You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbgst.c 80 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. /* > \brief \b ZHBGST */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZHBGST + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  506. /* LDX, WORK, RWORK, INFO ) */
  507. /* CHARACTER UPLO, VECT */
  508. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  509. /* DOUBLE PRECISION RWORK( * ) */
  510. /* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  511. /* $ X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZHBGST reduces a complex Hermitian-definite banded generalized */
  518. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  519. /* > such that C has the same bandwidth as A. */
  520. /* > */
  521. /* > B must have been previously factorized as S**H*S by ZPBSTF, using a */
  522. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  523. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  524. /* > bandwidth of A. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] VECT */
  529. /* > \verbatim */
  530. /* > VECT is CHARACTER*1 */
  531. /* > = 'N': do not form the transformation matrix X; */
  532. /* > = 'V': form X. */
  533. /* > \endverbatim */
  534. /* > */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] KA */
  549. /* > \verbatim */
  550. /* > KA is INTEGER */
  551. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  552. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] KB */
  556. /* > \verbatim */
  557. /* > KB is INTEGER */
  558. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  559. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] AB */
  563. /* > \verbatim */
  564. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  565. /* > On entry, the upper or lower triangle of the Hermitian band */
  566. /* > matrix A, stored in the first ka+1 rows of the array. The */
  567. /* > j-th column of A is stored in the j-th column of the array AB */
  568. /* > as follows: */
  569. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  570. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  571. /* > */
  572. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  573. /* > format as A. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] LDAB */
  577. /* > \verbatim */
  578. /* > LDAB is INTEGER */
  579. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] BB */
  583. /* > \verbatim */
  584. /* > BB is COMPLEX*16 array, dimension (LDBB,N) */
  585. /* > The banded factor S from the split Cholesky factorization of */
  586. /* > B, as returned by ZPBSTF, stored in the first kb+1 rows of */
  587. /* > the array. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDBB */
  591. /* > \verbatim */
  592. /* > LDBB is INTEGER */
  593. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] X */
  597. /* > \verbatim */
  598. /* > X is COMPLEX*16 array, dimension (LDX,N) */
  599. /* > If VECT = 'V', the n-by-n matrix X. */
  600. /* > If VECT = 'N', the array X is not referenced. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDX */
  604. /* > \verbatim */
  605. /* > LDX is INTEGER */
  606. /* > The leading dimension of the array X. */
  607. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] WORK */
  611. /* > \verbatim */
  612. /* > WORK is COMPLEX*16 array, dimension (N) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] RWORK */
  616. /* > \verbatim */
  617. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] INFO */
  621. /* > \verbatim */
  622. /* > INFO is INTEGER */
  623. /* > = 0: successful exit */
  624. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  625. /* > \endverbatim */
  626. /* Authors: */
  627. /* ======== */
  628. /* > \author Univ. of Tennessee */
  629. /* > \author Univ. of California Berkeley */
  630. /* > \author Univ. of Colorado Denver */
  631. /* > \author NAG Ltd. */
  632. /* > \date December 2016 */
  633. /* > \ingroup complex16OTHERcomputational */
  634. /* ===================================================================== */
  635. /* Subroutine */ void zhbgst_(char *vect, char *uplo, integer *n, integer *ka,
  636. integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb,
  637. integer *ldbb, doublecomplex *x, integer *ldx, doublecomplex *work,
  638. doublereal *rwork, integer *info)
  639. {
  640. /* System generated locals */
  641. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  642. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  643. doublereal d__1;
  644. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10;
  645. /* Local variables */
  646. integer inca;
  647. extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
  648. doublecomplex *, integer *, doublereal *, doublecomplex *);
  649. integer i__, j, k, l, m;
  650. doublecomplex t;
  651. extern logical lsame_(char *, char *);
  652. extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
  653. doublecomplex *, integer *, doublecomplex *, integer *,
  654. doublecomplex *, integer *);
  655. integer i0, i1;
  656. logical upper;
  657. integer i2, j1, j2;
  658. extern /* Subroutine */ void zgeru_(integer *, integer *, doublecomplex *,
  659. doublecomplex *, integer *, doublecomplex *, integer *,
  660. doublecomplex *, integer *);
  661. logical wantx;
  662. extern /* Subroutine */ void zlar2v_(integer *, doublecomplex *,
  663. doublecomplex *, doublecomplex *, integer *, doublereal *,
  664. doublecomplex *, integer *);
  665. doublecomplex ra;
  666. integer nr, nx;
  667. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  668. extern void zdscal_(
  669. integer *, doublereal *, doublecomplex *, integer *);
  670. logical update;
  671. extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
  672. ;
  673. integer ka1, kb1;
  674. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  675. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  676. doublecomplex *, doublecomplex *);
  677. doublecomplex ra1;
  678. extern /* Subroutine */ void zlargv_(integer *, doublecomplex *, integer *,
  679. doublecomplex *, integer *, doublereal *, integer *);
  680. integer j1t, j2t;
  681. extern /* Subroutine */ void zlartv_(integer *, doublecomplex *, integer *,
  682. doublecomplex *, integer *, doublereal *, doublecomplex *,
  683. integer *);
  684. doublereal bii;
  685. integer kbt, nrt;
  686. /* -- LAPACK computational routine (version 3.7.0) -- */
  687. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  688. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  689. /* December 2016 */
  690. /* ===================================================================== */
  691. /* Test the input parameters */
  692. /* Parameter adjustments */
  693. ab_dim1 = *ldab;
  694. ab_offset = 1 + ab_dim1 * 1;
  695. ab -= ab_offset;
  696. bb_dim1 = *ldbb;
  697. bb_offset = 1 + bb_dim1 * 1;
  698. bb -= bb_offset;
  699. x_dim1 = *ldx;
  700. x_offset = 1 + x_dim1 * 1;
  701. x -= x_offset;
  702. --work;
  703. --rwork;
  704. /* Function Body */
  705. wantx = lsame_(vect, "V");
  706. upper = lsame_(uplo, "U");
  707. ka1 = *ka + 1;
  708. kb1 = *kb + 1;
  709. *info = 0;
  710. if (! wantx && ! lsame_(vect, "N")) {
  711. *info = -1;
  712. } else if (! upper && ! lsame_(uplo, "L")) {
  713. *info = -2;
  714. } else if (*n < 0) {
  715. *info = -3;
  716. } else if (*ka < 0) {
  717. *info = -4;
  718. } else if (*kb < 0 || *kb > *ka) {
  719. *info = -5;
  720. } else if (*ldab < *ka + 1) {
  721. *info = -7;
  722. } else if (*ldbb < *kb + 1) {
  723. *info = -9;
  724. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  725. *info = -11;
  726. }
  727. if (*info != 0) {
  728. i__1 = -(*info);
  729. xerbla_("ZHBGST", &i__1, (ftnlen)6);
  730. return;
  731. }
  732. /* Quick return if possible */
  733. if (*n == 0) {
  734. return;
  735. }
  736. inca = *ldab * ka1;
  737. /* Initialize X to the unit matrix, if needed */
  738. if (wantx) {
  739. zlaset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  740. }
  741. /* Set M to the splitting point m. It must be the same value as is */
  742. /* used in ZPBSTF. The chosen value allows the arrays WORK and RWORK */
  743. /* to be of dimension (N). */
  744. m = (*n + *kb) / 2;
  745. /* The routine works in two phases, corresponding to the two halves */
  746. /* of the split Cholesky factorization of B as S**H*S where */
  747. /* S = ( U ) */
  748. /* ( M L ) */
  749. /* with U upper triangular of order m, and L lower triangular of */
  750. /* order n-m. S has the same bandwidth as B. */
  751. /* S is treated as a product of elementary matrices: */
  752. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  753. /* where S(i) is determined by the i-th row of S. */
  754. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  755. /* in phase 2, it takes the values 1, 2, ... , m. */
