You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunhr_col.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZUNHR_COL */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download ZUNHR_COL + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunhr_c
  493. ol.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunhr_c
  496. ol.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunhr_c
  499. ol.f"> */
  500. /* > [TXT]</a> */
  501. /* > */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) */
  505. /* INTEGER INFO, LDA, LDT, M, N, NB */
  506. /* COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * ) */
  507. /* > \par Purpose: */
  508. /* ============= */
  509. /* > */
  510. /* > \verbatim */
  511. /* > */
  512. /* > ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns */
  513. /* > as input, stored in A, and performs Householder Reconstruction (HR), */
  514. /* > i.e. reconstructs Householder vectors V(i) implicitly representing */
  515. /* > another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, */
  516. /* > where S is an N-by-N diagonal matrix with diagonal entries */
  517. /* > equal to +1 or -1. The Householder vectors (columns V(i) of V) are */
  518. /* > stored in A on output, and the diagonal entries of S are stored in D. */
  519. /* > Block reflectors are also returned in T */
  520. /* > (same output format as ZGEQRT). */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] M */
  525. /* > \verbatim */
  526. /* > M is INTEGER */
  527. /* > The number of rows of the matrix A. M >= 0. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The number of columns of the matrix A. M >= N >= 0. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] NB */
  537. /* > \verbatim */
  538. /* > NB is INTEGER */
  539. /* > The column block size to be used in the reconstruction */
  540. /* > of Householder column vector blocks in the array A and */
  541. /* > corresponding block reflectors in the array T. NB >= 1. */
  542. /* > (Note that if NB > N, then N is used instead of NB */
  543. /* > as the column block size.) */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in,out] A */
  547. /* > \verbatim */
  548. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  549. /* > */
  550. /* > On entry: */
  551. /* > */
  552. /* > The array A contains an M-by-N orthonormal matrix Q_in, */
  553. /* > i.e the columns of A are orthogonal unit vectors. */
  554. /* > */
  555. /* > On exit: */
  556. /* > */
  557. /* > The elements below the diagonal of A represent the unit */
  558. /* > lower-trapezoidal matrix V of Householder column vectors */
  559. /* > V(i). The unit diagonal entries of V are not stored */
  560. /* > (same format as the output below the diagonal in A from */
  561. /* > ZGEQRT). The matrix T and the matrix V stored on output */
  562. /* > in A implicitly define Q_out. */
  563. /* > */
  564. /* > The elements above the diagonal contain the factor U */
  565. /* > of the "modified" LU-decomposition: */
  566. /* > Q_in - ( S ) = V * U */
  567. /* > ( 0 ) */
  568. /* > where 0 is a (M-N)-by-(M-N) zero matrix. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] LDA */
  572. /* > \verbatim */
  573. /* > LDA is INTEGER */
  574. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] T */
  578. /* > \verbatim */
  579. /* > T is COMPLEX*16 array, */
  580. /* > dimension (LDT, N) */
  581. /* > */
  582. /* > Let NOCB = Number_of_output_col_blocks */
  583. /* > = CEIL(N/NB) */
  584. /* > */
  585. /* > On exit, T(1:NB, 1:N) contains NOCB upper-triangular */
  586. /* > block reflectors used to define Q_out stored in compact */
  587. /* > form as a sequence of upper-triangular NB-by-NB column */
  588. /* > blocks (same format as the output T in ZGEQRT). */
  589. /* > The matrix T and the matrix V stored on output in A */
  590. /* > implicitly define Q_out. NOTE: The lower triangles */
  591. /* > below the upper-triangular blcoks will be filled with */
  592. /* > zeros. See Further Details. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDT */
  596. /* > \verbatim */
