You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlabrd.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZLABRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
  506. /* LDY ) */
  507. /* INTEGER LDA, LDX, LDY, M, N, NB */
  508. /* DOUBLE PRECISION D( * ), E( * ) */
  509. /* COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), */
  510. /* $ Y( LDY, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZLABRD reduces the first NB rows and columns of a complex general */
  517. /* > m by n matrix A to upper or lower real bidiagonal form by a unitary */
  518. /* > transformation Q**H * A * P, and returns the matrices X and Y which */
  519. /* > are needed to apply the transformation to the unreduced part of A. */
  520. /* > */
  521. /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
  522. /* > bidiagonal form. */
  523. /* > */
  524. /* > This is an auxiliary routine called by ZGEBRD */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] M */
  529. /* > \verbatim */
  530. /* > M is INTEGER */
  531. /* > The number of rows in the matrix A. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] N */
  535. /* > \verbatim */
  536. /* > N is INTEGER */
  537. /* > The number of columns in the matrix A. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] NB */
  541. /* > \verbatim */
  542. /* > NB is INTEGER */
  543. /* > The number of leading rows and columns of A to be reduced. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in,out] A */
  547. /* > \verbatim */
  548. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  549. /* > On entry, the m by n general matrix to be reduced. */
  550. /* > On exit, the first NB rows and columns of the matrix are */
  551. /* > overwritten; the rest of the array is unchanged. */
  552. /* > If m >= n, elements on and below the diagonal in the first NB */
  553. /* > columns, with the array TAUQ, represent the unitary */
  554. /* > matrix Q as a product of elementary reflectors; and */
  555. /* > elements above the diagonal in the first NB rows, with the */
  556. /* > array TAUP, represent the unitary matrix P as a product */
  557. /* > of elementary reflectors. */
  558. /* > If m < n, elements below the diagonal in the first NB */
  559. /* > columns, with the array TAUQ, represent the unitary */
  560. /* > matrix Q as a product of elementary reflectors, and */
  561. /* > elements on and above the diagonal in the first NB rows, */
  562. /* > with the array TAUP, represent the unitary matrix P as */
  563. /* > a product of elementary reflectors. */
  564. /* > See Further Details. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDA */
  568. /* > \verbatim */
  569. /* > LDA is INTEGER */
  570. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] D */
  574. /* > \verbatim */
  575. /* > D is DOUBLE PRECISION array, dimension (NB) */
  576. /* > The diagonal elements of the first NB rows and columns of */
  577. /* > the reduced matrix. D(i) = A(i,i). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] E */
  581. /* > \verbatim */
  582. /* > E is DOUBLE PRECISION array, dimension (NB) */
  583. /* > The off-diagonal elements of the first NB rows and columns of */
  584. /* > the reduced matrix. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] TAUQ */
  588. /* > \verbatim */
  589. /* > TAUQ is COMPLEX*16 array, dimension (NB) */
  590. /* > The scalar factors of the elementary reflectors which */
  591. /* > represent the unitary matrix Q. See Further Details. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] TAUP */
  595. /* > \verbatim */
  596. /* > TAUP is COMPLEX*16 array, dimension (NB) */
  597. /* > The scalar factors of the elementary reflectors which */
  598. /* > represent the unitary matrix P. See Further Details. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] X */
  602. /* > \verbatim */
  603. /* > X is COMPLEX*16 array, dimension (LDX,NB) */
  604. /* > The m-by-nb matrix X required to update the unreduced part */
  605. /* > of A. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDX */
  609. /* > \verbatim */
  610. /* > LDX is INTEGER */
  611. /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] Y */
  615. /* > \verbatim */
  616. /* > Y is COMPLEX*16 array, dimension (LDY,NB) */
  617. /* > The n-by-nb matrix Y required to update the unreduced part */
  618. /* > of A. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDY */
  622. /* > \verbatim */
  623. /* > LDY is INTEGER */
  624. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  625. /* > \endverbatim */
  626. /* Authors: */
  627. /* ======== */
  628. /* > \author Univ. of Tennessee */
  629. /* > \author Univ. of California Berkeley */
  630. /* > \author Univ. of Colorado Denver */
  631. /* > \author NAG Ltd. */
