer *, doublereal *, integer *, doublereal *,
  709. integer *, doublereal *, integer *, doublereal *, integer *,
  710. integer *);
  711. integer iorbdb5, lorbdb5;
  712. extern /* Subroutine */ void dlarfgp_(integer *, doublereal *, doublereal *
  713. , integer *, doublereal *);
  714. /* -- LAPACK computational routine (version 3.7.1) -- */
  715. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  716. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  717. /* July 2012 */
  718. /* ==================================================================== */
  719. /* Test input arguments */
  720. /* Parameter adjustments */
  721. x11_dim1 = *ldx11;
  722. x11_offset = 1 + x11_dim1 * 1;
  723. x11 -= x11_offset;
  724. x21_dim1 = *ldx21;
  725. x21_offset = 1 + x21_dim1 * 1;
  726. x21 -= x21_offset;
  727. --theta;
  728. --phi;
  729. --taup1;
  730. --taup2;
  731. --tauq1;
  732. --phantom;
  733. --work;
  734. /* Function Body */
  735. *info = 0;
  736. lquery = *lwork == -1;
  737. if (*m < 0) {
  738. *info = -1;
  739. } else if (*p < *m - *q || *m - *p < *m - *q) {
  740. *info = -2;
  741. } else if (*q < *m - *q || *q > *m) {
  742. *info = -3;
  743. } else if (*ldx11 < f2cmax(1,*p)) {
  744. *info = -5;
  745. } else /* if(complicated condition) */ {
  746. /* Computing MAX */
  747. i__1 = 1, i__2 = *m - *p;
  748. if (*ldx21 < f2cmax(i__1,i__2)) {
  749. *info = -7;
  750. }
  751. }
  752. /* Compute workspace */
  753. if (*info == 0) {
  754. ilarf = 2;
  755. /* Computing MAX */
  756. i__1 = *q - 1, i__2 = *p - 1, i__1 = f2cmax(i__1,i__2), i__2 = *m - *p -
  757. 1;
  758. llarf = f2cmax(i__1,i__2);
  759. iorbdb5 = 2;
  760. lorbdb5 = *q;
  761. lworkopt = ilarf + llarf - 1;
  762. /* Computing MAX */
  763. i__1 = lworkopt, i__2 = iorbdb5 + lorbdb5 - 1;
  764. lworkopt = f2cmax(i__1,i__2);
  765. lworkmin = lworkopt;
  766. work[1] = (doublereal) lworkopt;
  767. if (*lwork < lworkmin && ! lquery) {
  768. *info = -14;
  769. }
  770. }
  771. if (*info != 0) {
  772. i__1 = -(*info);
  773. xerbla_("DORBDB4", &i__1, (ftnlen)7);
  774. return;
  775. } else if (lquery) {
  776. return;
  777. }
  778. /* Reduce columns 1, ..., M-Q of X11 and X21 */
  779. i__1 = *m - *q;
  780. for (i__ = 1; i__ <= i__1; ++i__) {
  781. if (i__ == 1) {
  782. i__2 = *m;
  783. for (j = 1; j <= i__2; ++j) {
  784. phantom[j] = 0.;
  785. }
  786. i__2 = *m - *p;
  787. dorbdb5_(p, &i__2, q, &phantom[1], &c__1, &phantom[*p + 1], &c__1,
  788. &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &work[
  789. iorbdb5], &lorbdb5, &childinfo);
  790. dscal_(p, &c_b5, &phantom[1], &c__1);
  791. dlarfgp_(p, &phantom[1], &phantom[2], &c__1, &taup1[1]);
  792. i__2 = *m - *p;
  793. dlarfgp_(&i__2, &phantom[*p + 1], &phantom[*p + 2], &c__1, &taup2[
  794. 1]);
  795. theta[i__] = atan2(phantom[1], phantom[*p + 1]);
  796. c__ = cos(theta[i__]);
  797. s = sin(theta[i__]);
  798. phantom[1] = 1.;
  799. phantom[*p + 1] = 1.;
  800. dlarf_("L", p, q, &phantom[1], &c__1, &taup1[1], &x11[x11_offset],
  801. ldx11, &work[ilarf]);
  802. i__2 = *m - *p;
  803. dlarf_("L", &i__2, q, &phantom[*p + 1], &c__1, &taup2[1], &x21[
  804. x21_offset], ldx21, &work[ilarf]);
  805. } else {
  806. i__2 = *p - i__ + 1;
  807. i__3 = *m - *p - i__ + 1;
  808. i__4 = *q - i__ + 1;
  809. dorbdb5_(&i__2, &i__3, &i__4, &x11[i__ + (i__ - 1) * x11_dim1], &
  810. c__1, &x21[i__ + (i__ - 1) * x21_dim1], &c__1, &x11[i__ +
  811. i__ * x11_dim1], ldx11, &x21[i__ + i__ * x21_dim1], ldx21,
  812. &work[iorbdb5], &lorbdb5, &childinfo);