  756. /* For each value of i, the current matrix A is updated by forming */
  757. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  758. /* the band of A. The bulge is then pushed down toward the bottom of */
  759. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  760. /* plane rotations. */
  761. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  762. /* of them are linearly independent, so annihilating a bulge requires */
  763. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  764. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  765. /* Wherever possible, rotations are generated and applied in vector */
  766. /* operations of length NR between the indices J1 and J2 (sometimes */
  767. /* replaced by modified values NRT, J1T or J2T). */
  768. /* The real cosines and complex sines of the rotations are stored in */
  769. /* the arrays RWORK and WORK, those of the 1st set in elements */
  770. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  771. /* The bulges are not formed explicitly; nonzero elements outside the */
  772. /* band are created only when they are required for generating new */
  773. /* rotations; they are stored in the array WORK, in positions where */
  774. /* they are later overwritten by the sines of the rotations which */
  775. /* annihilate them. */
  776. /* **************************** Phase 1 ***************************** */
  777. /* The logical structure of this phase is: */
  778. /* UPDATE = .TRUE. */
  779. /* DO I = N, M + 1, -1 */
  780. /* use S(i) to update A and create a new bulge */
  781. /* apply rotations to push all bulges KA positions downward */
  782. /* END DO */
  783. /* UPDATE = .FALSE. */
  784. /* DO I = M + KA + 1, N - 1 */
  785. /* apply rotations to push all bulges KA positions downward */
  786. /* END DO */
  787. /* To avoid duplicating code, the two loops are merged. */
  788. update = TRUE_;
  789. i__ = *n + 1;
  790. L10:
  791. if (update) {
  792. --i__;
  793. /* Computing MIN */
  794. i__1 = *kb, i__2 = i__ - 1;
  795. kbt = f2cmin(i__1,i__2);
  796. i0 = i__ - 1;
  797. /* Computing MIN */
  798. i__1 = *n, i__2 = i__ + *ka;
  799. i1 = f2cmin(i__1,i__2);
  800. i2 = i__ - kbt + ka1;
  801. if (i__ < m + 1) {
  802. update = FALSE_;
  803. ++i__;
  804. i0 = m;
  805. if (*ka == 0) {
  806. goto L480;
  807. }
  808. goto L10;
  809. }
  810. } else {
  811. i__ += *ka;
  812. if (i__ > *n - 1) {
  813. goto L480;
  814. }
  815. }
  816. if (upper) {
  817. /* Transform A, working with the upper triangle */
  818. if (update) {
  819. /* Form inv(S(i))**H * A * inv(S(i)) */
  820. i__1 = kb1 + i__ * bb_dim1;
  821. bii = bb[i__1].r;
  822. i__1 = ka1 + i__ * ab_dim1;
  823. i__2 = ka1 + i__ * ab_dim1;
  824. d__1 = ab[i__2].r / bii / bii;
  825. ab[i__1].r = d__1, ab[i__1].i = 0.;
  826. i__1 = i1;
  827. for (j = i__ + 1; j <= i__1; ++j) {
  828. i__2 = i__ - j + ka1 + j * ab_dim1;
  829. i__3 = i__ - j + ka1 + j * ab_dim1;
  830. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  831. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  832. /* L20: */
  833. }
  834. /* Computing MAX */
  835. i__1 = 1, i__2 = i__ - *ka;
  836. i__3 = i__ - 1;
  837. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  838. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  839. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  840. z__1.r = ab[i__2].r / bii, z__1.i = ab[i__2].i / bii;
  841. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  842. /* L30: */
  843. }
  844. i__3 = i__ - 1;
  845. for (k = i__ - kbt; k <= i__3; ++k) {
  846. i__1 = k;
  847. for (j = i__ - kbt; j <= i__1; ++j) {
  848. i__2 = j - k + ka1 + k * ab_dim1;
  849. i__4 = j - k + ka1 + k * ab_dim1;
  850. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  851. d_cnjg(&z__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  852. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  853. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  854. z__5.r;
  855. z__3.r = ab[i__4].r - z__4.r, z__3.i = ab[i__4].i -
  856. z__4.i;
  857. d_cnjg(&z__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  858. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  859. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  860. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  861. .r;
  862. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  863. i__7 = ka1 + i__ * ab_dim1;
  864. d__1 = ab[i__7].r;
  865. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  866. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  867. d_cnjg(&z__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  868. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  869. z__9.r * z__10.i + z__9.i * z__10.r;
  870. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  871. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  872. /* L40: */
  873. }
  874. /* Computing MAX */
  875. i__1 = 1, i__2 = i__ - *ka;
  876. i__4 = i__ - kbt - 1;
  877. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  878. i__1 = j - k + ka1 + k * ab_dim1;
  879. i__2 = j - k + ka1 + k * ab_dim1;
  880. d_cnjg(&z__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  881. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  882. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  883. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  884. .r;
  885. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  886. z__2.i;
  887. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  888. /* L50: */
  889. }
  890. /* L60: */
  891. }
  892. i__3 = i1;
  893. for (j = i__; j <= i__3; ++j) {
  894. /* Computing MAX */
  895. i__4 = j - *ka, i__1 = i__ - kbt;
  896. i__2 = i__ - 1;
  897. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  898. i__4 = k - j + ka1 + j * ab_dim1;
  899. i__1 = k - j + ka1 + j * ab_dim1;
  900. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  901. i__6 = i__ - j + ka1 + j * ab_dim1;
  902. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  903. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  904. * ab[i__6].r;
  905. z__1.r = ab[i__1].r - z__2.r, z__1.i = ab[i__1].i -
  906. z__2.i;
  907. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  908. /* L70: */
  909. }
  910. /* L80: */
  911. }
  912. if (wantx) {
  913. /* post-multiply X by inv(S(i)) */
  914. i__3 = *n - m;
  915. d__1 = 1. / bii;
  916. zdscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  917. if (kbt > 0) {
  918. i__3 = *n - m;
  919. z__1.r = -1., z__1.i = 0.;
  920. zgerc_(&i__3, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  921. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  922. + 1 + (i__ - kbt) * x_dim1], ldx);
  923. }
  924. }
  925. /* store a(i,i1) in RA1 for use in next loop over K */
  926. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  927. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  928. }
  929. /* Generate and apply vectors of rotations to chase all the */
  930. /* existing bulges KA positions down toward the bottom of the */
  931. /* band */
  932. i__3 = *kb - 1;
  933. for (k = 1; k <= i__3; ++k) {
  934. if (update) {
  935. /* Determine the rotations which would annihilate the bulge */
  936. /* which has in theory just been created */
  937. if (i__ - k + *ka < *n && i__ - k > 1) {
  938. /* generate rotation to annihilate a(i,i-k+ka+1) */
  939. zlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  940. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  941. , &ra);
  942. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  943. /* band and store it in WORK(i-k) */
  944. i__2 = kb1 - k + i__ * bb_dim1;
  945. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  946. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  947. * ra1.i + z__2.i * ra1.r;
  948. t.r = z__1.r, t.i = z__1.i;
  949. i__2 = i__ - k;
  950. i__4 = i__ - k + *ka - m;
  951. z__2.r = rwork[i__4] * t.r, z__2.i = rwork[i__4] * t.i;
  952. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  953. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  954. z__3.r = z__4.r * ab[i__1].r - z__4.i * ab[i__1].i,
  955. z__3.i = z__4.r * ab[i__1].i + z__4.i * ab[i__1]
  956. .r;
  957. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  958. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  959. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  960. i__4 = i__ - k + *ka - m;
  961. z__2.r = work[i__4].r * t.r - work[i__4].i * t.i, z__2.i =
  962. work[i__4].r * t.i + work[i__4].i * t.r;
  963. i__1 = i__ - k + *ka - m;
  964. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  965. z__3.r = rwork[i__1] * ab[i__5].r, z__3.i = rwork[i__1] *
  966. ab[i__5].i;
  967. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  968. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  969. ra1.r = ra.r, ra1.i = ra.i;