  632. /* > \date June 2017 */
  633. /* > \ingroup complex16OTHERauxiliary */
  634. /* > \par Further Details: */
  635. /* ===================== */
  636. /* > */
  637. /* > \verbatim */
  638. /* > */
  639. /* > The matrices Q and P are represented as products of elementary */
  640. /* > reflectors: */
  641. /* > */
  642. /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
  643. /* > */
  644. /* > Each H(i) and G(i) has the form: */
  645. /* > */
  646. /* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
  647. /* > */
  648. /* > where tauq and taup are complex scalars, and v and u are complex */
  649. /* > vectors. */
  650. /* > */
  651. /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
  652. /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
  653. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  654. /* > */
  655. /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
  656. /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
  657. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  658. /* > */
  659. /* > The elements of the vectors v and u together form the m-by-nb matrix */
  660. /* > V and the nb-by-n matrix U**H which are needed, with X and Y, to apply */
  661. /* > the transformation to the unreduced part of the matrix, using a block */
  662. /* > update of the form: A := A - V*Y**H - X*U**H. */
  663. /* > */
  664. /* > The contents of A on exit are illustrated by the following examples */
  665. /* > with nb = 2: */
  666. /* > */
  667. /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
  668. /* > */
  669. /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
  670. /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
  671. /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
  672. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  673. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  674. /* > ( v1 v2 a a a ) */
  675. /* > */
  676. /* > where a denotes an element of the original matrix which is unchanged, */
  677. /* > vi denotes an element of the vector defining H(i), and ui an element */
  678. /* > of the vector defining G(i). */
  679. /* > \endverbatim */
  680. /* > */
  681. /* ===================================================================== */
  682. /* Subroutine */ void zlabrd_(integer *m, integer *n, integer *nb,
  683. doublecomplex *a, integer *lda, doublereal *d__, doublereal *e,
  684. doublecomplex *tauq, doublecomplex *taup, doublecomplex *x, integer *
  685. ldx, doublecomplex *y, integer *ldy)
  686. {
  687. /* System generated locals */
  688. integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
  689. i__3;
  690. doublecomplex z__1;
  691. /* Local variables */
  692. integer i__;
  693. doublecomplex alpha;
  694. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  695. doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
  696. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  697. integer *, doublecomplex *, doublecomplex *, integer *),
  698. zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *,
  699. doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *);
  700. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  701. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  702. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  703. /* June 2017 */
  704. /* ===================================================================== */
  705. /* Quick return if possible */
  706. /* Parameter adjustments */
  707. a_dim1 = *lda;
  708. a_offset = 1 + a_dim1 * 1;
  709. a -= a_offset;
  710. --d__;
  711. --e;
  712. --tauq;
  713. --taup;
  714. x_dim1 = *ldx;
  715. x_offset = 1 + x_dim1 * 1;
  716. x -= x_offset;
  717. y_dim1 = *ldy;
  718. y_offset = 1 + y_dim1 * 1;
  719. y -= y_offset;
  720. /* Function Body */
  721. if (*m <= 0 || *n <= 0) {
  722. return;
  723. }
  724. if (*m >= *n) {
  725. /* Reduce to upper bidiagonal form */
  726. i__1 = *nb;
  727. for (i__ = 1; i__ <= i__1; ++i__) {
  728. /* Update A(i:m,i) */
  729. i__2 = i__ - 1;
  730. zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
  731. i__2 = *m - i__ + 1;
  732. i__3 = i__ - 1;
  733. z__1.r = -1., z__1.i = 0.;
  734. zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
  735. &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
  736. c__1);
  737. i__2 = i__ - 1;
  738. zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
  739. i__2 = *m - i__ + 1;
  740. i__3 = i__ - 1;
  741. z__1.r = -1., z__1.i = 0.;
  742. zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + x_dim1], ldx,
  743. &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ *
  744. a_dim1], &c__1);
  745. /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
  746. i__2 = i__ + i__ * a_dim1;
  747. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  748. i__2 = *m - i__ + 1;
