You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cggev3.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static integer c__0 = 0;
  489. /* > \brief <b> CGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  490. rices (blocked algorithm)</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGGEV3 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggev3.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggev3.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggev3.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, */
  509. /* $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) */
  510. /* CHARACTER JOBVL, JOBVR */
  511. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  512. /* REAL RWORK( * ) */
  513. /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  514. /* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
  515. /* $ WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > CGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices */
  522. /* > (A,B), the generalized eigenvalues, and optionally, the left and/or */
  523. /* > right generalized eigenvectors. */
  524. /* > */
  525. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  526. /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  527. /* > singular. It is usually represented as the pair (alpha,beta), as */
  528. /* > there is a reasonable interpretation for beta=0, and even for both */
  529. /* > being zero. */
  530. /* > */
  531. /* > The right generalized eigenvector v(j) corresponding to the */
  532. /* > generalized eigenvalue lambda(j) of (A,B) satisfies */
  533. /* > */
  534. /* > A * v(j) = lambda(j) * B * v(j). */
  535. /* > */
  536. /* > The left generalized eigenvector u(j) corresponding to the */
  537. /* > generalized eigenvalues lambda(j) of (A,B) satisfies */
  538. /* > */
  539. /* > u(j)**H * A = lambda(j) * u(j)**H * B */
  540. /* > */
  541. /* > where u(j)**H is the conjugate-transpose of u(j). */
  542. /* > \endverbatim */
  543. /* Arguments: */
  544. /* ========== */
  545. /* > \param[in] JOBVL */
  546. /* > \verbatim */
  547. /* > JOBVL is CHARACTER*1 */
  548. /* > = 'N': do not compute the left generalized eigenvectors; */
  549. /* > = 'V': compute the left generalized eigenvectors. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] JOBVR */
  553. /* > \verbatim */
  554. /* > JOBVR is CHARACTER*1 */
  555. /* > = 'N': do not compute the right generalized eigenvectors; */
  556. /* > = 'V': compute the right generalized eigenvectors. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] A */
  566. /* > \verbatim */
  567. /* > A is COMPLEX array, dimension (LDA, N) */
  568. /* > On entry, the matrix A in the pair (A,B). */
  569. /* > On exit, A has been overwritten. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDA */
  573. /* > \verbatim */
  574. /* > LDA is INTEGER */
  575. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in,out] B */
  579. /* > \verbatim */
  580. /* > B is COMPLEX array, dimension (LDB, N) */
  581. /* > On entry, the matrix B in the pair (A,B). */
  582. /* > On exit, B has been overwritten. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDB */
  586. /* > \verbatim */
  587. /* > LDB is INTEGER */
  588. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] ALPHA */
  592. /* > \verbatim */
  593. /* > ALPHA is COMPLEX array, dimension (N) */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] BETA */
  597. /* > \verbatim */
  598. /* > BETA is COMPLEX array, dimension (N) */
  599. /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
  600. /* > generalized eigenvalues. */
  601. /* > */
  602. /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
  603. /* > underflow, and BETA(j) may even be zero. Thus, the user */
  604. /* > should avoid naively computing the ratio alpha/beta. */
  605. /* > However, ALPHA will be always less than and usually */
  606. /* > comparable with norm(A) in magnitude, and BETA always less */
  607. /* > than and usually comparable with norm(B). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] VL */
  611. /* > \verbatim */
  612. /* > VL is COMPLEX array, dimension (LDVL,N) */