  970. }
  971. }
  972. /* Computing MAX */
  973. i__2 = 1, i__4 = k - i0 + 2;
  974. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  975. nr = (*n - j2 + *ka) / ka1;
  976. j1 = j2 + (nr - 1) * ka1;
  977. if (update) {
  978. /* Computing MAX */
  979. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  980. j2t = f2cmax(i__2,i__4);
  981. } else {
  982. j2t = j2;
  983. }
  984. nrt = (*n - j2t + *ka) / ka1;
  985. i__2 = j1;
  986. i__4 = ka1;
  987. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  988. /* create nonzero element a(j-ka,j+1) outside the band */
  989. /* and store it in WORK(j-m) */
  990. i__1 = j - m;
  991. i__5 = j - m;
  992. i__6 = (j + 1) * ab_dim1 + 1;
  993. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  994. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  995. * ab[i__6].r;
  996. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  997. i__1 = (j + 1) * ab_dim1 + 1;
  998. i__5 = j - m;
  999. i__6 = (j + 1) * ab_dim1 + 1;
  1000. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1001. i__6].i;
  1002. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1003. /* L90: */
  1004. }
  1005. /* generate rotations in 1st set to annihilate elements which */
  1006. /* have been created outside the band */
  1007. if (nrt > 0) {
  1008. zlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1009. ka1, &rwork[j2t - m], &ka1);
  1010. }
  1011. if (nr > 0) {
  1012. /* apply rotations in 1st set from the right */
  1013. i__4 = *ka - 1;
  1014. for (l = 1; l <= i__4; ++l) {
  1015. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1016. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1017. &work[j2 - m], &ka1);
  1018. /* L100: */
  1019. }
  1020. /* apply rotations in 1st set from both sides to diagonal */
  1021. /* blocks */
  1022. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1023. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1024. rwork[j2 - m], &work[j2 - m], &ka1);
  1025. zlacgv_(&nr, &work[j2 - m], &ka1);
  1026. }
  1027. /* start applying rotations in 1st set from the left */
  1028. i__4 = *kb - k + 1;
  1029. for (l = *ka - 1; l >= i__4; --l) {
  1030. nrt = (*n - j2 + l) / ka1;
  1031. if (nrt > 0) {
  1032. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1033. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1034. rwork[j2 - m], &work[j2 - m], &ka1);
  1035. }
  1036. /* L110: */
  1037. }
  1038. if (wantx) {
  1039. /* post-multiply X by product of rotations in 1st set */
  1040. i__4 = j1;
  1041. i__2 = ka1;
  1042. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1043. i__1 = *n - m;
  1044. d_cnjg(&z__1, &work[j - m]);
  1045. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1046. + 1) * x_dim1], &c__1, &rwork[j - m], &z__1);
  1047. /* L120: */
  1048. }
  1049. }
  1050. /* L130: */
  1051. }
  1052. if (update) {
  1053. if (i2 <= *n && kbt > 0) {
  1054. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1055. /* band and store it in WORK(i-kbt) */
  1056. i__3 = i__ - kbt;
  1057. i__2 = kb1 - kbt + i__ * bb_dim1;
  1058. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  1059. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1060. ra1.i + z__2.i * ra1.r;
  1061. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1062. }
  1063. }
  1064. for (k = *kb; k >= 1; --k) {
  1065. if (update) {
  1066. /* Computing MAX */
  1067. i__3 = 2, i__2 = k - i0 + 1;
  1068. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1069. } else {
  1070. /* Computing MAX */
  1071. i__3 = 1, i__2 = k - i0 + 1;
  1072. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1073. }
  1074. /* finish applying rotations in 2nd set from the left */
  1075. for (l = *kb - k; l >= 1; --l) {
  1076. nrt = (*n - j2 + *ka + l) / ka1;
  1077. if (nrt > 0) {
  1078. zlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1079. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1080. - *ka], &work[j2 - *ka], &ka1);
  1081. }
  1082. /* L140: */
  1083. }
  1084. nr = (*n - j2 + *ka) / ka1;
  1085. j1 = j2 + (nr - 1) * ka1;
  1086. i__3 = j2;
  1087. i__2 = -ka1;
  1088. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1089. i__4 = j;
  1090. i__1 = j - *ka;
  1091. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1092. rwork[j] = rwork[j - *ka];
  1093. /* L150: */
  1094. }
  1095. i__2 = j1;
  1096. i__3 = ka1;
  1097. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1098. /* create nonzero element a(j-ka,j+1) outside the band */
  1099. /* and store it in WORK(j) */
  1100. i__4 = j;
  1101. i__1 = j;
  1102. i__5 = (j + 1) * ab_dim1 + 1;
  1103. z__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1104. .i, z__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1105. * ab[i__5].r;
  1106. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1107. i__4 = (j + 1) * ab_dim1 + 1;
  1108. i__1 = j;
  1109. i__5 = (j + 1) * ab_dim1 + 1;
  1110. z__1.r = rwork[i__1] * ab[i__5].r, z__1.i = rwork[i__1] * ab[
  1111. i__5].i;
  1112. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1113. /* L160: */
  1114. }
  1115. if (update) {
  1116. if (i__ - k < *n - *ka && k <= kbt) {
  1117. i__3 = i__ - k + *ka;
  1118. i__2 = i__ - k;
  1119. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1120. }
  1121. }
  1122. /* L170: */
  1123. }
  1124. for (k = *kb; k >= 1; --k) {
  1125. /* Computing MAX */
  1126. i__3 = 1, i__2 = k - i0 + 1;
  1127. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1128. nr = (*n - j2 + *ka) / ka1;
  1129. j1 = j2 + (nr - 1) * ka1;
  1130. if (nr > 0) {
  1131. /* generate rotations in 2nd set to annihilate elements */
  1132. /* which have been created outside the band */
  1133. zlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1134. rwork[j2], &ka1);
  1135. /* apply rotations in 2nd set from the right */
  1136. i__3 = *ka - 1;
  1137. for (l = 1; l <= i__3; ++l) {
  1138. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1139. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1140. work[j2], &ka1);
  1141. /* L180: */
  1142. }
  1143. /* apply rotations in 2nd set from both sides to diagonal */
  1144. /* blocks */
  1145. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1146. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1147. rwork[j2], &work[j2], &ka1);
  1148. zlacgv_(&nr, &work[j2], &ka1);
  1149. }
  1150. /* start applying rotations in 2nd set from the left */
  1151. i__3 = *kb - k + 1;
  1152. for (l = *ka - 1; l >= i__3; --l) {
  1153. nrt = (*n - j2 + l) / ka1;
  1154. if (nrt > 0) {
  1155. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1156. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1157. rwork[j2], &work[j2], &ka1);
  1158. }
  1159. /* L190: */
  1160. }
  1161. if (wantx) {
  1162. /* post-multiply X by product of rotations in 2nd set */
  1163. i__3 = j1;
  1164. i__2 = ka1;
  1165. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1166. i__4 = *n - m;
  1167. d_cnjg(&z__1, &work[j]);
  1168. zrot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1169. + 1) * x_dim1], &c__1, &rwork[j], &z__1);
  1170. /* L200: */
  1171. }
  1172. }
  1173. /* L210: */
  1174. }
  1175. i__2 = *kb - 1;
  1176. for (k = 1; k <= i__2; ++k) {
  1177. /* Computing MAX */
  1178. i__3 = 1, i__4 = k - i0 + 2;
  1179. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1180. /* finish applying rotations in 1st set from the left */
  1181. for (l = *kb - k; l >= 1; --l) {
  1182. nrt = (*n - j2 + l) / ka1;
  1183. if (nrt > 0) {
  1184. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1185. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1186. rwork[j2 - m], &work[j2 - m], &ka1);
  1187. }
  1188. /* L220: */
  1189. }
  1190. /* L230: */
  1191. }
  1192. if (*kb > 1) {
  1193. i__2 = j2 + *ka;
  1194. for (j = *n - 1; j >= i__2; --j) {
  1195. rwork[j - m] = rwork[j - *ka - m];
  1196. i__3 = j - m;
  1197. i__4 = j - *ka - m;
  1198. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1199. /* L240: */
  1200. }
  1201. }
  1202. } else {
  1203. /* Transform A, working with the lower triangle */
  1204. if (update) {
  1205. /* Form inv(S(i))**H * A * inv(S(i)) */
  1206. i__2 = i__ * bb_dim1 + 1;
  1207. bii = bb[i__2].r;
  1208. i__2 = i__ * ab_dim1 + 1;
  1209. i__3 = i__ * ab_dim1 + 1;
  1210. d__1 = ab[i__3].r / bii / bii;
  1211. ab[i__2].r = d__1, ab[i__2].i = 0.;
  1212. i__2 = i1;
  1213. for (j = i__ + 1; j <= i__2; ++j) {
  1214. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1215. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1216. z__1.r = ab[i__4].r / bii, z__1.i = ab[i__4].i / bii;
  1217. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1218. /* L250: */
  1219. }
  1220. /* Computing MAX */
  1221. i__2 = 1, i__3 = i__ - *ka;
  1222. i__4 = i__ - 1;