  749. /* Computing MIN */
  750. i__3 = i__ + 1;
  751. zlarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &
  752. tauq[i__]);
  753. i__2 = i__;
  754. d__[i__2] = alpha.r;
  755. if (i__ < *n) {
  756. i__2 = i__ + i__ * a_dim1;
  757. a[i__2].r = 1., a[i__2].i = 0.;
  758. /* Compute Y(i+1:n,i) */
  759. i__2 = *m - i__ + 1;
  760. i__3 = *n - i__;
  761. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
  762. i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
  763. c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  764. i__2 = *m - i__ + 1;
  765. i__3 = i__ - 1;
  766. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ +
  767. a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  768. y[i__ * y_dim1 + 1], &c__1);
  769. i__2 = *n - i__;
  770. i__3 = i__ - 1;
  771. z__1.r = -1., z__1.i = 0.;
  772. zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
  773. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  774. i__ + 1 + i__ * y_dim1], &c__1);
  775. i__2 = *m - i__ + 1;
  776. i__3 = i__ - 1;
  777. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ +
  778. x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  779. y[i__ * y_dim1 + 1], &c__1);
  780. i__2 = i__ - 1;
  781. i__3 = *n - i__;
  782. z__1.r = -1., z__1.i = 0.;
  783. zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
  784. 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  785. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  786. i__2 = *n - i__;
  787. zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  788. /* Update A(i,i+1:n) */
  789. i__2 = *n - i__;
  790. zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  791. zlacgv_(&i__, &a[i__ + a_dim1], lda);
  792. i__2 = *n - i__;
  793. z__1.r = -1., z__1.i = 0.;
  794. zgemv_("No transpose", &i__2, &i__, &z__1, &y[i__ + 1 +
  795. y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
  796. i__ + 1) * a_dim1], lda);
  797. zlacgv_(&i__, &a[i__ + a_dim1], lda);
  798. i__2 = i__ - 1;
  799. zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
  800. i__2 = i__ - 1;
  801. i__3 = *n - i__;
  802. z__1.r = -1., z__1.i = 0.;
  803. zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
  804. 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
  805. a[i__ + (i__ + 1) * a_dim1], lda);
  806. i__2 = i__ - 1;
  807. zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
  808. /* Generate reflection P(i) to annihilate A(i,i+2:n) */
  809. i__2 = i__ + (i__ + 1) * a_dim1;
  810. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  811. i__2 = *n - i__;
  812. /* Computing MIN */
  813. i__3 = i__ + 2;
  814. zlarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  815. taup[i__]);
  816. i__2 = i__;
  817. e[i__2] = alpha.r;
  818. i__2 = i__ + (i__ + 1) * a_dim1;
  819. a[i__2].r = 1., a[i__2].i = 0.;
  820. /* Compute X(i+1:m,i) */
  821. i__2 = *m - i__;
  822. i__3 = *n - i__;
  823. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__
  824. + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
  825. lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
  826. i__2 = *n - i__;
  827. zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1
  828. + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
  829. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  830. i__2 = *m - i__;
  831. z__1.r = -1., z__1.i = 0.;
  832. zgemv_("No transpose", &i__2, &i__, &z__1, &a[i__ + 1 +
  833. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  834. i__ + 1 + i__ * x_dim1], &c__1);
  835. i__2 = i__ - 1;
  836. i__3 = *n - i__;
  837. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) *
  838. a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
  839. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  840. i__2 = *m - i__;
  841. i__3 = i__ - 1;
  842. z__1.r = -1., z__1.i = 0.;
  843. zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
  844. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  845. i__ + 1 + i__ * x_dim1], &c__1);
  846. i__2 = *m - i__;
  847. zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  848. i__2 = *n - i__;
  849. zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  850. }
  851. /* L10: */
  852. }
  853. } else {
  854. /* Reduce to lower bidiagonal form */
  855. i__1 = *nb;
  856. for (i__ = 1; i__ <= i__1; ++i__) {
  857. /* Update A(i,i:n) */
  858. i__2 = *n - i__ + 1;
  859. zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  860. i__2 = i__ - 1;
  861. zlacgv_(&i__2, &a[i__ + a_dim1], lda);
  862. i__2 = *n - i__ + 1;
  863. i__3 = i__ - 1;
  864. z__1.r = -1., z__1.i = 0.;
  865. zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + y_dim1], ldy,
  866. &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1],
  867. lda);
  868. i__2 = i__ - 1;
