You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelss.c 44 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__6 = 6;
  487. static integer c_n1 = -1;
  488. static integer c__1 = 1;
  489. static integer c__0 = 0;
  490. static real c_b59 = 0.f;
  491. /* > \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CGELSS + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  510. /* WORK, LWORK, RWORK, INFO ) */
  511. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  512. /* REAL RCOND */
  513. /* REAL RWORK( * ), S( * ) */
  514. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CGELSS computes the minimum norm solution to a complex linear */
  521. /* > least squares problem: */
  522. /* > */
  523. /* > Minimize 2-norm(| b - A*x |). */
  524. /* > */
  525. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  526. /* > matrix which may be rank-deficient. */
  527. /* > */
  528. /* > Several right hand side vectors b and solution vectors x can be */
  529. /* > handled in a single call; they are stored as the columns of the */
  530. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  531. /* > X. */
  532. /* > */
  533. /* > The effective rank of A is determined by treating as zero those */
  534. /* > singular values which are less than RCOND times the largest singular */
  535. /* > value. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] M */
  540. /* > \verbatim */
  541. /* > M is INTEGER */
  542. /* > The number of rows of the matrix A. M >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The number of columns of the matrix A. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] NRHS */
  552. /* > \verbatim */
  553. /* > NRHS is INTEGER */
  554. /* > The number of right hand sides, i.e., the number of columns */
  555. /* > of the matrices B and X. NRHS >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] A */
  559. /* > \verbatim */
  560. /* > A is COMPLEX array, dimension (LDA,N) */
  561. /* > On entry, the M-by-N matrix A. */
  562. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  563. /* > its right singular vectors, stored rowwise. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] B */
  573. /* > \verbatim */
  574. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  575. /* > On entry, the M-by-NRHS right hand side matrix B. */
  576. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  577. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  578. /* > the solution in the i-th column is given by the sum of */
  579. /* > squares of the modulus of elements n+1:m in that column. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDB */
  583. /* > \verbatim */
  584. /* > LDB is INTEGER */
  585. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] S */
  589. /* > \verbatim */
  590. /* > S is REAL array, dimension (f2cmin(M,N)) */
  591. /* > The singular values of A in decreasing order. */
  592. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] RCOND */
  596. /* > \verbatim */
  597. /* > RCOND is REAL */
  598. /* > RCOND is used to determine the effective rank of A. */
  599. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  600. /* > If RCOND < 0, machine precision is used instead. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] RANK */
  604. /* > \verbatim */
  605. /* > RANK is INTEGER */
  606. /* > The effective rank of A, i.e., the number of singular values */
  607. /* > which are greater than RCOND*S(1). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] WORK */
  611. /* > \verbatim */
  612. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  613. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] LWORK */
  617. /* > \verbatim */
  618. /* > LWORK is INTEGER */
  619. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  620. /* > LWORK >= 2*f2cmin(M,N) + f2cmax(M,N,NRHS) */
  621. /* > For good performance, LWORK should generally be larger. */
  622. /* > */
  623. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  624. /* > only calculates the optimal size of the WORK array, returns */
  625. /* > this value as the first entry of the WORK array, and no error */
  626. /* > message related to LWORK is issued by XERBLA. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] RWORK */
