You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytf2_rk.c 49 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZSYTF2_RK computes the factorization of a complex symmetric indefinite matrix using the bounded
  487. Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZSYTF2_RK + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2_
  494. rk.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2_
  497. rk.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2_
  500. rk.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, LDA, N */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX*16 A( LDA, * ), E ( * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > ZSYTF2_RK computes the factorization of a complex symmetric matrix A */
  515. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  516. /* > */
  517. /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
  518. /* > */
  519. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  520. /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
  521. /* > matrix, P**T is the transpose of P, and D is symmetric and block */
  522. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  523. /* > */
  524. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  525. /* > For more information see Further Details section. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the upper or lower triangular part of the */
  533. /* > symmetric matrix A is stored: */
  534. /* > = 'U': Upper triangular */
  535. /* > = 'L': Lower triangular */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  547. /* > On entry, the symmetric matrix A. */
  548. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  549. /* > of A contains the upper triangular part of the matrix A, */
  550. /* > and the strictly lower triangular part of A is not */
  551. /* > referenced. */
  552. /* > */
  553. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  554. /* > of A contains the lower triangular part of the matrix A, */
  555. /* > and the strictly upper triangular part of A is not */
  556. /* > referenced. */
  557. /* > */
  558. /* > On exit, contains: */
  559. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  560. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  561. /* > (superdiagonal (or subdiagonal) elements of D */
  562. /* > are stored on exit in array E), and */
  563. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  564. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDA */
  568. /* > \verbatim */
  569. /* > LDA is INTEGER */
  570. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] E */
  574. /* > \verbatim */
  575. /* > E is COMPLEX*16 array, dimension (N) */
  576. /* > On exit, contains the superdiagonal (or subdiagonal) */
  577. /* > elements of the symmetric block diagonal matrix D */
  578. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  579. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  580. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  581. /* > */
  582. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  583. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  584. /* > UPLO = 'U' or UPLO = 'L' cases. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] IPIV */
  588. /* > \verbatim */
  589. /* > IPIV is INTEGER array, dimension (N) */
  590. /* > IPIV describes the permutation matrix P in the factorization */
  591. /* > of matrix A as follows. The absolute value of IPIV(k) */
  592. /* > represents the index of row and column that were */
  593. /* > interchanged with the k-th row and column. The value of UPLO */
  594. /* > describes the order in which the interchanges were applied. */
  595. /* > Also, the sign of IPIV represents the block structure of */
  596. /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
  597. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  598. /* > at each factorization step. For more info see Further */
  599. /* > Details section. */
  600. /* > */
  601. /* > If UPLO = 'U', */
  602. /* > ( in factorization order, k decreases from N to 1 ): */
  603. /* > a) A single positive entry IPIV(k) > 0 means: */
  604. /* > D(k,k) is a 1-by-1 diagonal block. */
  605. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  606. /* > interchanged in the matrix A(1:N,1:N); */