  869. zlacgv_(&i__2, &a[i__ + a_dim1], lda);
  870. i__2 = i__ - 1;
  871. zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
  872. i__2 = i__ - 1;
  873. i__3 = *n - i__ + 1;
  874. z__1.r = -1., z__1.i = 0.;
  875. zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[i__ *
  876. a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ +
  877. i__ * a_dim1], lda);
  878. i__2 = i__ - 1;
  879. zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
  880. /* Generate reflection P(i) to annihilate A(i,i+1:n) */
  881. i__2 = i__ + i__ * a_dim1;
  882. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  883. i__2 = *n - i__ + 1;
  884. /* Computing MIN */
  885. i__3 = i__ + 1;
  886. zlarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  887. taup[i__]);
  888. i__2 = i__;
  889. d__[i__2] = alpha.r;
  890. if (i__ < *m) {
  891. i__2 = i__ + i__ * a_dim1;
  892. a[i__2].r = 1., a[i__2].i = 0.;
  893. /* Compute X(i+1:m,i) */
  894. i__2 = *m - i__;
  895. i__3 = *n - i__ + 1;
  896. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
  897. a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  898. i__ + 1 + i__ * x_dim1], &c__1);
  899. i__2 = *n - i__ + 1;
  900. i__3 = i__ - 1;
  901. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ +
  902. y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  903. i__ * x_dim1 + 1], &c__1);
  904. i__2 = *m - i__;
  905. i__3 = i__ - 1;
  906. z__1.r = -1., z__1.i = 0.;
  907. zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
  908. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  909. i__ + 1 + i__ * x_dim1], &c__1);
  910. i__2 = i__ - 1;
  911. i__3 = *n - i__ + 1;
  912. zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 +
  913. 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ *
  914. x_dim1 + 1], &c__1);
  915. i__2 = *m - i__;
  916. i__3 = i__ - 1;
  917. z__1.r = -1., z__1.i = 0.;
  918. zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
  919. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  920. i__ + 1 + i__ * x_dim1], &c__1);
  921. i__2 = *m - i__;
  922. zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  923. i__2 = *n - i__ + 1;
  924. zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  925. /* Update A(i+1:m,i) */
  926. i__2 = i__ - 1;
  927. zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
  928. i__2 = *m - i__;
  929. i__3 = i__ - 1;
  930. z__1.r = -1., z__1.i = 0.;
  931. zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
  932. a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ +
  933. 1 + i__ * a_dim1], &c__1);
  934. i__2 = i__ - 1;
  935. zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
  936. i__2 = *m - i__;
  937. z__1.r = -1., z__1.i = 0.;
  938. zgemv_("No transpose", &i__2, &i__, &z__1, &x[i__ + 1 +
  939. x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
  940. i__ + 1 + i__ * a_dim1], &c__1);
  941. /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
  942. i__2 = i__ + 1 + i__ * a_dim1;
  943. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  944. i__2 = *m - i__;
  945. /* Computing MIN */
  946. i__3 = i__ + 2;
  947. zlarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1,
  948. &tauq[i__]);
  949. i__2 = i__;
  950. e[i__2] = alpha.r;
  951. i__2 = i__ + 1 + i__ * a_dim1;
  952. a[i__2].r = 1., a[i__2].i = 0.;
  953. /* Compute Y(i+1:n,i) */
  954. i__2 = *m - i__;
  955. i__3 = *n - i__;
  956. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  957. + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
  958. , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  959. i__2 = *m - i__;
  960. i__3 = i__ - 1;
  961. zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  962. + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  963. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  964. i__2 = *n - i__;
  965. i__3 = i__ - 1;
  966. z__1.r = -1., z__1.i = 0.;
  967. zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
  968. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  969. i__ + 1 + i__ * y_dim1], &c__1);
  970. i__2 = *m - i__;
  971. zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1
  972. + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  973. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  974. i__2 = *n - i__;
  975. z__1.r = -1., z__1.i = 0.;
  976. zgemv_("Conjugate transpose", &i__, &i__2, &z__1, &a[(i__ + 1)
  977. * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  978. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  979. i__2 = *n - i__;
  980. zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  981. } else {
  982. i__2 = *n - i__ + 1;
  983. zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  984. }
  985. /* L20: */
  986. }
  987. }
  988. return;
  989. /* End of ZLABRD */
  990. } /* zlabrd_ */