  813. i__2 = *p - i__ + 1;
  814. dscal_(&i__2, &c_b5, &x11[i__ + (i__ - 1) * x11_dim1], &c__1);
  815. i__2 = *p - i__ + 1;
  816. dlarfgp_(&i__2, &x11[i__ + (i__ - 1) * x11_dim1], &x11[i__ + 1 + (
  817. i__ - 1) * x11_dim1], &c__1, &taup1[i__]);
  818. i__2 = *m - *p - i__ + 1;
  819. dlarfgp_(&i__2, &x21[i__ + (i__ - 1) * x21_dim1], &x21[i__ + 1 + (
  820. i__ - 1) * x21_dim1], &c__1, &taup2[i__]);
  821. theta[i__] = atan2(x11[i__ + (i__ - 1) * x11_dim1], x21[i__ + (
  822. i__ - 1) * x21_dim1]);
  823. c__ = cos(theta[i__]);
  824. s = sin(theta[i__]);
  825. x11[i__ + (i__ - 1) * x11_dim1] = 1.;
  826. x21[i__ + (i__ - 1) * x21_dim1] = 1.;
  827. i__2 = *p - i__ + 1;
  828. i__3 = *q - i__ + 1;
  829. dlarf_("L", &i__2, &i__3, &x11[i__ + (i__ - 1) * x11_dim1], &c__1,
  830. &taup1[i__], &x11[i__ + i__ * x11_dim1], ldx11, &work[
  831. ilarf]);
  832. i__2 = *m - *p - i__ + 1;
  833. i__3 = *q - i__ + 1;
  834. dlarf_("L", &i__2, &i__3, &x21[i__ + (i__ - 1) * x21_dim1], &c__1,
  835. &taup2[i__], &x21[i__ + i__ * x21_dim1], ldx21, &work[
  836. ilarf]);
  837. }
  838. i__2 = *q - i__ + 1;
  839. d__1 = -c__;
  840. drot_(&i__2, &x11[i__ + i__ * x11_dim1], ldx11, &x21[i__ + i__ *
  841. x21_dim1], ldx21, &s, &d__1);
  842. i__2 = *q - i__ + 1;
  843. dlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + (i__ + 1) *
  844. x21_dim1], ldx21, &tauq1[i__]);
  845. c__ = x21[i__ + i__ * x21_dim1];
  846. x21[i__ + i__ * x21_dim1] = 1.;
  847. i__2 = *p - i__;
  848. i__3 = *q - i__ + 1;
  849. dlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &tauq1[
  850. i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[ilarf]);
  851. i__2 = *m - *p - i__;
  852. i__3 = *q - i__ + 1;
  853. dlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &tauq1[
  854. i__], &x21[i__ + 1 + i__ * x21_dim1], ldx21, &work[ilarf]);
  855. if (i__ < *m - *q) {
  856. i__2 = *p - i__;
  857. /* Computing 2nd power */
  858. d__1 = dnrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
  859. i__3 = *m - *p - i__;
  860. /* Computing 2nd power */
  861. d__2 = dnrm2_(&i__3, &x21[i__ + 1 + i__ * x21_dim1], &c__1);
  862. s = sqrt(d__1 * d__1 + d__2 * d__2);
  863. phi[i__] = atan2(s, c__);
  864. }
  865. }
  866. /* Reduce the bottom-right portion of X11 to [ I 0 ] */
  867. i__1 = *p;
  868. for (i__ = *m - *q + 1; i__ <= i__1; ++i__) {
  869. i__2 = *q - i__ + 1;
  870. dlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) *
  871. x11_dim1], ldx11, &tauq1[i__]);
  872. x11[i__ + i__ * x11_dim1] = 1.;
  873. i__2 = *p - i__;
  874. i__3 = *q - i__ + 1;
  875. dlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
  876. i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &work[ilarf]);
  877. i__2 = *q - *p;
  878. i__3 = *q - i__ + 1;
  879. dlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &tauq1[
  880. i__], &x21[*m - *q + 1 + i__ * x21_dim1], ldx21, &work[ilarf]);
  881. }
  882. /* Reduce the bottom-right portion of X21 to [ 0 I ] */
  883. i__1 = *q;
  884. for (i__ = *p + 1; i__ <= i__1; ++i__) {
  885. i__2 = *q - i__ + 1;
  886. dlarfgp_(&i__2, &x21[*m - *q + i__ - *p + i__ * x21_dim1], &x21[*m - *
  887. q + i__ - *p + (i__ + 1) * x21_dim1], ldx21, &tauq1[i__]);
  888. x21[*m - *q + i__ - *p + i__ * x21_dim1] = 1.;
  889. i__2 = *q - i__;
  890. i__3 = *q - i__ + 1;
  891. dlarf_("R", &i__2, &i__3, &x21[*m - *q + i__ - *p + i__ * x21_dim1],
  892. ldx21, &tauq1[i__], &x21[*m - *q + i__ - *p + 1 + i__ *
  893. x21_dim1], ldx21, &work[ilarf]);
  894. }
  895. return;
  896. /* End of DORBDB4 */
  897. } /* dorbdb4_ */