  607. /* > If IPIV(k) = k, no interchange occurred. */
  608. /* > */
  609. /* > b) A pair of consecutive negative entries */
  610. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  611. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  612. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  613. /* > 1) If -IPIV(k) != k, rows and columns */
  614. /* > k and -IPIV(k) were interchanged */
  615. /* > in the matrix A(1:N,1:N). */
  616. /* > If -IPIV(k) = k, no interchange occurred. */
  617. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  618. /* > k-1 and -IPIV(k-1) were interchanged */
  619. /* > in the matrix A(1:N,1:N). */
  620. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  621. /* > */
  622. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  623. /* > */
  624. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  625. /* > */
  626. /* > If UPLO = 'L', */
  627. /* > ( in factorization order, k increases from 1 to N ): */
  628. /* > a) A single positive entry IPIV(k) > 0 means: */
  629. /* > D(k,k) is a 1-by-1 diagonal block. */
  630. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  631. /* > interchanged in the matrix A(1:N,1:N). */
  632. /* > If IPIV(k) = k, no interchange occurred. */
  633. /* > */
  634. /* > b) A pair of consecutive negative entries */
  635. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  636. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  637. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  638. /* > 1) If -IPIV(k) != k, rows and columns */
  639. /* > k and -IPIV(k) were interchanged */
  640. /* > in the matrix A(1:N,1:N). */
  641. /* > If -IPIV(k) = k, no interchange occurred. */
  642. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  643. /* > k-1 and -IPIV(k-1) were interchanged */
  644. /* > in the matrix A(1:N,1:N). */
  645. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  646. /* > */
  647. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  648. /* > */
  649. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] INFO */
  653. /* > \verbatim */
  654. /* > INFO is INTEGER */
  655. /* > = 0: successful exit */
  656. /* > */
  657. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  658. /* > */
  659. /* > > 0: If INFO = k, the matrix A is singular, because: */
  660. /* > If UPLO = 'U': column k in the upper */
  661. /* > triangular part of A contains all zeros. */
  662. /* > If UPLO = 'L': column k in the lower */
  663. /* > triangular part of A contains all zeros. */
  664. /* > */
  665. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  666. /* > elements of column k of U (or subdiagonal elements of */
  667. /* > column k of L ) are all zeros. The factorization has */
  668. /* > been completed, but the block diagonal matrix D is */
  669. /* > exactly singular, and division by zero will occur if */
  670. /* > it is used to solve a system of equations. */
  671. /* > */
  672. /* > NOTE: INFO only stores the first occurrence of */
  673. /* > a singularity, any subsequent occurrence of singularity */
  674. /* > is not stored in INFO even though the factorization */
  675. /* > always completes. */
  676. /* > \endverbatim */
  677. /* Authors: */
  678. /* ======== */
  679. /* > \author Univ. of Tennessee */
  680. /* > \author Univ. of California Berkeley */
  681. /* > \author Univ. of Colorado Denver */
  682. /* > \author NAG Ltd. */
  683. /* > \date December 2016 */
  684. /* > \ingroup complex16SYcomputational */
  685. /* > \par Further Details: */
  686. /* ===================== */
  687. /* > */
  688. /* > \verbatim */
  689. /* > TODO: put further details */
  690. /* > \endverbatim */
  691. /* > \par Contributors: */
  692. /* ================== */
  693. /* > */
  694. /* > \verbatim */
  695. /* > */
  696. /* > December 2016, Igor Kozachenko, */
  697. /* > Computer Science Division, */
  698. /* > University of California, Berkeley */
  699. /* > */
  700. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  701. /* > School of Mathematics, */
  702. /* > University of Manchester */
  703. /* > */
  704. /* > 01-01-96 - Based on modifications by */
  705. /* > J. Lewis, Boeing Computer Services Company */
  706. /* > A. Petitet, Computer Science Dept., */