  1223. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1224. i__2 = i__ - j + 1 + j * ab_dim1;
  1225. i__3 = i__ - j + 1 + j * ab_dim1;
  1226. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  1227. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1228. /* L260: */
  1229. }
  1230. i__4 = i__ - 1;
  1231. for (k = i__ - kbt; k <= i__4; ++k) {
  1232. i__2 = k;
  1233. for (j = i__ - kbt; j <= i__2; ++j) {
  1234. i__3 = k - j + 1 + j * ab_dim1;
  1235. i__1 = k - j + 1 + j * ab_dim1;
  1236. i__5 = i__ - j + 1 + j * bb_dim1;
  1237. d_cnjg(&z__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1238. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1239. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1240. z__5.r;
  1241. z__3.r = ab[i__1].r - z__4.r, z__3.i = ab[i__1].i -
  1242. z__4.i;
  1243. d_cnjg(&z__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1244. i__6 = i__ - j + 1 + j * ab_dim1;
  1245. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1246. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1247. .r;
  1248. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1249. i__7 = i__ * ab_dim1 + 1;
  1250. d__1 = ab[i__7].r;
  1251. i__8 = i__ - j + 1 + j * bb_dim1;
  1252. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1253. d_cnjg(&z__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1254. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1255. z__9.r * z__10.i + z__9.i * z__10.r;
  1256. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1257. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1258. /* L270: */
  1259. }
  1260. /* Computing MAX */
  1261. i__2 = 1, i__3 = i__ - *ka;
  1262. i__1 = i__ - kbt - 1;
  1263. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1264. i__2 = k - j + 1 + j * ab_dim1;
  1265. i__3 = k - j + 1 + j * ab_dim1;
  1266. d_cnjg(&z__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1267. i__5 = i__ - j + 1 + j * ab_dim1;
  1268. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1269. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1270. .r;
  1271. z__1.r = ab[i__3].r - z__2.r, z__1.i = ab[i__3].i -
  1272. z__2.i;
  1273. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1274. /* L280: */
  1275. }
  1276. /* L290: */
  1277. }
  1278. i__4 = i1;
  1279. for (j = i__; j <= i__4; ++j) {
  1280. /* Computing MAX */
  1281. i__1 = j - *ka, i__2 = i__ - kbt;
  1282. i__3 = i__ - 1;
  1283. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1284. i__1 = j - k + 1 + k * ab_dim1;
  1285. i__2 = j - k + 1 + k * ab_dim1;
  1286. i__5 = i__ - k + 1 + k * bb_dim1;
  1287. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1288. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1289. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1290. * ab[i__6].r;
  1291. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1292. z__2.i;
  1293. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1294. /* L300: */
  1295. }
  1296. /* L310: */
  1297. }
  1298. if (wantx) {
  1299. /* post-multiply X by inv(S(i)) */
  1300. i__4 = *n - m;
  1301. d__1 = 1. / bii;
  1302. zdscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1303. if (kbt > 0) {
  1304. i__4 = *n - m;
  1305. z__1.r = -1., z__1.i = 0.;
  1306. i__3 = *ldbb - 1;
  1307. zgeru_(&i__4, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  1308. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1309. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1310. }
  1311. }
  1312. /* store a(i1,i) in RA1 for use in next loop over K */
  1313. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1314. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1315. }
  1316. /* Generate and apply vectors of rotations to chase all the */
  1317. /* existing bulges KA positions down toward the bottom of the */
  1318. /* band */
  1319. i__4 = *kb - 1;
  1320. for (k = 1; k <= i__4; ++k) {
  1321. if (update) {
  1322. /* Determine the rotations which would annihilate the bulge */
  1323. /* which has in theory just been created */
  1324. if (i__ - k + *ka < *n && i__ - k > 1) {
  1325. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1326. zlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1327. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1328. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1329. /* band and store it in WORK(i-k) */
  1330. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1331. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1332. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1333. * ra1.i + z__2.i * ra1.r;
  1334. t.r = z__1.r, t.i = z__1.i;
  1335. i__3 = i__ - k;
  1336. i__1 = i__ - k + *ka - m;
  1337. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1338. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  1339. i__2 = ka1 + (i__ - k) * ab_dim1;
  1340. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1341. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1342. .r;
  1343. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1344. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1345. i__3 = ka1 + (i__ - k) * ab_dim1;
  1346. i__1 = i__ - k + *ka - m;
  1347. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1348. work[i__1].r * t.i + work[i__1].i * t.r;
  1349. i__2 = i__ - k + *ka - m;
  1350. i__5 = ka1 + (i__ - k) * ab_dim1;
  1351. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1352. ab[i__5].i;
  1353. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1354. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1355. ra1.r = ra.r, ra1.i = ra.i;
  1356. }
  1357. }
  1358. /* Computing MAX */
  1359. i__3 = 1, i__1 = k - i0 + 2;
  1360. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1361. nr = (*n - j2 + *ka) / ka1;
  1362. j1 = j2 + (nr - 1) * ka1;
  1363. if (update) {
  1364. /* Computing MAX */
  1365. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1366. j2t = f2cmax(i__3,i__1);
  1367. } else {
  1368. j2t = j2;
  1369. }
  1370. nrt = (*n - j2t + *ka) / ka1;
  1371. i__3 = j1;
  1372. i__1 = ka1;
  1373. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1374. /* create nonzero element a(j+1,j-ka) outside the band */
  1375. /* and store it in WORK(j-m) */
  1376. i__2 = j - m;
  1377. i__5 = j - m;
  1378. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1379. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1380. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1381. * ab[i__6].r;
  1382. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1383. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1384. i__5 = j - m;
  1385. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1386. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1387. i__6].i;
  1388. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1389. /* L320: */
  1390. }
  1391. /* generate rotations in 1st set to annihilate elements which */
  1392. /* have been created outside the band */
  1393. if (nrt > 0) {
  1394. zlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1395. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1396. }
  1397. if (nr > 0) {
  1398. /* apply rotations in 1st set from the left */
  1399. i__1 = *ka - 1;
  1400. for (l = 1; l <= i__1; ++l) {
  1401. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1402. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1403. , &work[j2 - m], &ka1);
  1404. /* L330: */
  1405. }
  1406. /* apply rotations in 1st set from both sides to diagonal */
  1407. /* blocks */
  1408. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1409. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1410. work[j2 - m], &ka1);
  1411. zlacgv_(&nr, &work[j2 - m], &ka1);
  1412. }
  1413. /* start applying rotations in 1st set from the right */
  1414. i__1 = *kb - k + 1;
  1415. for (l = *ka - 1; l >= i__1; --l) {
  1416. nrt = (*n - j2 + l) / ka1;
  1417. if (nrt > 0) {
  1418. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1419. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1420. m], &work[j2 - m], &ka1);
  1421. }
  1422. /* L340: */
  1423. }
  1424. if (wantx) {
  1425. /* post-multiply X by product of rotations in 1st set */
  1426. i__1 = j1;
  1427. i__3 = ka1;
  1428. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1429. i__2 = *n - m;
  1430. zrot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1431. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1432. );
  1433. /* L350: */
  1434. }
  1435. }
  1436. /* L360: */
  1437. }
  1438. if (update) {
  1439. if (i2 <= *n && kbt > 0) {
  1440. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1441. /* band and store it in WORK(i-kbt) */
  1442. i__4 = i__ - kbt;
  1443. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1444. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1445. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1446. ra1.i + z__2.i * ra1.r;