  613. /* > If JOBVL = 'V', the left generalized eigenvectors u(j) are */
  614. /* > stored one after another in the columns of VL, in the same */
  615. /* > order as their eigenvalues. */
  616. /* > Each eigenvector is scaled so the largest component has */
  617. /* > abs(real part) + abs(imag. part) = 1. */
  618. /* > Not referenced if JOBVL = 'N'. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDVL */
  622. /* > \verbatim */
  623. /* > LDVL is INTEGER */
  624. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  625. /* > if JOBVL = 'V', LDVL >= N. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[out] VR */
  629. /* > \verbatim */
  630. /* > VR is COMPLEX array, dimension (LDVR,N) */
  631. /* > If JOBVR = 'V', the right generalized eigenvectors v(j) are */
  632. /* > stored one after another in the columns of VR, in the same */
  633. /* > order as their eigenvalues. */
  634. /* > Each eigenvector is scaled so the largest component has */
  635. /* > abs(real part) + abs(imag. part) = 1. */
  636. /* > Not referenced if JOBVR = 'N'. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LDVR */
  640. /* > \verbatim */
  641. /* > LDVR is INTEGER */
  642. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  643. /* > if JOBVR = 'V', LDVR >= N. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] WORK */
  647. /* > \verbatim */
  648. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  649. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > The dimension of the array WORK. */
  656. /* > */
  657. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  658. /* > only calculates the optimal size of the WORK array, returns */
  659. /* > this value as the first entry of the WORK array, and no error */
  660. /* > message related to LWORK is issued by XERBLA. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] RWORK */
  664. /* > \verbatim */
  665. /* > RWORK is REAL array, dimension (8*N) */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] INFO */
  669. /* > \verbatim */
  670. /* > INFO is INTEGER */
  671. /* > = 0: successful exit */
  672. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  673. /* > =1,...,N: */
  674. /* > The QZ iteration failed. No eigenvectors have been */
  675. /* > calculated, but ALPHA(j) and BETA(j) should be */
  676. /* > correct for j=INFO+1,...,N. */
  677. /* > > N: =N+1: other then QZ iteration failed in SHGEQZ, */
  678. /* > =N+2: error return from STGEVC. */
  679. /* > \endverbatim */
  680. /* Authors: */
  681. /* ======== */
  682. /* > \author Univ. of Tennessee */
  683. /* > \author Univ. of California Berkeley */
  684. /* > \author Univ. of Colorado Denver */
  685. /* > \author NAG Ltd. */
  686. /* > \date January 2015 */
  687. /* > \ingroup complexGEeigen */
  688. /* ===================================================================== */
  689. /* Subroutine */ void cggev3_(char *jobvl, char *jobvr, integer *n, complex *a,
  690. integer *lda, complex *b, integer *ldb, complex *alpha, complex *
  691. beta, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex
  692. *work, integer *lwork, real *rwork, integer *info)
  693. {
  694. /* System generated locals */
  695. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  696. vr_offset, i__1, i__2, i__3, i__4;
  697. real r__1, r__2, r__3, r__4;
  698. complex q__1;
  699. /* Local variables */
  700. real anrm, bnrm;
  701. integer ierr, itau;
  702. real temp;
  703. logical ilvl, ilvr;
  704. integer iwrk;
  705. extern logical lsame_(char *, char *);
  706. integer ileft, icols, irwrk;
  707. extern /* Subroutine */ void cgghd3_(char *, char *, integer *, integer *,
  708. integer *, complex *, integer *, complex *, integer *, complex *,
  709. integer *, complex *, integer *, complex *, integer *, integer *);
  710. integer irows, jc;
  711. extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
  712. integer *, real *, real *, integer *, complex *, integer *,
  713. integer *), cggbal_(char *, integer *, complex *,
  714. integer *, complex *, integer *, integer *, integer *, real *,
  715. real *, real *, integer *), slabad_(real *, real *);
  716. integer in;