  707. /* > Univ. of Tenn., Knoxville abd , USA */
  708. /* > \endverbatim */
  709. /* ===================================================================== */
  710. /* Subroutine */ void zsytf2_rk_(char *uplo, integer *n, doublecomplex *a,
  711. integer *lda, doublecomplex *e, integer *ipiv, integer *info)
  712. {
  713. /* System generated locals */
  714. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  715. doublereal d__1, d__2;
  716. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  717. /* Local variables */
  718. logical done;
  719. integer imax, jmax;
  720. extern /* Subroutine */ void zsyr_(char *, integer *, doublecomplex *,
  721. doublecomplex *, integer *, doublecomplex *, integer *);
  722. integer i__, j, k, p;
  723. doublecomplex t;
  724. doublereal alpha;
  725. extern logical lsame_(char *, char *);
  726. doublereal dtemp, sfmin;
  727. integer itemp;
  728. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  729. doublecomplex *, integer *);
  730. integer kstep;
  731. logical upper;
  732. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  733. doublecomplex *, integer *);
  734. doublecomplex d11, d12, d21, d22;
  735. integer ii, kk;
  736. extern doublereal dlamch_(char *);
  737. integer kp;
  738. doublereal absakk;
  739. doublecomplex wk;
  740. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  741. doublereal colmax;
  742. extern integer izamax_(integer *, doublecomplex *, integer *);
  743. doublereal rowmax;
  744. doublecomplex wkm1, wkp1;
  745. /* -- LAPACK computational routine (version 3.7.0) -- */
  746. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  747. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  748. /* December 2016 */
  749. /* ===================================================================== */
  750. /* Test the input parameters. */
  751. /* Parameter adjustments */
  752. a_dim1 = *lda;
  753. a_offset = 1 + a_dim1 * 1;
  754. a -= a_offset;
  755. --e;
  756. --ipiv;
  757. /* Function Body */
  758. *info = 0;
  759. upper = lsame_(uplo, "U");
  760. if (! upper && ! lsame_(uplo, "L")) {
  761. *info = -1;
  762. } else if (*n < 0) {
  763. *info = -2;
  764. } else if (*lda < f2cmax(1,*n)) {
  765. *info = -4;
  766. }
  767. if (*info != 0) {
  768. i__1 = -(*info);
  769. xerbla_("ZSYTF2_RK", &i__1, (ftnlen)9);
  770. return;
  771. }
  772. /* Initialize ALPHA for use in choosing pivot block size. */
  773. alpha = (sqrt(17.) + 1.) / 8.;
  774. /* Compute machine safe minimum */
  775. sfmin = dlamch_("S");
  776. if (upper) {
  777. /* Factorize A as U*D*U**T using the upper triangle of A */
  778. /* Initialize the first entry of array E, where superdiagonal */
  779. /* elements of D are stored */
  780. e[1].r = 0., e[1].i = 0.;
  781. /* K is the main loop index, decreasing from N to 1 in steps of */
  782. /* 1 or 2 */
  783. k = *n;
  784. L10:
  785. /* If K < 1, exit from loop */
  786. if (k < 1) {
  787. goto L34;
  788. }
  789. kstep = 1;
  790. p = k;
  791. /* Determine rows and columns to be interchanged and whether */
  792. /* a 1-by-1 or 2-by-2 pivot block will be used */
  793. i__1 = k + k * a_dim1;
  794. absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k *
  795. a_dim1]), abs(d__2));
  796. /* IMAX is the row-index of the largest off-diagonal element in */
  797. /* column K, and COLMAX is its absolute value. */
  798. /* Determine both COLMAX and IMAX. */
  799. if (k > 1) {
  800. i__1 = k - 1;
  801. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  802. i__1 = imax + k * a_dim1;
  803. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  804. k * a_dim1]), abs(d__2));
  805. } else {
  806. colmax = 0.;
  807. }
  808. if (f2cmax(absakk,colmax) == 0.) {
  809. /* Column K is zero or underflow: set INFO and continue */
  810. if (*info == 0) {
  811. *info = k;
  812. }
  813. kp = k;
  814. /* Set E( K ) to zero */
  815. if (k > 1) {
  816. i__1 = k;
  817. e[i__1].r = 0., e[i__1].i = 0.;
  818. }
  819. } else {
  820. /* Test for interchange */
  821. /* Equivalent to testing for (used to handle NaN and Inf) */
  822. /* ABSAKK.GE.ALPHA*COLMAX */
  823. if (! (absakk < alpha * colmax)) {
  824. /* no interchange, */
  825. /* use 1-by-1 pivot block */