  1447. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1448. }
  1449. }
  1450. for (k = *kb; k >= 1; --k) {
  1451. if (update) {
  1452. /* Computing MAX */
  1453. i__4 = 2, i__3 = k - i0 + 1;
  1454. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1455. } else {
  1456. /* Computing MAX */
  1457. i__4 = 1, i__3 = k - i0 + 1;
  1458. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1459. }
  1460. /* finish applying rotations in 2nd set from the right */
  1461. for (l = *kb - k; l >= 1; --l) {
  1462. nrt = (*n - j2 + *ka + l) / ka1;
  1463. if (nrt > 0) {
  1464. zlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1465. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1466. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1467. }
  1468. /* L370: */
  1469. }
  1470. nr = (*n - j2 + *ka) / ka1;
  1471. j1 = j2 + (nr - 1) * ka1;
  1472. i__4 = j2;
  1473. i__3 = -ka1;
  1474. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1475. i__1 = j;
  1476. i__2 = j - *ka;
  1477. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1478. rwork[j] = rwork[j - *ka];
  1479. /* L380: */
  1480. }
  1481. i__3 = j1;
  1482. i__4 = ka1;
  1483. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1484. /* create nonzero element a(j+1,j-ka) outside the band */
  1485. /* and store it in WORK(j) */
  1486. i__1 = j;
  1487. i__2 = j;
  1488. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1489. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1490. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1491. * ab[i__5].r;
  1492. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1493. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1494. i__2 = j;
  1495. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1496. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1497. i__5].i;
  1498. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1499. /* L390: */
  1500. }
  1501. if (update) {
  1502. if (i__ - k < *n - *ka && k <= kbt) {
  1503. i__4 = i__ - k + *ka;
  1504. i__3 = i__ - k;
  1505. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1506. }
  1507. }
  1508. /* L400: */
  1509. }
  1510. for (k = *kb; k >= 1; --k) {
  1511. /* Computing MAX */
  1512. i__4 = 1, i__3 = k - i0 + 1;
  1513. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1514. nr = (*n - j2 + *ka) / ka1;
  1515. j1 = j2 + (nr - 1) * ka1;
  1516. if (nr > 0) {
  1517. /* generate rotations in 2nd set to annihilate elements */
  1518. /* which have been created outside the band */
  1519. zlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1520. , &ka1, &rwork[j2], &ka1);
  1521. /* apply rotations in 2nd set from the left */
  1522. i__4 = *ka - 1;
  1523. for (l = 1; l <= i__4; ++l) {
  1524. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1525. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1526. work[j2], &ka1);
  1527. /* L410: */
  1528. }
  1529. /* apply rotations in 2nd set from both sides to diagonal */
  1530. /* blocks */
  1531. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1532. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1533. j2], &ka1);
  1534. zlacgv_(&nr, &work[j2], &ka1);
  1535. }
  1536. /* start applying rotations in 2nd set from the right */
  1537. i__4 = *kb - k + 1;
  1538. for (l = *ka - 1; l >= i__4; --l) {
  1539. nrt = (*n - j2 + l) / ka1;
  1540. if (nrt > 0) {
  1541. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1542. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1543. &work[j2], &ka1);
  1544. }
  1545. /* L420: */
  1546. }
  1547. if (wantx) {
  1548. /* post-multiply X by product of rotations in 2nd set */
  1549. i__4 = j1;
  1550. i__3 = ka1;
  1551. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1552. i__1 = *n - m;
  1553. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1554. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1555. /* L430: */
  1556. }
  1557. }
  1558. /* L440: */
  1559. }
  1560. i__3 = *kb - 1;
  1561. for (k = 1; k <= i__3; ++k) {
  1562. /* Computing MAX */
  1563. i__4 = 1, i__1 = k - i0 + 2;
  1564. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1565. /* finish applying rotations in 1st set from the right */
  1566. for (l = *kb - k; l >= 1; --l) {
  1567. nrt = (*n - j2 + l) / ka1;
  1568. if (nrt > 0) {
  1569. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1570. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1571. m], &work[j2 - m], &ka1);
  1572. }
  1573. /* L450: */
  1574. }
  1575. /* L460: */
  1576. }
  1577. if (*kb > 1) {
  1578. i__3 = j2 + *ka;
  1579. for (j = *n - 1; j >= i__3; --j) {
  1580. rwork[j - m] = rwork[j - *ka - m];
  1581. i__4 = j - m;
  1582. i__1 = j - *ka - m;
  1583. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1584. /* L470: */
  1585. }
  1586. }
  1587. }
  1588. goto L10;
  1589. L480:
  1590. /* **************************** Phase 2 ***************************** */
  1591. /* The logical structure of this phase is: */
  1592. /* UPDATE = .TRUE. */
  1593. /* DO I = 1, M */
  1594. /* use S(i) to update A and create a new bulge */
  1595. /* apply rotations to push all bulges KA positions upward */
  1596. /* END DO */
  1597. /* UPDATE = .FALSE. */
  1598. /* DO I = M - KA - 1, 2, -1 */
  1599. /* apply rotations to push all bulges KA positions upward */
  1600. /* END DO */
  1601. /* To avoid duplicating code, the two loops are merged. */
  1602. update = TRUE_;
  1603. i__ = 0;
  1604. L490:
  1605. if (update) {
  1606. ++i__;
  1607. /* Computing MIN */
  1608. i__3 = *kb, i__4 = m - i__;
  1609. kbt = f2cmin(i__3,i__4);
  1610. i0 = i__ + 1;
  1611. /* Computing MAX */
  1612. i__3 = 1, i__4 = i__ - *ka;
  1613. i1 = f2cmax(i__3,i__4);
  1614. i2 = i__ + kbt - ka1;
  1615. if (i__ > m) {
  1616. update = FALSE_;
  1617. --i__;
  1618. i0 = m + 1;
  1619. if (*ka == 0) {
  1620. return;
  1621. }
  1622. goto L490;
  1623. }
  1624. } else {
  1625. i__ -= *ka;
  1626. if (i__ < 2) {
  1627. return;
  1628. }
  1629. }
  1630. if (i__ < m - kbt) {
  1631. nx = m;
  1632. } else {
  1633. nx = *n;
  1634. }
  1635. if (upper) {
  1636. /* Transform A, working with the upper triangle */
  1637. if (update) {
  1638. /* Form inv(S(i))**H * A * inv(S(i)) */
  1639. i__3 = kb1 + i__ * bb_dim1;
  1640. bii = bb[i__3].r;
  1641. i__3 = ka1 + i__ * ab_dim1;
  1642. i__4 = ka1 + i__ * ab_dim1;
  1643. d__1 = ab[i__4].r / bii / bii;
  1644. ab[i__3].r = d__1, ab[i__3].i = 0.;
  1645. i__3 = i__ - 1;
  1646. for (j = i1; j <= i__3; ++j) {
  1647. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1648. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1649. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1650. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1651. /* L500: */
  1652. }
  1653. /* Computing MIN */
  1654. i__4 = *n, i__1 = i__ + *ka;
  1655. i__3 = f2cmin(i__4,i__1);
  1656. for (j = i__ + 1; j <= i__3; ++j) {
  1657. i__4 = i__ - j + ka1 + j * ab_dim1;
  1658. i__1 = i__ - j + ka1 + j * ab_dim1;
  1659. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1660. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1661. /* L510: */
  1662. }
  1663. i__3 = i__ + kbt;
  1664. for (k = i__ + 1; k <= i__3; ++k) {
  1665. i__4 = i__ + kbt;
  1666. for (j = k; j <= i__4; ++j) {
  1667. i__1 = k - j + ka1 + j * ab_dim1;
  1668. i__2 = k - j + ka1 + j * ab_dim1;
  1669. i__5 = i__ - j + kb1 + j * bb_dim1;
  1670. d_cnjg(&z__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1671. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1672. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1673. z__5.r;
  1674. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  1675. z__4.i;
  1676. d_cnjg(&z__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1677. i__6 = i__ - j + ka1 + j * ab_dim1;
  1678. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1679. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1680. .r;
  1681. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1682. i__7 = ka1 + i__ * ab_dim1;
  1683. d__1 = ab[i__7].r;
  1684. i__8 = i__ - j + kb1 + j * bb_dim1;
  1685. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1686. d_cnjg(&z__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1687. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1688. z__9.r * z__10.i + z__9.i * z__10.r;
  1689. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1690. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1691. /* L520: */
  1692. }
  1693. /* Computing MIN */
  1694. i__1 = *n, i__2 = i__ + *ka;
  1695. i__4 = f2cmin(i__1,i__2);
  1696. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1697. i__1 = k - j + ka1 + j * ab_dim1;
  1698. i__2 = k - j + ka1 + j * ab_dim1;
  1699. d_cnjg(&z__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1700. i__5 = i__ - j + ka1 + j * ab_dim1;