  717. extern real clange_(char *, integer *, integer *, complex *, integer *,
  718. real *);
  719. integer jr;
  720. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  721. real *, integer *, integer *, complex *, integer *, integer *);
  722. logical ilascl, ilbscl;
  723. extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *,
  724. integer *, complex *, complex *, integer *, integer *), clacpy_(
  725. char *, integer *, integer *, complex *, integer *, complex *,
  726. integer *), claset_(char *, integer *, integer *, complex
  727. *, complex *, complex *, integer *), ctgevc_(char *, char
  728. *, logical *, integer *, complex *, integer *, complex *, integer
  729. *, complex *, integer *, complex *, integer *, integer *, integer
  730. *, complex *, real *, integer *);
  731. extern int xerbla_(char *, integer *, ftnlen);
  732. logical ldumma[1];
  733. char chtemp[1];
  734. real bignum;
  735. extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
  736. integer *, integer *, complex *, integer *, complex *, integer *,
  737. complex *, complex *, complex *, integer *, complex *, integer *,
  738. complex *, integer *, real *, integer *);
  739. extern real slamch_(char *);
  740. integer ijobvl, iright, ijobvr;
  741. extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
  742. complex *, integer *, complex *, complex *, integer *, integer *);
  743. real anrmto, bnrmto;
  744. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  745. integer *, complex *, integer *, complex *, complex *, integer *,
  746. complex *, integer *, integer *);
  747. real smlnum;
  748. integer lwkopt;
  749. logical lquery;
  750. integer ihi, ilo;
  751. real eps;
  752. logical ilv;
  753. /* -- LAPACK driver routine (version 3.6.1) -- */
  754. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  755. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  756. /* January 2015 */
  757. /* ===================================================================== */
  758. /* Decode the input arguments */
  759. /* Parameter adjustments */
  760. a_dim1 = *lda;
  761. a_offset = 1 + a_dim1 * 1;
  762. a -= a_offset;
  763. b_dim1 = *ldb;
  764. b_offset = 1 + b_dim1 * 1;
  765. b -= b_offset;
  766. --alpha;
  767. --beta;
  768. vl_dim1 = *ldvl;
  769. vl_offset = 1 + vl_dim1 * 1;
  770. vl -= vl_offset;
  771. vr_dim1 = *ldvr;
  772. vr_offset = 1 + vr_dim1 * 1;
  773. vr -= vr_offset;
  774. --work;
  775. --rwork;
  776. /* Function Body */
  777. if (lsame_(jobvl, "N")) {
  778. ijobvl = 1;
  779. ilvl = FALSE_;
  780. } else if (lsame_(jobvl, "V")) {
  781. ijobvl = 2;
  782. ilvl = TRUE_;
  783. } else {
  784. ijobvl = -1;
  785. ilvl = FALSE_;
  786. }
  787. if (lsame_(jobvr, "N")) {
  788. ijobvr = 1;
  789. ilvr = FALSE_;
  790. } else if (lsame_(jobvr, "V")) {
  791. ijobvr = 2;
  792. ilvr = TRUE_;
  793. } else {
  794. ijobvr = -1;
  795. ilvr = FALSE_;
  796. }
  797. ilv = ilvl || ilvr;
  798. /* Test the input arguments */
  799. *info = 0;
  800. lquery = *lwork == -1;
  801. if (ijobvl <= 0) {
  802. *info = -1;
  803. } else if (ijobvr <= 0) {
  804. *info = -2;
  805. } else if (*n < 0) {
  806. *info = -3;
  807. } else if (*lda < f2cmax(1,*n)) {
  808. *info = -5;
  809. } else if (*ldb < f2cmax(1,*n)) {
  810. *info = -7;
  811. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  812. *info = -11;
  813. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  814. *info = -13;
  815. } else /* if(complicated condition) */ {
  816. /* Computing MAX */
  817. i__1 = 1, i__2 = *n << 1;
  818. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  819. *info = -15;
  820. }
  821. }
  822. /* Compute workspace */
  823. if (*info == 0) {
  824. cgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
  825. /* Computing MAX */
  826. i__1 = *n, i__2 = *n + (integer) work[1].r;
  827. lwkopt = f2cmax(i__1,i__2);
  828. cunmqr_("L", "C", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
  829. lda, &work[1], &c_n1, &ierr);
  830. /* Computing MAX */
  831. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  832. lwkopt = f2cmax(i__1,i__2);
  833. if (ilvl) {
  834. cungqr_(n, n, n, &vl[vl_offset], ldvl, &work[1], &work[1], &c_n1,