  826. kp = k;
  827. } else {
  828. done = FALSE_;
  829. /* Loop until pivot found */
  830. L12:
  831. /* Begin pivot search loop body */
  832. /* JMAX is the column-index of the largest off-diagonal */
  833. /* element in row IMAX, and ROWMAX is its absolute value. */
  834. /* Determine both ROWMAX and JMAX. */
  835. if (imax != k) {
  836. i__1 = k - imax;
  837. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
  838. a_dim1], lda);
  839. i__1 = imax + jmax * a_dim1;
  840. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  841. a[imax + jmax * a_dim1]), abs(d__2));
  842. } else {
  843. rowmax = 0.;
  844. }
  845. if (imax > 1) {
  846. i__1 = imax - 1;
  847. itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  848. i__1 = itemp + imax * a_dim1;
  849. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  850. itemp + imax * a_dim1]), abs(d__2));
  851. if (dtemp > rowmax) {
  852. rowmax = dtemp;
  853. jmax = itemp;
  854. }
  855. }
  856. /* Equivalent to testing for (used to handle NaN and Inf) */
  857. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  858. i__1 = imax + imax * a_dim1;
  859. if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax
  860. + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) {
  861. /* interchange rows and columns K and IMAX, */
  862. /* use 1-by-1 pivot block */
  863. kp = imax;
  864. done = TRUE_;
  865. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  866. /* used to handle NaN and Inf */
  867. } else if (p == jmax || rowmax <= colmax) {
  868. /* interchange rows and columns K+1 and IMAX, */
  869. /* use 2-by-2 pivot block */
  870. kp = imax;
  871. kstep = 2;
  872. done = TRUE_;
  873. } else {
  874. /* Pivot NOT found, set variables and repeat */
  875. p = imax;
  876. colmax = rowmax;
  877. imax = jmax;
  878. }
  879. /* End pivot search loop body */
  880. if (! done) {
  881. goto L12;
  882. }
  883. }
  884. /* Swap TWO rows and TWO columns */
  885. /* First swap */
  886. if (kstep == 2 && p != k) {
  887. /* Interchange rows and column K and P in the leading */
  888. /* submatrix A(1:k,1:k) if we have a 2-by-2 pivot */
  889. if (p > 1) {
  890. i__1 = p - 1;
  891. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  892. 1], &c__1);
  893. }
  894. if (p < k - 1) {
  895. i__1 = k - p - 1;
  896. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p +
  897. 1) * a_dim1], lda);
  898. }
  899. i__1 = k + k * a_dim1;
  900. t.r = a[i__1].r, t.i = a[i__1].i;
  901. i__1 = k + k * a_dim1;
  902. i__2 = p + p * a_dim1;
  903. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  904. i__1 = p + p * a_dim1;
  905. a[i__1].r = t.r, a[i__1].i = t.i;
  906. /* Convert upper triangle of A into U form by applying */
  907. /* the interchanges in columns k+1:N. */
  908. if (k < *n) {
  909. i__1 = *n - k;
  910. zswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  911. 1) * a_dim1], lda);
  912. }
  913. }
  914. /* Second swap */
  915. kk = k - kstep + 1;
  916. if (kp != kk) {
  917. /* Interchange rows and columns KK and KP in the leading */
  918. /* submatrix A(1:k,1:k) */
  919. if (kp > 1) {
  920. i__1 = kp - 1;
  921. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  922. + 1], &c__1);
  923. }
  924. if (kk > 1 && kp < kk - 1) {
  925. i__1 = kk - kp - 1;
  926. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (
  927. kp + 1) * a_dim1], lda);
  928. }
  929. i__1 = kk + kk * a_dim1;
  930. t.r = a[i__1].r, t.i = a[i__1].i;
  931. i__1 = kk + kk * a_dim1;
  932. i__2 = kp + kp * a_dim1;
  933. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  934. i__1 = kp + kp * a_dim1;
  935. a[i__1].r = t.r, a[i__1].i = t.i;
  936. if (kstep == 2) {
  937. i__1 = k - 1 + k * a_dim1;
  938. t.r = a[i__1].r, t.i = a[i__1].i;
  939. i__1 = k - 1 + k * a_dim1;
  940. i__2 = kp + k * a_dim1;
  941. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  942. i__1 = kp + k * a_dim1;
  943. a[i__1].r = t.r, a[i__1].i = t.i;
  944. }
  945. /* Convert upper triangle of A into U form by applying */
  946. /* the interchanges in columns k+1:N. */
  947. if (k < *n) {
  948. i__1 = *n - k;
  949. zswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  950. + 1) * a_dim1], lda);
  951. }
  952. }