  1701. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1702. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1703. .r;
  1704. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1705. z__2.i;
  1706. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1707. /* L530: */
  1708. }
  1709. /* L540: */
  1710. }
  1711. i__3 = i__;
  1712. for (j = i1; j <= i__3; ++j) {
  1713. /* Computing MIN */
  1714. i__1 = j + *ka, i__2 = i__ + kbt;
  1715. i__4 = f2cmin(i__1,i__2);
  1716. for (k = i__ + 1; k <= i__4; ++k) {
  1717. i__1 = j - k + ka1 + k * ab_dim1;
  1718. i__2 = j - k + ka1 + k * ab_dim1;
  1719. i__5 = i__ - k + kb1 + k * bb_dim1;
  1720. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1721. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1722. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1723. * ab[i__6].r;
  1724. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1725. z__2.i;
  1726. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1727. /* L550: */
  1728. }
  1729. /* L560: */
  1730. }
  1731. if (wantx) {
  1732. /* post-multiply X by inv(S(i)) */
  1733. d__1 = 1. / bii;
  1734. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  1735. if (kbt > 0) {
  1736. z__1.r = -1., z__1.i = 0.;
  1737. i__3 = *ldbb - 1;
  1738. zgeru_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1739. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1740. x_dim1 + 1], ldx);
  1741. }
  1742. }
  1743. /* store a(i1,i) in RA1 for use in next loop over K */
  1744. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1745. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1746. }
  1747. /* Generate and apply vectors of rotations to chase all the */
  1748. /* existing bulges KA positions up toward the top of the band */
  1749. i__3 = *kb - 1;
  1750. for (k = 1; k <= i__3; ++k) {
  1751. if (update) {
  1752. /* Determine the rotations which would annihilate the bulge */
  1753. /* which has in theory just been created */
  1754. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1755. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1756. zlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1757. - *ka], &work[i__ + k - *ka], &ra);
  1758. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1759. /* band and store it in WORK(m-kb+i+k) */
  1760. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1761. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1762. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1763. * ra1.i + z__2.i * ra1.r;
  1764. t.r = z__1.r, t.i = z__1.i;
  1765. i__4 = m - *kb + i__ + k;
  1766. i__1 = i__ + k - *ka;
  1767. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1768. d_cnjg(&z__4, &work[i__ + k - *ka]);
  1769. i__2 = (i__ + k) * ab_dim1 + 1;
  1770. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1771. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1772. .r;
  1773. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1774. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1775. i__4 = (i__ + k) * ab_dim1 + 1;
  1776. i__1 = i__ + k - *ka;
  1777. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1778. work[i__1].r * t.i + work[i__1].i * t.r;
  1779. i__2 = i__ + k - *ka;
  1780. i__5 = (i__ + k) * ab_dim1 + 1;
  1781. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1782. ab[i__5].i;
  1783. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1784. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1785. ra1.r = ra.r, ra1.i = ra.i;
  1786. }
  1787. }
  1788. /* Computing MAX */
  1789. i__4 = 1, i__1 = k + i0 - m + 1;
  1790. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1791. nr = (j2 + *ka - 1) / ka1;
  1792. j1 = j2 - (nr - 1) * ka1;
  1793. if (update) {
  1794. /* Computing MIN */
  1795. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1796. j2t = f2cmin(i__4,i__1);
  1797. } else {
  1798. j2t = j2;
  1799. }
  1800. nrt = (j2t + *ka - 1) / ka1;
  1801. i__4 = j2t;
  1802. i__1 = ka1;
  1803. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1804. /* create nonzero element a(j-1,j+ka) outside the band */
  1805. /* and store it in WORK(j) */
  1806. i__2 = j;
  1807. i__5 = j;
  1808. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1809. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1810. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1811. * ab[i__6].r;
  1812. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1813. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1814. i__5 = j;
  1815. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1816. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1817. i__6].i;
  1818. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1819. /* L570: */
  1820. }
  1821. /* generate rotations in 1st set to annihilate elements which */
  1822. /* have been created outside the band */
  1823. if (nrt > 0) {
  1824. zlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1825. &ka1, &rwork[j1], &ka1);
  1826. }
  1827. if (nr > 0) {
  1828. /* apply rotations in 1st set from the left */
  1829. i__1 = *ka - 1;
  1830. for (l = 1; l <= i__1; ++l) {
  1831. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1832. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1833. j1], &work[j1], &ka1);
  1834. /* L580: */
  1835. }
  1836. /* apply rotations in 1st set from both sides to diagonal */
  1837. /* blocks */
  1838. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1839. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1840. &work[j1], &ka1);
  1841. zlacgv_(&nr, &work[j1], &ka1);
  1842. }
  1843. /* start applying rotations in 1st set from the right */
  1844. i__1 = *kb - k + 1;
  1845. for (l = *ka - 1; l >= i__1; --l) {
  1846. nrt = (j2 + l - 1) / ka1;
  1847. j1t = j2 - (nrt - 1) * ka1;
  1848. if (nrt > 0) {
  1849. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1850. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1851. j1t], &ka1);
  1852. }
  1853. /* L590: */
  1854. }
  1855. if (wantx) {
  1856. /* post-multiply X by product of rotations in 1st set */
  1857. i__1 = j2;
  1858. i__4 = ka1;
  1859. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1860. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1861. + 1], &c__1, &rwork[j], &work[j]);
  1862. /* L600: */
  1863. }
  1864. }
  1865. /* L610: */
  1866. }
  1867. if (update) {
  1868. if (i2 > 0 && kbt > 0) {
  1869. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1870. /* band and store it in WORK(m-kb+i+kbt) */
  1871. i__3 = m - *kb + i__ + kbt;
  1872. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1873. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1874. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1875. ra1.i + z__2.i * ra1.r;
  1876. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1877. }
  1878. }
  1879. for (k = *kb; k >= 1; --k) {
  1880. if (update) {
  1881. /* Computing MAX */
  1882. i__3 = 2, i__4 = k + i0 - m;
  1883. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1884. } else {
  1885. /* Computing MAX */
  1886. i__3 = 1, i__4 = k + i0 - m;
  1887. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1888. }
  1889. /* finish applying rotations in 2nd set from the right */
  1890. for (l = *kb - k; l >= 1; --l) {
  1891. nrt = (j2 + *ka + l - 1) / ka1;
  1892. j1t = j2 - (nrt - 1) * ka1;
  1893. if (nrt > 0) {
  1894. zlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1895. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1896. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1897. &ka1);
  1898. }
  1899. /* L620: */
  1900. }
  1901. nr = (j2 + *ka - 1) / ka1;
  1902. j1 = j2 - (nr - 1) * ka1;
  1903. i__3 = j2;
  1904. i__4 = ka1;
  1905. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1906. i__1 = m - *kb + j;
  1907. i__2 = m - *kb + j + *ka;
  1908. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1909. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1910. /* L630: */
  1911. }
  1912. i__4 = j2;
  1913. i__3 = ka1;
  1914. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1915. /* create nonzero element a(j-1,j+ka) outside the band */
  1916. /* and store it in WORK(m-kb+j) */
  1917. i__1 = m - *kb + j;
  1918. i__2 = m - *kb + j;
  1919. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1920. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1921. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1922. * ab[i__5].r;
  1923. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1924. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1925. i__2 = m - *kb + j;
  1926. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1927. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1928. i__5].i;
  1929. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1930. /* L640: */
  1931. }
  1932. if (update) {
  1933. if (i__ + k > ka1 && k <= kbt) {