  630. /* > \verbatim */
  631. /* > RWORK is REAL array, dimension (5*f2cmin(M,N)) */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] INFO */
  635. /* > \verbatim */
  636. /* > INFO is INTEGER */
  637. /* > = 0: successful exit */
  638. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  639. /* > > 0: the algorithm for computing the SVD failed to converge; */
  640. /* > if INFO = i, i off-diagonal elements of an intermediate */
  641. /* > bidiagonal form did not converge to zero. */
  642. /* > \endverbatim */
  643. /* Authors: */
  644. /* ======== */
  645. /* > \author Univ. of Tennessee */
  646. /* > \author Univ. of California Berkeley */
  647. /* > \author Univ. of Colorado Denver */
  648. /* > \author NAG Ltd. */
  649. /* > \date June 2016 */
  650. /* > \ingroup complexGEsolve */
  651. /* ===================================================================== */
  652. /* Subroutine */ void cgelss_(integer *m, integer *n, integer *nrhs, complex *
  653. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  654. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  655. info)
  656. {
  657. /* System generated locals */
  658. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  659. real r__1;
  660. /* Local variables */
  661. real anrm, bnrm;
  662. integer itau, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__,
  663. lwork_cungbr__, lwork_cunmbr__, i__, lwork_cunmlq__,
  664. lwork_cunmqr__;
  665. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  666. integer *, complex *, complex *, integer *, complex *, integer *,
  667. complex *, complex *, integer *);
  668. integer iascl, ibscl;
  669. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  670. , complex *, integer *, complex *, integer *, complex *, complex *
  671. , integer *);
  672. integer chunk;
  673. real sfmin;
  674. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  675. complex *, integer *);
  676. integer minmn, maxmn, itaup, itauq, mnthr, iwork, bl, ie, il;
  677. extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *,
  678. integer *, real *, real *, complex *, complex *, complex *,
  679. integer *, integer *), slabad_(real *, real *);
  680. extern real clange_(char *, integer *, integer *, complex *, integer *,
  681. real *);
  682. integer mm;
  683. extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
  684. integer *, complex *, complex *, integer *, integer *), clascl_(
  685. char *, integer *, integer *, real *, real *, integer *, integer *
  686. , complex *, integer *, integer *), cgeqrf_(integer *,
  687. integer *, complex *, integer *, complex *, complex *, integer *,
  688. integer *);
  689. extern real slamch_(char *);
  690. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  691. *, integer *, complex *, integer *), claset_(char *,
  692. integer *, integer *, complex *, complex *, complex *, integer *);
  693. extern int xerbla_(char *, integer *, ftnlen);
  694. extern void cbdsqr_(char *,
  695. integer *, integer *, integer *, integer *, real *, real *,
  696. complex *, integer *, complex *, integer *, complex *, integer *,
  697. real *, integer *);
  698. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  699. integer *, integer *, ftnlen, ftnlen);
  700. real bignum;
  701. extern /* Subroutine */ void cungbr_(char *, integer *, integer *, integer
  702. *, complex *, integer *, complex *, complex *, integer *, integer
  703. *), slascl_(char *, integer *, integer *, real *, real *,
  704. integer *, integer *, real *, integer *, integer *),
  705. cunmbr_(char *, char *, char *, integer *, integer *, integer *,
  706. complex *, integer *, complex *, complex *, integer *, complex *,
  707. integer *, integer *), csrscl_(integer *,
  708. real *, complex *, integer *), slaset_(char *, integer *, integer
  709. *, real *, real *, real *, integer *), cunmlq_(char *,
  710. char *, integer *, integer *, integer *, complex *, integer *,
  711. complex *, complex *, integer *, complex *, integer *, integer *);
  712. integer ldwork;
  713. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  714. integer *, complex *, integer *, complex *, complex *, integer *,
  715. complex *, integer *, integer *);