  953. /* Update the leading submatrix */
  954. if (kstep == 1) {
  955. /* 1-by-1 pivot block D(k): column k now holds */
  956. /* W(k) = U(k)*D(k) */
  957. /* where U(k) is the k-th column of U */
  958. if (k > 1) {
  959. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  960. /* store U(k) in column k */
  961. i__1 = k + k * a_dim1;
  962. if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k +
  963. k * a_dim1]), abs(d__2)) >= sfmin) {
  964. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  965. /* A := A - U(k)*D(k)*U(k)**T */
  966. /* = A - W(k)*1/D(k)*W(k)**T */
  967. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  968. d11.r = z__1.r, d11.i = z__1.i;
  969. i__1 = k - 1;
  970. z__1.r = -d11.r, z__1.i = -d11.i;
  971. zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &
  972. a[a_offset], lda);
  973. /* Store U(k) in column k */
  974. i__1 = k - 1;
  975. zscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  976. } else {
  977. /* Store L(k) in column K */
  978. i__1 = k + k * a_dim1;
  979. d11.r = a[i__1].r, d11.i = a[i__1].i;
  980. i__1 = k - 1;
  981. for (ii = 1; ii <= i__1; ++ii) {
  982. i__2 = ii + k * a_dim1;
  983. z_div(&z__1, &a[ii + k * a_dim1], &d11);
  984. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  985. /* L16: */
  986. }
  987. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  988. /* A := A - U(k)*D(k)*U(k)**T */
  989. /* = A - W(k)*(1/D(k))*W(k)**T */
  990. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  991. i__1 = k - 1;
  992. z__1.r = -d11.r, z__1.i = -d11.i;
  993. zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &
  994. a[a_offset], lda);
  995. }
  996. /* Store the superdiagonal element of D in array E */
  997. i__1 = k;
  998. e[i__1].r = 0., e[i__1].i = 0.;
  999. }
  1000. } else {
  1001. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  1002. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1003. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1004. /* of U */
  1005. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  1006. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  1007. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  1008. /* and store L(k) and L(k+1) in columns k and k+1 */
  1009. if (k > 2) {
  1010. i__1 = k - 1 + k * a_dim1;
  1011. d12.r = a[i__1].r, d12.i = a[i__1].i;
  1012. z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &d12);
  1013. d22.r = z__1.r, d22.i = z__1.i;
  1014. z_div(&z__1, &a[k + k * a_dim1], &d12);
  1015. d11.r = z__1.r, d11.i = z__1.i;
  1016. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  1017. d22.i + d11.i * d22.r;
  1018. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  1019. z_div(&z__1, &c_b1, &z__2);
  1020. t.r = z__1.r, t.i = z__1.i;
  1021. for (j = k - 2; j >= 1; --j) {
  1022. i__1 = j + (k - 1) * a_dim1;
  1023. z__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i,
  1024. z__3.i = d11.r * a[i__1].i + d11.i * a[i__1]
  1025. .r;
  1026. i__2 = j + k * a_dim1;
  1027. z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
  1028. .i;
  1029. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1030. z__2.i + t.i * z__2.r;
  1031. wkm1.r = z__1.r, wkm1.i = z__1.i;
  1032. i__1 = j + k * a_dim1;
  1033. z__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i,
  1034. z__3.i = d22.r * a[i__1].i + d22.i * a[i__1]
  1035. .r;
  1036. i__2 = j + (k - 1) * a_dim1;
  1037. z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
  1038. .i;
  1039. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1040. z__2.i + t.i * z__2.r;
  1041. wk.r = z__1.r, wk.i = z__1.i;
  1042. for (i__ = j; i__ >= 1; --i__) {
  1043. i__1 = i__ + j * a_dim1;
  1044. i__2 = i__ + j * a_dim1;
  1045. z_div(&z__4, &a[i__ + k * a_dim1], &d12);
  1046. z__3.r = z__4.r * wk.r - z__4.i * wk.i, z__3.i =
  1047. z__4.r * wk.i + z__4.i * wk.r;
  1048. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  1049. z__3.i;
  1050. z_div(&z__6, &a[i__ + (k - 1) * a_dim1], &d12);
  1051. z__5.r = z__6.r * wkm1.r - z__6.i * wkm1.i,
  1052. z__5.i = z__6.r * wkm1.i + z__6.i *
  1053. wkm1.r;
  1054. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1055. z__5.i;
  1056. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1057. /* L20: */
  1058. }