  1934. i__3 = m - *kb + i__ + k - *ka;
  1935. i__4 = m - *kb + i__ + k;
  1936. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1937. }
  1938. }
  1939. /* L650: */
  1940. }
  1941. for (k = *kb; k >= 1; --k) {
  1942. /* Computing MAX */
  1943. i__3 = 1, i__4 = k + i0 - m;
  1944. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1945. nr = (j2 + *ka - 1) / ka1;
  1946. j1 = j2 - (nr - 1) * ka1;
  1947. if (nr > 0) {
  1948. /* generate rotations in 2nd set to annihilate elements */
  1949. /* which have been created outside the band */
  1950. zlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1951. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1952. /* apply rotations in 2nd set from the left */
  1953. i__3 = *ka - 1;
  1954. for (l = 1; l <= i__3; ++l) {
  1955. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1956. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1957. - *kb + j1], &work[m - *kb + j1], &ka1);
  1958. /* L660: */
  1959. }
  1960. /* apply rotations in 2nd set from both sides to diagonal */
  1961. /* blocks */
  1962. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1963. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1964. kb + j1], &work[m - *kb + j1], &ka1);
  1965. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  1966. }
  1967. /* start applying rotations in 2nd set from the right */
  1968. i__3 = *kb - k + 1;
  1969. for (l = *ka - 1; l >= i__3; --l) {
  1970. nrt = (j2 + l - 1) / ka1;
  1971. j1t = j2 - (nrt - 1) * ka1;
  1972. if (nrt > 0) {
  1973. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1974. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1975. &work[m - *kb + j1t], &ka1);
  1976. }
  1977. /* L670: */
  1978. }
  1979. if (wantx) {
  1980. /* post-multiply X by product of rotations in 2nd set */
  1981. i__3 = j2;
  1982. i__4 = ka1;
  1983. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1984. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1985. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1986. j]);
  1987. /* L680: */
  1988. }
  1989. }
  1990. /* L690: */
  1991. }
  1992. i__4 = *kb - 1;
  1993. for (k = 1; k <= i__4; ++k) {
  1994. /* Computing MAX */
  1995. i__3 = 1, i__1 = k + i0 - m + 1;
  1996. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1997. /* finish applying rotations in 1st set from the right */
  1998. for (l = *kb - k; l >= 1; --l) {
  1999. nrt = (j2 + l - 1) / ka1;
  2000. j1t = j2 - (nrt - 1) * ka1;
  2001. if (nrt > 0) {
  2002. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  2003. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  2004. j1t], &ka1);
  2005. }
  2006. /* L700: */
  2007. }
  2008. /* L710: */
  2009. }
  2010. if (*kb > 1) {
  2011. i__4 = i2 - *ka;
  2012. for (j = 2; j <= i__4; ++j) {
  2013. rwork[j] = rwork[j + *ka];
  2014. i__3 = j;
  2015. i__1 = j + *ka;
  2016. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2017. /* L720: */
  2018. }
  2019. }
  2020. } else {
  2021. /* Transform A, working with the lower triangle */
  2022. if (update) {
  2023. /* Form inv(S(i))**H * A * inv(S(i)) */
  2024. i__4 = i__ * bb_dim1 + 1;
  2025. bii = bb[i__4].r;
  2026. i__4 = i__ * ab_dim1 + 1;
  2027. i__3 = i__ * ab_dim1 + 1;
  2028. d__1 = ab[i__3].r / bii / bii;
  2029. ab[i__4].r = d__1, ab[i__4].i = 0.;
  2030. i__4 = i__ - 1;
  2031. for (j = i1; j <= i__4; ++j) {
  2032. i__3 = i__ - j + 1 + j * ab_dim1;
  2033. i__1 = i__ - j + 1 + j * ab_dim1;
  2034. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2035. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2036. /* L730: */
  2037. }
  2038. /* Computing MIN */
  2039. i__3 = *n, i__1 = i__ + *ka;
  2040. i__4 = f2cmin(i__3,i__1);
  2041. for (j = i__ + 1; j <= i__4; ++j) {
  2042. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2043. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2044. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2045. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2046. /* L740: */
  2047. }
  2048. i__4 = i__ + kbt;
  2049. for (k = i__ + 1; k <= i__4; ++k) {
  2050. i__3 = i__ + kbt;
  2051. for (j = k; j <= i__3; ++j) {
  2052. i__1 = j - k + 1 + k * ab_dim1;
  2053. i__2 = j - k + 1 + k * ab_dim1;
  2054. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2055. d_cnjg(&z__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2056. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  2057. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  2058. z__5.r;
  2059. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  2060. z__4.i;
  2061. d_cnjg(&z__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2062. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2063. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  2064. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  2065. .r;
  2066. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  2067. i__7 = i__ * ab_dim1 + 1;
  2068. d__1 = ab[i__7].r;
  2069. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2070. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  2071. d_cnjg(&z__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2072. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  2073. z__9.r * z__10.i + z__9.i * z__10.r;
  2074. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  2075. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2076. /* L750: */
  2077. }
  2078. /* Computing MIN */
  2079. i__1 = *n, i__2 = i__ + *ka;
  2080. i__3 = f2cmin(i__1,i__2);
  2081. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2082. i__1 = j - k + 1 + k * ab_dim1;
  2083. i__2 = j - k + 1 + k * ab_dim1;
  2084. d_cnjg(&z__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2085. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2086. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  2087. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  2088. .r;
  2089. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2090. z__2.i;
  2091. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2092. /* L760: */
  2093. }
  2094. /* L770: */
  2095. }
  2096. i__4 = i__;
  2097. for (j = i1; j <= i__4; ++j) {
  2098. /* Computing MIN */
  2099. i__1 = j + *ka, i__2 = i__ + kbt;
  2100. i__3 = f2cmin(i__1,i__2);
  2101. for (k = i__ + 1; k <= i__3; ++k) {
  2102. i__1 = k - j + 1 + j * ab_dim1;
  2103. i__2 = k - j + 1 + j * ab_dim1;
  2104. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2105. i__6 = i__ - j + 1 + j * ab_dim1;
  2106. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2107. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2108. * ab[i__6].r;
  2109. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2110. z__2.i;
  2111. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2112. /* L780: */
  2113. }
  2114. /* L790: */
  2115. }
  2116. if (wantx) {
  2117. /* post-multiply X by inv(S(i)) */
  2118. d__1 = 1. / bii;
  2119. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  2120. if (kbt > 0) {
  2121. z__1.r = -1., z__1.i = 0.;
  2122. zgerc_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2123. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2124. + 1], ldx);
  2125. }
  2126. }
  2127. /* store a(i,i1) in RA1 for use in next loop over K */
  2128. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2129. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2130. }
  2131. /* Generate and apply vectors of rotations to chase all the */
  2132. /* existing bulges KA positions up toward the top of the band */
  2133. i__4 = *kb - 1;
  2134. for (k = 1; k <= i__4; ++k) {
  2135. if (update) {
  2136. /* Determine the rotations which would annihilate the bulge */
  2137. /* which has in theory just been created */
  2138. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2139. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2140. zlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2141. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2142. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2143. /* band and store it in WORK(m-kb+i+k) */
  2144. i__3 = k + 1 + i__ * bb_dim1;
  2145. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2146. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  2147. * ra1.i + z__2.i * ra1.r;
  2148. t.r = z__1.r, t.i = z__1.i;
  2149. i__3 = m - *kb + i__ + k;
  2150. i__1 = i__ + k - *ka;
  2151. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  2152. d_cnjg(&z__4, &work[i__ + k - *ka]);
  2153. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2154. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  2155. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  2156. .r;
  2157. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  2158. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  2159. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2160. i__1 = i__ + k - *ka;