  716. integer minwrk, maxwrk;
  717. real smlnum;
  718. integer irwork;
  719. logical lquery;
  720. complex dum[1];
  721. real eps, thr;
  722. /* -- LAPACK driver routine (version 3.7.0) -- */
  723. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  724. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  725. /* June 2016 */
  726. /* ===================================================================== */
  727. /* Test the input arguments */
  728. /* Parameter adjustments */
  729. a_dim1 = *lda;
  730. a_offset = 1 + a_dim1 * 1;
  731. a -= a_offset;
  732. b_dim1 = *ldb;
  733. b_offset = 1 + b_dim1 * 1;
  734. b -= b_offset;
  735. --s;
  736. --work;
  737. --rwork;
  738. /* Function Body */
  739. *info = 0;
  740. minmn = f2cmin(*m,*n);
  741. maxmn = f2cmax(*m,*n);
  742. lquery = *lwork == -1;
  743. if (*m < 0) {
  744. *info = -1;
  745. } else if (*n < 0) {
  746. *info = -2;
  747. } else if (*nrhs < 0) {
  748. *info = -3;
  749. } else if (*lda < f2cmax(1,*m)) {
  750. *info = -5;
  751. } else if (*ldb < f2cmax(1,maxmn)) {
  752. *info = -7;
  753. }
  754. /* Compute workspace */
  755. /* (Note: Comments in the code beginning "Workspace:" describe the */
  756. /* minimal amount of workspace needed at that point in the code, */
  757. /* as well as the preferred amount for good performance. */
  758. /* CWorkspace refers to complex workspace, and RWorkspace refers */
  759. /* to real workspace. NB refers to the optimal block size for the */
  760. /* immediately following subroutine, as returned by ILAENV.) */
  761. if (*info == 0) {
  762. minwrk = 1;
  763. maxwrk = 1;
  764. if (minmn > 0) {
  765. mm = *m;
  766. mnthr = ilaenv_(&c__6, "CGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  767. 6, (ftnlen)1);
  768. if (*m >= *n && *m >= mnthr) {
  769. /* Path 1a - overdetermined, with many more rows than */
  770. /* columns */
  771. /* Compute space needed for CGEQRF */
  772. cgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  773. lwork_cgeqrf__ = dum[0].r;
  774. /* Compute space needed for CUNMQR */
  775. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[
  776. b_offset], ldb, dum, &c_n1, info);
  777. lwork_cunmqr__ = dum[0].r;
  778. mm = *n;
  779. /* Computing MAX */
  780. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF",
  781. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  782. maxwrk = f2cmax(i__1,i__2);
  783. /* Computing MAX */
  784. i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "CUNMQR",
  785. "LC", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  786. maxwrk = f2cmax(i__1,i__2);
  787. }
  788. if (*m >= *n) {
  789. /* Path 1 - overdetermined or exactly determined */
  790. /* Compute space needed for CGEBRD */
  791. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  792. dum, &c_n1, info);
  793. lwork_cgebrd__ = dum[0].r;
  794. /* Compute space needed for CUNMBR */
  795. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, &
  796. b[b_offset], ldb, dum, &c_n1, info);
  797. lwork_cunmbr__ = dum[0].r;
  798. /* Compute space needed for CUNGBR */
  799. cungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  800. info);
  801. lwork_cungbr__ = dum[0].r;
  802. /* Compute total workspace needed */
  803. /* Computing MAX */
  804. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cgebrd__;
  805. maxwrk = f2cmax(i__1,i__2);
  806. /* Computing MAX */
  807. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cunmbr__;
  808. maxwrk = f2cmax(i__1,i__2);
  809. /* Computing MAX */
  810. i__1 = maxwrk, i__2 = (*n << 1) + lwork_cungbr__;
  811. maxwrk = f2cmax(i__1,i__2);
  812. /* Computing MAX */
  813. i__1 = maxwrk, i__2 = *n * *nrhs;
  814. maxwrk = f2cmax(i__1,i__2);
  815. minwrk = (*n << 1) + f2cmax(*nrhs,*m);
  816. }
  817. if (*n > *m) {
  818. minwrk = (*m << 1) + f2cmax(*nrhs,*n);
  819. if (*n >= mnthr) {
  820. /* Path 2a - underdetermined, with many more columns */
  821. /* than rows */
  822. /* Compute space needed for CGELQF */
  823. cgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  824. lwork_cgelqf__ = dum[0].r;
  825. /* Compute space needed for CGEBRD */
  826. cgebrd_(m, m, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  827. dum, &c_n1, info);