  835. &ierr);
  836. /* Computing MAX */
  837. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  838. lwkopt = f2cmax(i__1,i__2);
  839. }
  840. if (ilv) {
  841. cgghd3_(jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[b_offset]
  842. , ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[
  843. 1], &c_n1, &ierr);
  844. /* Computing MAX */
  845. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  846. lwkopt = f2cmax(i__1,i__2);
  847. chgeqz_("S", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  848. b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl,
  849. &vr[vr_offset], ldvr, &work[1], &c_n1, &rwork[1], &ierr);
  850. /* Computing MAX */
  851. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  852. lwkopt = f2cmax(i__1,i__2);
  853. } else {
  854. cgghd3_("N", "N", n, &c__1, n, &a[a_offset], lda, &b[b_offset],
  855. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1],
  856. &c_n1, &ierr);
  857. /* Computing MAX */
  858. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  859. lwkopt = f2cmax(i__1,i__2);
  860. chgeqz_("E", jobvl, jobvr, n, &c__1, n, &a[a_offset], lda, &b[
  861. b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl,
  862. &vr[vr_offset], ldvr, &work[1], &c_n1, &rwork[1], &ierr);
  863. /* Computing MAX */
  864. i__1 = lwkopt, i__2 = *n + (integer) work[1].r;
  865. lwkopt = f2cmax(i__1,i__2);
  866. }
  867. q__1.r = (real) lwkopt, q__1.i = 0.f;
  868. work[1].r = q__1.r, work[1].i = q__1.i;
  869. }
  870. if (*info != 0) {
  871. i__1 = -(*info);
  872. xerbla_("CGGEV3 ", &i__1, (ftnlen)7);
  873. return;
  874. } else if (lquery) {
  875. return;
  876. }
  877. /* Quick return if possible */
  878. if (*n == 0) {
  879. return;
  880. }
  881. /* Get machine constants */
  882. eps = slamch_("E") * slamch_("B");
  883. smlnum = slamch_("S");
  884. bignum = 1.f / smlnum;
  885. slabad_(&smlnum, &bignum);
  886. smlnum = sqrt(smlnum) / eps;
  887. bignum = 1.f / smlnum;
  888. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  889. anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  890. ilascl = FALSE_;
  891. if (anrm > 0.f && anrm < smlnum) {
  892. anrmto = smlnum;
  893. ilascl = TRUE_;
  894. } else if (anrm > bignum) {
  895. anrmto = bignum;
  896. ilascl = TRUE_;
  897. }
  898. if (ilascl) {
  899. clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  900. ierr);
  901. }
  902. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  903. bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  904. ilbscl = FALSE_;
  905. if (bnrm > 0.f && bnrm < smlnum) {
  906. bnrmto = smlnum;
  907. ilbscl = TRUE_;
  908. } else if (bnrm > bignum) {
  909. bnrmto = bignum;
  910. ilbscl = TRUE_;
  911. }
  912. if (ilbscl) {
  913. clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  914. ierr);
  915. }
  916. /* Permute the matrices A, B to isolate eigenvalues if possible */
  917. ileft = 1;
  918. iright = *n + 1;
  919. irwrk = iright + *n;
  920. cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  921. ileft], &rwork[iright], &rwork[irwrk], &ierr);
  922. /* Reduce B to triangular form (QR decomposition of B) */
  923. irows = ihi + 1 - ilo;
  924. if (ilv) {
  925. icols = *n + 1 - ilo;
  926. } else {
  927. icols = irows;
  928. }
  929. itau = 1;
  930. iwrk = itau + irows;
  931. i__1 = *lwork + 1 - iwrk;
  932. cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  933. iwrk], &i__1, &ierr);
  934. /* Apply the orthogonal transformation to matrix A */
  935. i__1 = *lwork + 1 - iwrk;
  936. cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  937. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  938. ierr);
  939. /* Initialize VL */
  940. if (ilvl) {
  941. claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
  942. if (irows > 1) {
  943. i__1 = irows - 1;
  944. i__2 = irows - 1;
  945. clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  946. ilo + 1 + ilo * vl_dim1], ldvl);
  947. }
  948. i__1 = *lwork + 1 - iwrk;
  949. cungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  950. itau], &work[iwrk], &i__1, &ierr);
  951. }
  952. /* Initialize VR */
  953. if (ilvr) {