  597. /* > LDT is INTEGER */
  598. /* > The leading dimension of the array T. */
  599. /* > LDT >= f2cmax(1,f2cmin(NB,N)). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] D */
  603. /* > \verbatim */
  604. /* > D is COMPLEX*16 array, dimension f2cmin(M,N). */
  605. /* > The elements can be only plus or minus one. */
  606. /* > */
  607. /* > D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where */
  608. /* > 1 <= i <= f2cmin(M,N), and Q_in_i is Q_in after performing */
  609. /* > i-1 steps of “modified” Gaussian elimination. */
  610. /* > See Further Details. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] INFO */
  614. /* > \verbatim */
  615. /* > INFO is INTEGER */
  616. /* > = 0: successful exit */
  617. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \par Further Details: */
  621. /* ===================== */
  622. /* > */
  623. /* > \verbatim */
  624. /* > */
  625. /* > The computed M-by-M unitary factor Q_out is defined implicitly as */
  626. /* > a product of unitary matrices Q_out(i). Each Q_out(i) is stored in */
  627. /* > the compact WY-representation format in the corresponding blocks of */
  628. /* > matrices V (stored in A) and T. */
  629. /* > */
  630. /* > The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N */
  631. /* > matrix A contains the column vectors V(i) in NB-size column */
  632. /* > blocks VB(j). For example, VB(1) contains the columns */
  633. /* > V(1), V(2), ... V(NB). NOTE: The unit entries on */
  634. /* > the diagonal of Y are not stored in A. */
  635. /* > */
  636. /* > The number of column blocks is */
  637. /* > */
  638. /* > NOCB = Number_of_output_col_blocks = CEIL(N/NB) */
  639. /* > */
  640. /* > where each block is of order NB except for the last block, which */
  641. /* > is of order LAST_NB = N - (NOCB-1)*NB. */
  642. /* > */
  643. /* > For example, if M=6, N=5 and NB=2, the matrix V is */
  644. /* > */
  645. /* > */
  646. /* > V = ( VB(1), VB(2), VB(3) ) = */
  647. /* > */
  648. /* > = ( 1 ) */
  649. /* > ( v21 1 ) */
  650. /* > ( v31 v32 1 ) */
  651. /* > ( v41 v42 v43 1 ) */
  652. /* > ( v51 v52 v53 v54 1 ) */
  653. /* > ( v61 v62 v63 v54 v65 ) */
  654. /* > */
  655. /* > */
  656. /* > For each of the column blocks VB(i), an upper-triangular block */
  657. /* > reflector TB(i) is computed. These blocks are stored as */
  658. /* > a sequence of upper-triangular column blocks in the NB-by-N */
  659. /* > matrix T. The size of each TB(i) block is NB-by-NB, except */
  660. /* > for the last block, whose size is LAST_NB-by-LAST_NB. */
  661. /* > */
  662. /* > For example, if M=6, N=5 and NB=2, the matrix T is */
  663. /* > */
  664. /* > T = ( TB(1), TB(2), TB(3) ) = */
  665. /* > */
  666. /* > = ( t11 t12 t13 t14 t15 ) */
  667. /* > ( t22 t24 ) */
  668. /* > */
  669. /* > */
  670. /* > The M-by-M factor Q_out is given as a product of NOCB */
  671. /* > unitary M-by-M matrices Q_out(i). */
  672. /* > */
  673. /* > Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), */
  674. /* > */
  675. /* > where each matrix Q_out(i) is given by the WY-representation */
  676. /* > using corresponding blocks from the matrices V and T: */
  677. /* > */
  678. /* > Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, */
  679. /* > */
  680. /* > where I is the identity matrix. Here is the formula with matrix */
  681. /* > dimensions: */
  682. /* > */
  683. /* > Q(i){M-by-M} = I{M-by-M} - */
  684. /* > VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, */
  685. /* > */
  686. /* > where INB = NB, except for the last block NOCB */
  687. /* > for which INB=LAST_NB. */
  688. /* > */
  689. /* > ===== */
  690. /* > NOTE: */
  691. /* > ===== */
  692. /* > */
  693. /* > If Q_in is the result of doing a QR factorization */
  694. /* > B = Q_in * R_in, then: */
  695. /* > */
  696. /* > B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out. */
  697. /* > */
  698. /* > So if one wants to interpret Q_out as the result */
  699. /* > of the QR factorization of B, then corresponding R_out */