  1059. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1060. i__1 = j + k * a_dim1;
  1061. z_div(&z__1, &wk, &d12);
  1062. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1063. i__1 = j + (k - 1) * a_dim1;
  1064. z_div(&z__1, &wkm1, &d12);
  1065. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1066. /* L30: */
  1067. }
  1068. }
  1069. /* Copy superdiagonal elements of D(K) to E(K) and */
  1070. /* ZERO out superdiagonal entry of A */
  1071. i__1 = k;
  1072. i__2 = k - 1 + k * a_dim1;
  1073. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1074. i__1 = k - 1;
  1075. e[i__1].r = 0., e[i__1].i = 0.;
  1076. i__1 = k - 1 + k * a_dim1;
  1077. a[i__1].r = 0., a[i__1].i = 0.;
  1078. }
  1079. /* End column K is nonsingular */
  1080. }
  1081. /* Store details of the interchanges in IPIV */
  1082. if (kstep == 1) {
  1083. ipiv[k] = kp;
  1084. } else {
  1085. ipiv[k] = -p;
  1086. ipiv[k - 1] = -kp;
  1087. }
  1088. /* Decrease K and return to the start of the main loop */
  1089. k -= kstep;
  1090. goto L10;
  1091. L34:
  1092. ;
  1093. } else {
  1094. /* Factorize A as L*D*L**T using the lower triangle of A */
  1095. /* Initialize the unused last entry of the subdiagonal array E. */
  1096. i__1 = *n;
  1097. e[i__1].r = 0., e[i__1].i = 0.;
  1098. /* K is the main loop index, increasing from 1 to N in steps of */
  1099. /* 1 or 2 */
  1100. k = 1;
  1101. L40:
  1102. /* If K > N, exit from loop */
  1103. if (k > *n) {
  1104. goto L64;
  1105. }
  1106. kstep = 1;
  1107. p = k;
  1108. /* Determine rows and columns to be interchanged and whether */
  1109. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1110. i__1 = k + k * a_dim1;
  1111. absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k *
  1112. a_dim1]), abs(d__2));
  1113. /* IMAX is the row-index of the largest off-diagonal element in */
  1114. /* column K, and COLMAX is its absolute value. */
  1115. /* Determine both COLMAX and IMAX. */
  1116. if (k < *n) {
  1117. i__1 = *n - k;
  1118. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1119. i__1 = imax + k * a_dim1;
  1120. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  1121. k * a_dim1]), abs(d__2));
  1122. } else {
  1123. colmax = 0.;
  1124. }
  1125. if (f2cmax(absakk,colmax) == 0.) {
  1126. /* Column K is zero or underflow: set INFO and continue */
  1127. if (*info == 0) {
  1128. *info = k;
  1129. }
  1130. kp = k;
  1131. /* Set E( K ) to zero */
  1132. if (k < *n) {
  1133. i__1 = k;
  1134. e[i__1].r = 0., e[i__1].i = 0.;
  1135. }
  1136. } else {
  1137. /* Test for interchange */
  1138. /* Equivalent to testing for (used to handle NaN and Inf) */
  1139. /* ABSAKK.GE.ALPHA*COLMAX */
  1140. if (! (absakk < alpha * colmax)) {
  1141. /* no interchange, use 1-by-1 pivot block */
  1142. kp = k;
  1143. } else {
  1144. done = FALSE_;
  1145. /* Loop until pivot found */
  1146. L42:
  1147. /* Begin pivot search loop body */
  1148. /* JMAX is the column-index of the largest off-diagonal */
  1149. /* element in row IMAX, and ROWMAX is its absolute value. */
  1150. /* Determine both ROWMAX and JMAX. */
  1151. if (imax != k) {
  1152. i__1 = imax - k;
  1153. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1154. i__1 = imax + jmax * a_dim1;
  1155. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1156. a[imax + jmax * a_dim1]), abs(d__2));
  1157. } else {
  1158. rowmax = 0.;
  1159. }
  1160. if (imax < *n) {
  1161. i__1 = *n - imax;
  1162. itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1163. , &c__1);
  1164. i__1 = itemp + imax * a_dim1;
  1165. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1166. itemp + imax * a_dim1]), abs(d__2));
  1167. if (dtemp > rowmax) {
  1168. rowmax = dtemp;
  1169. jmax = itemp;
  1170. }
  1171. }
  1172. /* Equivalent to testing for (used to handle NaN and Inf) */
  1173. /* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  1174. i__1 = imax + imax * a_dim1;
  1175. if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax
  1176. + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) {
  1177. /* interchange rows and columns K and IMAX, */
  1178. /* use 1-by-1 pivot block */
  1179. kp = imax;
  1180. done = TRUE_;
  1181. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  1182. /* used to handle NaN and Inf */