  954. claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
  955. }
  956. /* Reduce to generalized Hessenberg form */
  957. if (ilv) {
  958. /* Eigenvectors requested -- work on whole matrix. */
  959. i__1 = *lwork + 1 - iwrk;
  960. cgghd3_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  961. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk],
  962. &i__1, &ierr);
  963. } else {
  964. i__1 = *lwork + 1 - iwrk;
  965. cgghd3_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  966. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  967. vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  968. }
  969. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  970. /* Schur form and Schur vectors) */
  971. iwrk = itau;
  972. if (ilv) {
  973. *(unsigned char *)chtemp = 'S';
  974. } else {
  975. *(unsigned char *)chtemp = 'E';
  976. }
  977. i__1 = *lwork + 1 - iwrk;
  978. chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  979. b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[
  980. vr_offset], ldvr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
  981. if (ierr != 0) {
  982. if (ierr > 0 && ierr <= *n) {
  983. *info = ierr;
  984. } else if (ierr > *n && ierr <= *n << 1) {
  985. *info = ierr - *n;
  986. } else {
  987. *info = *n + 1;
  988. }
  989. goto L70;
  990. }
  991. /* Compute Eigenvectors */
  992. if (ilv) {
  993. if (ilvl) {
  994. if (ilvr) {
  995. *(unsigned char *)chtemp = 'B';
  996. } else {
  997. *(unsigned char *)chtemp = 'L';
  998. }
  999. } else {
  1000. *(unsigned char *)chtemp = 'R';
  1001. }
  1002. ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  1003. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1004. iwrk], &rwork[irwrk], &ierr);
  1005. if (ierr != 0) {
  1006. *info = *n + 2;
  1007. goto L70;
  1008. }
  1009. /* Undo balancing on VL and VR and normalization */
  1010. if (ilvl) {
  1011. cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
  1012. &vl[vl_offset], ldvl, &ierr);
  1013. i__1 = *n;
  1014. for (jc = 1; jc <= i__1; ++jc) {
  1015. temp = 0.f;
  1016. i__2 = *n;
  1017. for (jr = 1; jr <= i__2; ++jr) {
  1018. /* Computing MAX */
  1019. i__3 = jr + jc * vl_dim1;
  1020. r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (
  1021. r__2 = r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
  1022. temp = f2cmax(r__3,r__4);
  1023. /* L10: */
  1024. }
  1025. if (temp < smlnum) {
  1026. goto L30;
  1027. }
  1028. temp = 1.f / temp;
  1029. i__2 = *n;
  1030. for (jr = 1; jr <= i__2; ++jr) {
  1031. i__3 = jr + jc * vl_dim1;
  1032. i__4 = jr + jc * vl_dim1;
  1033. q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
  1034. vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
  1035. /* L20: */
  1036. }
  1037. L30:
  1038. ;
  1039. }
  1040. }
  1041. if (ilvr) {
  1042. cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
  1043. &vr[vr_offset], ldvr, &ierr);
  1044. i__1 = *n;
  1045. for (jc = 1; jc <= i__1; ++jc) {
  1046. temp = 0.f;
  1047. i__2 = *n;
  1048. for (jr = 1; jr <= i__2; ++jr) {
  1049. /* Computing MAX */
  1050. i__3 = jr + jc * vr_dim1;
  1051. r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (
  1052. r__2 = r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
  1053. temp = f2cmax(r__3,r__4);
  1054. /* L40: */
  1055. }
  1056. if (temp < smlnum) {
  1057. goto L60;
  1058. }
  1059. temp = 1.f / temp;
  1060. i__2 = *n;
  1061. for (jr = 1; jr <= i__2; ++jr) {
  1062. i__3 = jr + jc * vr_dim1;
  1063. i__4 = jr + jc * vr_dim1;
  1064. q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
  1065. vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
  1066. /* L50: */
  1067. }
  1068. L60:
  1069. ;
  1070. }
  1071. }
  1072. }
  1073. /* Undo scaling if necessary */
  1074. L70:
  1075. if (ilascl) {
  1076. clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1077. ierr);
  1078. }
  1079. if (ilbscl) {
  1080. clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1081. ierr);
  1082. }
  1083. q__1.r = (real) lwkopt, q__1.i = 0.f;
  1084. work[1].r = q__1.r, work[1].i = q__1.i;
  1085. return;
  1086. /* End of CGGEV3 */
  1087. } /* cggev3_ */