  700. /* > should be obtained by R_out = S * R_in, i.e. some rows of R_in */
  701. /* > should be multiplied by -1. */
  702. /* > */
  703. /* > For the details of the algorithm, see [1]. */
  704. /* > */
  705. /* > [1] "Reconstructing Householder vectors from tall-skinny QR", */
  706. /* > G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, */
  707. /* > E. Solomonik, J. Parallel Distrib. Comput., */
  708. /* > vol. 85, pp. 3-31, 2015. */
  709. /* > \endverbatim */
  710. /* > */
  711. /* Authors: */
  712. /* ======== */
  713. /* > \author Univ. of Tennessee */
  714. /* > \author Univ. of California Berkeley */
  715. /* > \author Univ. of Colorado Denver */
  716. /* > \author NAG Ltd. */
  717. /* > \date November 2019 */
  718. /* > \ingroup complex16OTHERcomputational */
  719. /* > \par Contributors: */
  720. /* ================== */
  721. /* > */
  722. /* > \verbatim */
  723. /* > */
  724. /* > November 2019, Igor Kozachenko, */
  725. /* > Computer Science Division, */
  726. /* > University of California, Berkeley */
  727. /* > */
  728. /* > \endverbatim */
  729. /* ===================================================================== */
  730. /* Subroutine */ void zunhr_col_(integer *m, integer *n, integer *nb,
  731. doublecomplex *a, integer *lda, doublecomplex *t, integer *ldt,
  732. doublecomplex *d__, integer *info)
  733. {
  734. /* System generated locals */
  735. integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5;
  736. doublecomplex z__1;
  737. /* Local variables */
  738. extern /* Subroutine */ void zlaunhr_col_getrfnp_(integer *, integer *,
  739. doublecomplex *, integer *, doublecomplex *, integer *);
  740. integer nplusone, i__, j, iinfo;
  741. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  742. doublecomplex *, integer *), zcopy_(integer *, doublecomplex *,
  743. integer *, doublecomplex *, integer *), ztrsm_(char *, char *,
  744. char *, char *, integer *, integer *, doublecomplex *,
  745. doublecomplex *, integer *, doublecomplex *, integer *);
  746. integer jb;
  747. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  748. integer jbtemp1, jbtemp2, jnb;
  749. /* -- LAPACK computational routine (version 3.9.0) -- */
  750. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  751. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  752. /* November 2019 */
  753. /* ===================================================================== */
  754. /* Test the input parameters */
  755. /* Parameter adjustments */
  756. a_dim1 = *lda;
  757. a_offset = 1 + a_dim1 * 1;
  758. a -= a_offset;
  759. t_dim1 = *ldt;
  760. t_offset = 1 + t_dim1 * 1;
  761. t -= t_offset;
  762. --d__;
  763. /* Function Body */
  764. *info = 0;
  765. if (*m < 0) {
  766. *info = -1;
  767. } else if (*n < 0 || *n > *m) {
  768. *info = -2;
  769. } else if (*nb < 1) {
  770. *info = -3;
  771. } else if (*lda < f2cmax(1,*m)) {
  772. *info = -5;
  773. } else /* if(complicated condition) */ {
  774. /* Computing MAX */
  775. i__1 = 1, i__2 = f2cmin(*nb,*n);
  776. if (*ldt < f2cmax(i__1,i__2)) {
  777. *info = -7;
  778. }
  779. }
  780. /* Handle error in the input parameters. */
  781. if (*info != 0) {
  782. i__1 = -(*info);
  783. xerbla_("ZUNHR_COL", &i__1, (ftnlen)9);
  784. return;
  785. }
  786. /* Quick return if possible */
  787. if (f2cmin(*m,*n) == 0) {
  788. return;
  789. }
  790. /* On input, the M-by-N matrix A contains the unitary */
  791. /* M-by-N matrix Q_in. */
  792. /* (1) Compute the unit lower-trapezoidal V (ones on the diagonal */
  793. /* are not stored) by performing the "modified" LU-decomposition. */
  794. /* Q_in - ( S ) = V * U = ( V1 ) * U, */
  795. /* ( 0 ) ( V2 ) */
  796. /* where 0 is an (M-N)-by-N zero matrix. */
  797. /* (1-1) Factor V1 and U. */
  798. zlaunhr_col_getrfnp_(n, n, &a[a_offset], lda, &d__[1], &iinfo);
  799. /* (1-2) Solve for V2. */
  800. if (*m > *n) {
  801. i__1 = *m - *n;
  802. ztrsm_("R", "U", "N", "N", &i__1, n, &c_b1, &a[a_offset], lda, &a[*n
  803. + 1 + a_dim1], lda);
  804. }
  805. /* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) */