  1183. } else if (p == jmax || rowmax <= colmax) {
  1184. /* interchange rows and columns K+1 and IMAX, */
  1185. /* use 2-by-2 pivot block */
  1186. kp = imax;
  1187. kstep = 2;
  1188. done = TRUE_;
  1189. } else {
  1190. /* Pivot NOT found, set variables and repeat */
  1191. p = imax;
  1192. colmax = rowmax;
  1193. imax = jmax;
  1194. }
  1195. /* End pivot search loop body */
  1196. if (! done) {
  1197. goto L42;
  1198. }
  1199. }
  1200. /* Swap TWO rows and TWO columns */
  1201. /* First swap */
  1202. if (kstep == 2 && p != k) {
  1203. /* Interchange rows and column K and P in the trailing */
  1204. /* submatrix A(k:n,k:n) if we have a 2-by-2 pivot */
  1205. if (p < *n) {
  1206. i__1 = *n - p;
  1207. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1208. * a_dim1], &c__1);
  1209. }
  1210. if (p > k + 1) {
  1211. i__1 = p - k - 1;
  1212. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k +
  1213. 1) * a_dim1], lda);
  1214. }
  1215. i__1 = k + k * a_dim1;
  1216. t.r = a[i__1].r, t.i = a[i__1].i;
  1217. i__1 = k + k * a_dim1;
  1218. i__2 = p + p * a_dim1;
  1219. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1220. i__1 = p + p * a_dim1;
  1221. a[i__1].r = t.r, a[i__1].i = t.i;
  1222. /* Convert lower triangle of A into L form by applying */
  1223. /* the interchanges in columns 1:k-1. */
  1224. if (k > 1) {
  1225. i__1 = k - 1;
  1226. zswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1227. }
  1228. }
  1229. /* Second swap */
  1230. kk = k + kstep - 1;
  1231. if (kp != kk) {
  1232. /* Interchange rows and columns KK and KP in the trailing */
  1233. /* submatrix A(k:n,k:n) */
  1234. if (kp < *n) {
  1235. i__1 = *n - kp;
  1236. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1237. + kp * a_dim1], &c__1);
  1238. }
  1239. if (kk < *n && kp > kk + 1) {
  1240. i__1 = kp - kk - 1;
  1241. zswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (
  1242. kk + 1) * a_dim1], lda);
  1243. }
  1244. i__1 = kk + kk * a_dim1;
  1245. t.r = a[i__1].r, t.i = a[i__1].i;
  1246. i__1 = kk + kk * a_dim1;
  1247. i__2 = kp + kp * a_dim1;
  1248. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1249. i__1 = kp + kp * a_dim1;
  1250. a[i__1].r = t.r, a[i__1].i = t.i;
  1251. if (kstep == 2) {
  1252. i__1 = k + 1 + k * a_dim1;
  1253. t.r = a[i__1].r, t.i = a[i__1].i;
  1254. i__1 = k + 1 + k * a_dim1;
  1255. i__2 = kp + k * a_dim1;
  1256. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1257. i__1 = kp + k * a_dim1;
  1258. a[i__1].r = t.r, a[i__1].i = t.i;
  1259. }
  1260. /* Convert lower triangle of A into L form by applying */
  1261. /* the interchanges in columns 1:k-1. */
  1262. if (k > 1) {
  1263. i__1 = k - 1;
  1264. zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1265. }
  1266. }
  1267. /* Update the trailing submatrix */
  1268. if (kstep == 1) {
  1269. /* 1-by-1 pivot block D(k): column k now holds */
  1270. /* W(k) = L(k)*D(k) */
  1271. /* where L(k) is the k-th column of L */
  1272. if (k < *n) {
  1273. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1274. /* store L(k) in column k */
  1275. i__1 = k + k * a_dim1;
  1276. if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k +
  1277. k * a_dim1]), abs(d__2)) >= sfmin) {
  1278. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1279. /* A := A - L(k)*D(k)*L(k)**T */
  1280. /* = A - W(k)*(1/D(k))*W(k)**T */
  1281. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  1282. d11.r = z__1.r, d11.i = z__1.i;
  1283. i__1 = *n - k;
  1284. z__1.r = -d11.r, z__1.i = -d11.i;
  1285. zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &
  1286. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1287. /* Store L(k) in column k */
  1288. i__1 = *n - k;
  1289. zscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1290. } else {
  1291. /* Store L(k) in column k */
  1292. i__1 = k + k * a_dim1;
  1293. d11.r = a[i__1].r, d11.i = a[i__1].i;
  1294. i__1 = *n;
  1295. for (ii = k + 1; ii <= i__1; ++ii) {
  1296. i__2 = ii + k * a_dim1;
  1297. z_div(&z__1, &a[ii + k * a_dim1], &d11);
  1298. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1299. /* L46: */
  1300. }