  828. lwork_cgebrd__ = dum[0].r;
  829. /* Compute space needed for CUNMBR */
  830. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum,
  831. &b[b_offset], ldb, dum, &c_n1, info);
  832. lwork_cunmbr__ = dum[0].r;
  833. /* Compute space needed for CUNGBR */
  834. cungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  835. info);
  836. lwork_cungbr__ = dum[0].r;
  837. /* Compute space needed for CUNMLQ */
  838. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[
  839. b_offset], ldb, dum, &c_n1, info);
  840. lwork_cunmlq__ = dum[0].r;
  841. /* Compute total workspace needed */
  842. maxwrk = *m + lwork_cgelqf__;
  843. /* Computing MAX */
  844. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cgebrd__;
  845. maxwrk = f2cmax(i__1,i__2);
  846. /* Computing MAX */
  847. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cunmbr__;
  848. maxwrk = f2cmax(i__1,i__2);
  849. /* Computing MAX */
  850. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_cungbr__;
  851. maxwrk = f2cmax(i__1,i__2);
  852. if (*nrhs > 1) {
  853. /* Computing MAX */
  854. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  855. maxwrk = f2cmax(i__1,i__2);
  856. } else {
  857. /* Computing MAX */
  858. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  859. maxwrk = f2cmax(i__1,i__2);
  860. }
  861. /* Computing MAX */
  862. i__1 = maxwrk, i__2 = *m + lwork_cunmlq__;
  863. maxwrk = f2cmax(i__1,i__2);
  864. } else {
  865. /* Path 2 - underdetermined */
  866. /* Compute space needed for CGEBRD */
  867. cgebrd_(m, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  868. dum, &c_n1, info);
  869. lwork_cgebrd__ = dum[0].r;
  870. /* Compute space needed for CUNMBR */
  871. cunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum,
  872. &b[b_offset], ldb, dum, &c_n1, info);
  873. lwork_cunmbr__ = dum[0].r;
  874. /* Compute space needed for CUNGBR */
  875. cungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  876. info);
  877. lwork_cungbr__ = dum[0].r;
  878. maxwrk = (*m << 1) + lwork_cgebrd__;
  879. /* Computing MAX */
  880. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cunmbr__;
  881. maxwrk = f2cmax(i__1,i__2);
  882. /* Computing MAX */
  883. i__1 = maxwrk, i__2 = (*m << 1) + lwork_cungbr__;
  884. maxwrk = f2cmax(i__1,i__2);
  885. /* Computing MAX */
  886. i__1 = maxwrk, i__2 = *n * *nrhs;
  887. maxwrk = f2cmax(i__1,i__2);
  888. }
  889. }
  890. maxwrk = f2cmax(minwrk,maxwrk);
  891. }
  892. work[1].r = (real) maxwrk, work[1].i = 0.f;
  893. if (*lwork < minwrk && ! lquery) {
  894. *info = -12;
  895. }
  896. }
  897. if (*info != 0) {
  898. i__1 = -(*info);
  899. xerbla_("CGELSS", &i__1, (ftnlen)6);
  900. return;
  901. } else if (lquery) {
  902. return;
  903. }
  904. /* Quick return if possible */
  905. if (*m == 0 || *n == 0) {
  906. *rank = 0;
  907. return;
  908. }
  909. /* Get machine parameters */
  910. eps = slamch_("P");
  911. sfmin = slamch_("S");
  912. smlnum = sfmin / eps;
  913. bignum = 1.f / smlnum;
  914. slabad_(&smlnum, &bignum);
  915. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  916. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  917. iascl = 0;
  918. if (anrm > 0.f && anrm < smlnum) {
  919. /* Scale matrix norm up to SMLNUM */
  920. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  921. info);
  922. iascl = 1;
  923. } else if (anrm > bignum) {
  924. /* Scale matrix norm down to BIGNUM */
  925. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  926. info);
  927. iascl = 2;
  928. } else if (anrm == 0.f) {
  929. /* Matrix all zero. Return zero solution. */
  930. i__1 = f2cmax(*m,*n);
  931. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  932. slaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn);
  933. *rank = 0;
  934. goto L70;
  935. }
  936. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  937. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  938. ibscl = 0;
  939. if (bnrm > 0.f && bnrm < smlnum) {
  940. /* Scale matrix norm up to SMLNUM */
  941. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  942. info);
  943. ibscl = 1;
  944. } else if (bnrm > bignum) {
  945. /* Scale matrix norm down to BIGNUM */