  2161. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  2162. work[i__1].r * t.i + work[i__1].i * t.r;
  2163. i__2 = i__ + k - *ka;
  2164. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2165. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  2166. ab[i__5].i;
  2167. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  2168. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2169. ra1.r = ra.r, ra1.i = ra.i;
  2170. }
  2171. }
  2172. /* Computing MAX */
  2173. i__3 = 1, i__1 = k + i0 - m + 1;
  2174. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2175. nr = (j2 + *ka - 1) / ka1;
  2176. j1 = j2 - (nr - 1) * ka1;
  2177. if (update) {
  2178. /* Computing MIN */
  2179. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2180. j2t = f2cmin(i__3,i__1);
  2181. } else {
  2182. j2t = j2;
  2183. }
  2184. nrt = (j2t + *ka - 1) / ka1;
  2185. i__3 = j2t;
  2186. i__1 = ka1;
  2187. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2188. /* create nonzero element a(j+ka,j-1) outside the band */
  2189. /* and store it in WORK(j) */
  2190. i__2 = j;
  2191. i__5 = j;
  2192. i__6 = ka1 + (j - 1) * ab_dim1;
  2193. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2194. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2195. * ab[i__6].r;
  2196. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  2197. i__2 = ka1 + (j - 1) * ab_dim1;
  2198. i__5 = j;
  2199. i__6 = ka1 + (j - 1) * ab_dim1;
  2200. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  2201. i__6].i;
  2202. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  2203. /* L800: */
  2204. }
  2205. /* generate rotations in 1st set to annihilate elements which */
  2206. /* have been created outside the band */
  2207. if (nrt > 0) {
  2208. zlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2209. &rwork[j1], &ka1);
  2210. }
  2211. if (nr > 0) {
  2212. /* apply rotations in 1st set from the right */
  2213. i__1 = *ka - 1;
  2214. for (l = 1; l <= i__1; ++l) {
  2215. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2216. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2217. j1], &ka1);
  2218. /* L810: */
  2219. }
  2220. /* apply rotations in 1st set from both sides to diagonal */
  2221. /* blocks */
  2222. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2223. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2224. work[j1], &ka1);
  2225. zlacgv_(&nr, &work[j1], &ka1);
  2226. }
  2227. /* start applying rotations in 1st set from the left */
  2228. i__1 = *kb - k + 1;
  2229. for (l = *ka - 1; l >= i__1; --l) {
  2230. nrt = (j2 + l - 1) / ka1;
  2231. j1t = j2 - (nrt - 1) * ka1;
  2232. if (nrt > 0) {
  2233. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2234. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2235. &inca, &rwork[j1t], &work[j1t], &ka1);
  2236. }
  2237. /* L820: */
  2238. }
  2239. if (wantx) {
  2240. /* post-multiply X by product of rotations in 1st set */
  2241. i__1 = j2;
  2242. i__3 = ka1;
  2243. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2244. d_cnjg(&z__1, &work[j]);
  2245. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2246. + 1], &c__1, &rwork[j], &z__1);
  2247. /* L830: */
  2248. }
  2249. }
  2250. /* L840: */
  2251. }
  2252. if (update) {
  2253. if (i2 > 0 && kbt > 0) {
  2254. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2255. /* band and store it in WORK(m-kb+i+kbt) */
  2256. i__4 = m - *kb + i__ + kbt;
  2257. i__3 = kbt + 1 + i__ * bb_dim1;
  2258. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2259. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  2260. ra1.i + z__2.i * ra1.r;
  2261. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  2262. }
  2263. }
  2264. for (k = *kb; k >= 1; --k) {
  2265. if (update) {
  2266. /* Computing MAX */
  2267. i__4 = 2, i__3 = k + i0 - m;
  2268. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2269. } else {
  2270. /* Computing MAX */
  2271. i__4 = 1, i__3 = k + i0 - m;
  2272. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2273. }
  2274. /* finish applying rotations in 2nd set from the left */
  2275. for (l = *kb - k; l >= 1; --l) {
  2276. nrt = (j2 + *ka + l - 1) / ka1;
  2277. j1t = j2 - (nrt - 1) * ka1;
  2278. if (nrt > 0) {
  2279. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2280. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2281. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2282. + j1t + *ka], &ka1);
  2283. }
  2284. /* L850: */
  2285. }
  2286. nr = (j2 + *ka - 1) / ka1;
  2287. j1 = j2 - (nr - 1) * ka1;
  2288. i__4 = j2;
  2289. i__3 = ka1;
  2290. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2291. i__1 = m - *kb + j;
  2292. i__2 = m - *kb + j + *ka;
  2293. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2294. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2295. /* L860: */
  2296. }
  2297. i__3 = j2;
  2298. i__4 = ka1;
  2299. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2300. /* create nonzero element a(j+ka,j-1) outside the band */
  2301. /* and store it in WORK(m-kb+j) */
  2302. i__1 = m - *kb + j;
  2303. i__2 = m - *kb + j;
  2304. i__5 = ka1 + (j - 1) * ab_dim1;
  2305. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2306. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2307. * ab[i__5].r;
  2308. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  2309. i__1 = ka1 + (j - 1) * ab_dim1;
  2310. i__2 = m - *kb + j;
  2311. i__5 = ka1 + (j - 1) * ab_dim1;
  2312. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  2313. i__5].i;
  2314. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2315. /* L870: */
  2316. }
  2317. if (update) {
  2318. if (i__ + k > ka1 && k <= kbt) {
  2319. i__4 = m - *kb + i__ + k - *ka;
  2320. i__3 = m - *kb + i__ + k;
  2321. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2322. }
  2323. }
  2324. /* L880: */
  2325. }
  2326. for (k = *kb; k >= 1; --k) {
  2327. /* Computing MAX */
  2328. i__4 = 1, i__3 = k + i0 - m;
  2329. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2330. nr = (j2 + *ka - 1) / ka1;
  2331. j1 = j2 - (nr - 1) * ka1;
  2332. if (nr > 0) {
  2333. /* generate rotations in 2nd set to annihilate elements */
  2334. /* which have been created outside the band */
  2335. zlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2336. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2337. /* apply rotations in 2nd set from the right */
  2338. i__4 = *ka - 1;
  2339. for (l = 1; l <= i__4; ++l) {
  2340. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2341. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2342. , &work[m - *kb + j1], &ka1);
  2343. /* L890: */
  2344. }
  2345. /* apply rotations in 2nd set from both sides to diagonal */
  2346. /* blocks */
  2347. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2348. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2349. kb + j1], &work[m - *kb + j1], &ka1);
  2350. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  2351. }
  2352. /* start applying rotations in 2nd set from the left */
  2353. i__4 = *kb - k + 1;
  2354. for (l = *ka - 1; l >= i__4; --l) {
  2355. nrt = (j2 + l - 1) / ka1;
  2356. j1t = j2 - (nrt - 1) * ka1;
  2357. if (nrt > 0) {
  2358. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2359. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2360. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2361. j1t], &ka1);
  2362. }
  2363. /* L900: */
  2364. }
  2365. if (wantx) {
  2366. /* post-multiply X by product of rotations in 2nd set */
  2367. i__4 = j2;
  2368. i__3 = ka1;
  2369. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2370. d_cnjg(&z__1, &work[m - *kb + j]);
  2371. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2372. + 1], &c__1, &rwork[m - *kb + j], &z__1);
  2373. /* L910: */
  2374. }
  2375. }
  2376. /* L920: */
  2377. }
  2378. i__3 = *kb - 1;
  2379. for (k = 1; k <= i__3; ++k) {
  2380. /* Computing MAX */
  2381. i__4 = 1, i__1 = k + i0 - m + 1;
  2382. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2383. /* finish applying rotations in 1st set from the left */
  2384. for (l = *kb - k; l >= 1; --l) {
  2385. nrt = (j2 + l - 1) / ka1;
  2386. j1t = j2 - (nrt - 1) * ka1;
  2387. if (nrt > 0) {
  2388. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2389. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2390. &inca, &rwork[j1t], &work[j1t], &ka1);
  2391. }
  2392. /* L930: */
  2393. }
  2394. /* L940: */
  2395. }
  2396. if (*kb > 1) {
  2397. i__3 = i2 - *ka;
  2398. for (j = 2; j <= i__3; ++j) {
  2399. rwork[j] = rwork[j + *ka];
  2400. i__4 = j;
  2401. i__1 = j + *ka;
  2402. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2403. /* L950: */
  2404. }
  2405. }
  2406. }
  2407. goto L490;
  2408. /* End of ZHBGST */
  2409. } /* zhbgst_ */