  1301. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1302. /* A := A - L(k)*D(k)*L(k)**T */
  1303. /* = A - W(k)*(1/D(k))*W(k)**T */
  1304. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1305. i__1 = *n - k;
  1306. z__1.r = -d11.r, z__1.i = -d11.i;
  1307. zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &
  1308. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1309. }
  1310. /* Store the subdiagonal element of D in array E */
  1311. i__1 = k;
  1312. e[i__1].r = 0., e[i__1].i = 0.;
  1313. }
  1314. } else {
  1315. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1316. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1317. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1318. /* of L */
  1319. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1320. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1321. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1322. /* and store L(k) and L(k+1) in columns k and k+1 */
  1323. if (k < *n - 1) {
  1324. i__1 = k + 1 + k * a_dim1;
  1325. d21.r = a[i__1].r, d21.i = a[i__1].i;
  1326. z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &d21);
  1327. d11.r = z__1.r, d11.i = z__1.i;
  1328. z_div(&z__1, &a[k + k * a_dim1], &d21);
  1329. d22.r = z__1.r, d22.i = z__1.i;
  1330. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  1331. d22.i + d11.i * d22.r;
  1332. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  1333. z_div(&z__1, &c_b1, &z__2);
  1334. t.r = z__1.r, t.i = z__1.i;
  1335. i__1 = *n;
  1336. for (j = k + 2; j <= i__1; ++j) {
  1337. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1338. i__2 = j + k * a_dim1;
  1339. z__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i,
  1340. z__3.i = d11.r * a[i__2].i + d11.i * a[i__2]
  1341. .r;
  1342. i__3 = j + (k + 1) * a_dim1;
  1343. z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
  1344. .i;
  1345. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1346. z__2.i + t.i * z__2.r;
  1347. wk.r = z__1.r, wk.i = z__1.i;
  1348. i__2 = j + (k + 1) * a_dim1;
  1349. z__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i,
  1350. z__3.i = d22.r * a[i__2].i + d22.i * a[i__2]
  1351. .r;
  1352. i__3 = j + k * a_dim1;
  1353. z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
  1354. .i;
  1355. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1356. z__2.i + t.i * z__2.r;
  1357. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1358. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1359. i__2 = *n;
  1360. for (i__ = j; i__ <= i__2; ++i__) {
  1361. i__3 = i__ + j * a_dim1;
  1362. i__4 = i__ + j * a_dim1;
  1363. z_div(&z__4, &a[i__ + k * a_dim1], &d21);
  1364. z__3.r = z__4.r * wk.r - z__4.i * wk.i, z__3.i =
  1365. z__4.r * wk.i + z__4.i * wk.r;
  1366. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1367. z__3.i;
  1368. z_div(&z__6, &a[i__ + (k + 1) * a_dim1], &d21);
  1369. z__5.r = z__6.r * wkp1.r - z__6.i * wkp1.i,
  1370. z__5.i = z__6.r * wkp1.i + z__6.i *
  1371. wkp1.r;
  1372. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1373. z__5.i;
  1374. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1375. /* L50: */
  1376. }
  1377. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1378. i__2 = j + k * a_dim1;
  1379. z_div(&z__1, &wk, &d21);
  1380. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1381. i__2 = j + (k + 1) * a_dim1;
  1382. z_div(&z__1, &wkp1, &d21);
  1383. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1384. /* L60: */
  1385. }
  1386. }
  1387. /* Copy subdiagonal elements of D(K) to E(K) and */
  1388. /* ZERO out subdiagonal entry of A */
  1389. i__1 = k;
  1390. i__2 = k + 1 + k * a_dim1;
  1391. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1392. i__1 = k + 1;
  1393. e[i__1].r = 0., e[i__1].i = 0.;
  1394. i__1 = k + 1 + k * a_dim1;
  1395. a[i__1].r = 0., a[i__1].i = 0.;
  1396. }
  1397. /* End column K is nonsingular */
  1398. }
  1399. /* Store details of the interchanges in IPIV */
  1400. if (kstep == 1) {
  1401. ipiv[k] = kp;
  1402. } else {
  1403. ipiv[k] = -p;
  1404. ipiv[k + 1] = -kp;
  1405. }
  1406. /* Increase K and return to the start of the main loop */
  1407. k += kstep;
  1408. goto L40;
  1409. L64:
  1410. ;
  1411. }
  1412. return;
  1413. /* End of ZSYTF2_RK */
  1414. } /* zsytf2_rk__ */