  946. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  947. info);
  948. ibscl = 2;
  949. }
  950. /* Overdetermined case */
  951. if (*m >= *n) {
  952. /* Path 1 - overdetermined or exactly determined */
  953. mm = *m;
  954. if (*m >= mnthr) {
  955. /* Path 1a - overdetermined, with many more rows than columns */
  956. mm = *n;
  957. itau = 1;
  958. iwork = itau + *n;
  959. /* Compute A=Q*R */
  960. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  961. /* (RWorkspace: none) */
  962. i__1 = *lwork - iwork + 1;
  963. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  964. info);
  965. /* Multiply B by transpose(Q) */
  966. /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
  967. /* (RWorkspace: none) */
  968. i__1 = *lwork - iwork + 1;
  969. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  970. b_offset], ldb, &work[iwork], &i__1, info);
  971. /* Zero out below R */
  972. if (*n > 1) {
  973. i__1 = *n - 1;
  974. i__2 = *n - 1;
  975. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  976. }
  977. }
  978. ie = 1;
  979. itauq = 1;
  980. itaup = itauq + *n;
  981. iwork = itaup + *n;
  982. /* Bidiagonalize R in A */
  983. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  984. /* (RWorkspace: need N) */
  985. i__1 = *lwork - iwork + 1;
  986. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  987. work[itaup], &work[iwork], &i__1, info);
  988. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  989. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  990. /* (RWorkspace: none) */
  991. i__1 = *lwork - iwork + 1;
  992. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  993. &b[b_offset], ldb, &work[iwork], &i__1, info);
  994. /* Generate right bidiagonalizing vectors of R in A */
  995. /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  996. /* (RWorkspace: none) */
  997. i__1 = *lwork - iwork + 1;
  998. cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  999. i__1, info);
  1000. irwork = ie + *n;
  1001. /* Perform bidiagonal QR iteration */
  1002. /* multiply B by transpose of left singular vectors */
  1003. /* compute right singular vectors in A */
  1004. /* (CWorkspace: none) */
  1005. /* (RWorkspace: need BDSPAC) */
  1006. cbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda,
  1007. dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1008. if (*info != 0) {
  1009. goto L70;
  1010. }
  1011. /* Multiply B by reciprocals of singular values */
  1012. /* Computing MAX */
  1013. r__1 = *rcond * s[1];
  1014. thr = f2cmax(r__1,sfmin);
  1015. if (*rcond < 0.f) {
  1016. /* Computing MAX */
  1017. r__1 = eps * s[1];
  1018. thr = f2cmax(r__1,sfmin);
  1019. }
  1020. *rank = 0;
  1021. i__1 = *n;
  1022. for (i__ = 1; i__ <= i__1; ++i__) {
  1023. if (s[i__] > thr) {
  1024. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1025. ++(*rank);
  1026. } else {
  1027. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  1028. }
  1029. /* L10: */
  1030. }
  1031. /* Multiply B by right singular vectors */
  1032. /* (CWorkspace: need N, prefer N*NRHS) */
  1033. /* (RWorkspace: none) */
  1034. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1035. cgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[
  1036. b_offset], ldb, &c_b1, &work[1], ldb);
  1037. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  1038. ;
  1039. } else if (*nrhs > 1) {
  1040. chunk = *lwork / *n;
  1041. i__1 = *nrhs;
  1042. i__2 = chunk;
  1043. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  1044. /* Computing MIN */
  1045. i__3 = *nrhs - i__ + 1;
  1046. bl = f2cmin(i__3,chunk);
  1047. cgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ *
  1048. b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1049. clacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  1050. /* L20: */
  1051. }
  1052. } else {
  1053. cgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, &
  1054. c_b1, &work[1], &c__1);
  1055. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1056. }
  1057. } else /* if(complicated condition) */ {
  1058. /* Computing MAX */
  1059. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1060. if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + f2cmax(i__2,i__1)) {