  806. /* as a sequence of upper-triangular blocks with NB-size column */
  807. /* blocking. */
  808. /* Loop over the column blocks of size NB of the array A(1:M,1:N) */
  809. /* and the array T(1:NB,1:N), JB is the column index of a column */
  810. /* block, JNB is the column block size at each step JB. */
  811. nplusone = *n + 1;
  812. i__1 = *n;
  813. i__2 = *nb;
  814. for (jb = 1; i__2 < 0 ? jb >= i__1 : jb <= i__1; jb += i__2) {
  815. /* (2-0) Determine the column block size JNB. */
  816. /* Computing MIN */
  817. i__3 = nplusone - jb;
  818. jnb = f2cmin(i__3,*nb);
  819. /* (2-1) Copy the upper-triangular part of the current JNB-by-JNB */
  820. /* diagonal block U(JB) (of the N-by-N matrix U) stored */
  821. /* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part */
  822. /* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) */
  823. /* column-by-column, total JNB*(JNB+1)/2 elements. */
  824. jbtemp1 = jb - 1;
  825. i__3 = jb + jnb - 1;
  826. for (j = jb; j <= i__3; ++j) {
  827. i__4 = j - jbtemp1;
  828. zcopy_(&i__4, &a[jb + j * a_dim1], &c__1, &t[j * t_dim1 + 1], &
  829. c__1);
  830. }
  831. /* (2-2) Perform on the upper-triangular part of the current */
  832. /* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored */
  833. /* in T(1:JNB,JB:JB+JNB-1) the following operation in place: */
  834. /* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- */
  835. /* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication */
  836. /* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB */
  837. /* diagonal block S(JB) of the N-by-N sign matrix S from the */
  838. /* right means changing the sign of each J-th column of the block */
  839. /* U(JB) according to the sign of the diagonal element of the block */
  840. /* S(JB), i.e. S(J,J) that is stored in the array element D(J). */
  841. i__3 = jb + jnb - 1;
  842. for (j = jb; j <= i__3; ++j) {
  843. i__4 = j;
  844. if (d__[i__4].r == 1. && d__[i__4].i == 0.) {
  845. i__4 = j - jbtemp1;
  846. z__1.r = -1., z__1.i = 0.;
  847. zscal_(&i__4, &z__1, &t[j * t_dim1 + 1], &c__1);
  848. }
  849. }
  850. /* (2-3) Perform the triangular solve for the current block */
  851. /* matrix X(JB): */
  852. /* X(JB) * (A(JB)**T) = B(JB), where: */
  853. /* A(JB)**T is a JNB-by-JNB unit upper-triangular */
  854. /* coefficient block, and A(JB)=V1(JB), which */
  855. /* is a JNB-by-JNB unit lower-triangular block */
  856. /* stored in A(JB:JB+JNB-1,JB:JB+JNB-1). */
  857. /* The N-by-N matrix V1 is the upper part */
  858. /* of the M-by-N lower-trapezoidal matrix V */
  859. /* stored in A(1:M,1:N); */
  860. /* B(JB) is a JNB-by-JNB upper-triangular right-hand */
  861. /* side block, B(JB) = (-1)*U(JB)*S(JB), and */
  862. /* B(JB) is stored in T(1:JNB,JB:JB+JNB-1); */
  863. /* X(JB) is a JNB-by-JNB upper-triangular solution */
  864. /* block, X(JB) is the upper-triangular block */
  865. /* reflector T(JB), and X(JB) is stored */
  866. /* in T(1:JNB,JB:JB+JNB-1). */
  867. /* In other words, we perform the triangular solve for the */
  868. /* upper-triangular block T(JB): */
  869. /* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). */
  870. /* Even though the blocks X(JB) and B(JB) are upper- */
  871. /* triangular, the routine ZTRSM will access all JNB**2 */
  872. /* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, */
  873. /* we need to set to zero the elements of the block */
  874. /* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call */
  875. /* to ZTRSM. */
  876. /* (2-3a) Set the elements to zero. */
  877. jbtemp2 = jb - 2;
  878. i__3 = jb + jnb - 2;
  879. for (j = jb; j <= i__3; ++j) {
  880. i__4 = *nb;
  881. for (i__ = j - jbtemp2; i__ <= i__4; ++i__) {
  882. i__5 = i__ + j * t_dim1;
  883. t[i__5].r = 0., t[i__5].i = 0.;
  884. }
  885. }
  886. /* (2-3b) Perform the triangular solve. */
  887. ztrsm_("R", "L", "C", "U", &jnb, &jnb, &c_b1, &a[jb + jb * a_dim1],
  888. lda, &t[jb * t_dim1 + 1], ldt);
  889. }
  890. return;
  891. /* End of ZUNHR_COL */
  892. } /* zunhr_col__ */