  1061. /* Underdetermined case, M much less than N */
  1062. /* Path 2a - underdetermined, with many more columns than rows */
  1063. /* and sufficient workspace for an efficient algorithm */
  1064. ldwork = *m;
  1065. /* Computing MAX */
  1066. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1067. if (*lwork >= *m * 3 + *m * *lda + f2cmax(i__2,i__1)) {
  1068. ldwork = *lda;
  1069. }
  1070. itau = 1;
  1071. iwork = *m + 1;
  1072. /* Compute A=L*Q */
  1073. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  1074. /* (RWorkspace: none) */
  1075. i__2 = *lwork - iwork + 1;
  1076. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  1077. info);
  1078. il = iwork;
  1079. /* Copy L to WORK(IL), zeroing out above it */
  1080. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1081. i__2 = *m - 1;
  1082. i__1 = *m - 1;
  1083. claset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], &
  1084. ldwork);
  1085. ie = 1;
  1086. itauq = il + ldwork * *m;
  1087. itaup = itauq + *m;
  1088. iwork = itaup + *m;
  1089. /* Bidiagonalize L in WORK(IL) */
  1090. /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1091. /* (RWorkspace: need M) */
  1092. i__2 = *lwork - iwork + 1;
  1093. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  1094. &work[itaup], &work[iwork], &i__2, info);
  1095. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  1096. /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
  1097. /* (RWorkspace: none) */
  1098. i__2 = *lwork - iwork + 1;
  1099. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  1100. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  1101. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  1102. /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
  1103. /* (RWorkspace: none) */
  1104. i__2 = *lwork - iwork + 1;
  1105. cungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  1106. iwork], &i__2, info);
  1107. irwork = ie + *m;
  1108. /* Perform bidiagonal QR iteration, computing right singular */
  1109. /* vectors of L in WORK(IL) and multiplying B by transpose of */
  1110. /* left singular vectors */
  1111. /* (CWorkspace: need M*M) */
  1112. /* (RWorkspace: need BDSPAC) */
  1113. cbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], &
  1114. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[
  1115. irwork], info);
  1116. if (*info != 0) {
  1117. goto L70;
  1118. }
  1119. /* Multiply B by reciprocals of singular values */
  1120. /* Computing MAX */
  1121. r__1 = *rcond * s[1];
  1122. thr = f2cmax(r__1,sfmin);
  1123. if (*rcond < 0.f) {
  1124. /* Computing MAX */
  1125. r__1 = eps * s[1];
  1126. thr = f2cmax(r__1,sfmin);
  1127. }
  1128. *rank = 0;
  1129. i__2 = *m;
  1130. for (i__ = 1; i__ <= i__2; ++i__) {
  1131. if (s[i__] > thr) {
  1132. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1133. ++(*rank);
  1134. } else {
  1135. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1136. ldb);
  1137. }
  1138. /* L30: */
  1139. }
  1140. iwork = il + *m * ldwork;
  1141. /* Multiply B by right singular vectors of L in WORK(IL) */
  1142. /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  1143. /* (RWorkspace: none) */
  1144. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  1145. cgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[
  1146. b_offset], ldb, &c_b1, &work[iwork], ldb);
  1147. clacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  1148. } else if (*nrhs > 1) {
  1149. chunk = (*lwork - iwork + 1) / *m;
  1150. i__2 = *nrhs;
  1151. i__1 = chunk;
  1152. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1153. i__1) {
  1154. /* Computing MIN */
  1155. i__3 = *nrhs - i__ + 1;
  1156. bl = f2cmin(i__3,chunk);
  1157. cgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[
  1158. i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
  1159. clacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  1160. , ldb);
  1161. /* L40: */
  1162. }
  1163. } else {
  1164. cgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], &
  1165. c__1, &c_b1, &work[iwork], &c__1);
  1166. ccopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  1167. }
  1168. /* Zero out below first M rows of B */
  1169. i__1 = *n - *m;
  1170. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1171. iwork = itau + *m;
  1172. /* Multiply transpose(Q) by B */
  1173. /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
  1174. /* (RWorkspace: none) */
  1175. i__1 = *lwork - iwork + 1;
  1176. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1177. b_offset], ldb, &work[iwork], &i__1, info);
  1178. } else {
  1179. /* Path 2 - remaining underdetermined cases */
  1180. ie = 1;
  1181. itauq = 1;
  1182. itaup = itauq + *m;
  1183. iwork = itaup + *m;
  1184. /* Bidiagonalize A */
  1185. /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
  1186. /* (RWorkspace: need N) */
  1187. i__1 = *lwork - iwork + 1;
  1188. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1189. &work[itaup], &work[iwork], &i__1, info);
  1190. /* Multiply B by transpose of left bidiagonalizing vectors */
  1191. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1192. /* (RWorkspace: none) */
  1193. i__1 = *lwork - iwork + 1;
  1194. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1195. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  1196. /* Generate right bidiagonalizing vectors in A */
  1197. /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
  1198. /* (RWorkspace: none) */
  1199. i__1 = *lwork - iwork + 1;
  1200. cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  1201. iwork], &i__1, info);
  1202. irwork = ie + *m;
  1203. /* Perform bidiagonal QR iteration, */
  1204. /* computing right singular vectors of A in A and */
  1205. /* multiplying B by transpose of left singular vectors */
  1206. /* (CWorkspace: none) */
  1207. /* (RWorkspace: need BDSPAC) */
  1208. cbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset],
  1209. lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1210. if (*info != 0) {
  1211. goto L70;
  1212. }
  1213. /* Multiply B by reciprocals of singular values */
  1214. /* Computing MAX */
  1215. r__1 = *rcond * s[1];
  1216. thr = f2cmax(r__1,sfmin);
  1217. if (*rcond < 0.f) {
  1218. /* Computing MAX */
  1219. r__1 = eps * s[1];
  1220. thr = f2cmax(r__1,sfmin);
  1221. }
  1222. *rank = 0;
  1223. i__1 = *m;
  1224. for (i__ = 1; i__ <= i__1; ++i__) {
  1225. if (s[i__] > thr) {
  1226. csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1227. ++(*rank);
  1228. } else {
  1229. claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1230. ldb);
  1231. }
  1232. /* L50: */
  1233. }
  1234. /* Multiply B by right singular vectors of A */
  1235. /* (CWorkspace: need N, prefer N*NRHS) */
  1236. /* (RWorkspace: none) */
  1237. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1238. cgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[
  1239. b_offset], ldb, &c_b1, &work[1], ldb);
  1240. clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  1241. } else if (*nrhs > 1) {
  1242. chunk = *lwork / *n;
  1243. i__1 = *nrhs;
  1244. i__2 = chunk;
  1245. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1246. i__2) {
  1247. /* Computing MIN */
  1248. i__3 = *nrhs - i__ + 1;
  1249. bl = f2cmin(i__3,chunk);
  1250. cgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[
  1251. i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1252. clacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  1253. ldb);
  1254. /* L60: */
  1255. }
  1256. } else {
  1257. cgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], &
  1258. c__1, &c_b1, &work[1], &c__1);
  1259. ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1260. }
  1261. }
  1262. }
  1263. /* Undo scaling */
  1264. if (iascl == 1) {
  1265. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1266. info);
  1267. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1268. minmn, info);
  1269. } else if (iascl == 2) {
  1270. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1271. info);
  1272. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1273. minmn, info);
  1274. }
  1275. if (ibscl == 1) {
  1276. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1277. info);
  1278. } else if (ibscl == 2) {
  1279. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1280. info);
  1281. }
  1282. L70:
  1283. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1284. return;
  1285. /* End of CGELSS */
  1286. } /* cgelss_ */