You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slabrd.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static real c_b4 = -1.f;
  236. static real c_b5 = 1.f;
  237. static integer c__1 = 1;
  238. static real c_b16 = 0.f;
  239. /* > \brief \b SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
  240. /* =========== DOCUMENTATION =========== */
  241. /* Online html documentation available at */
  242. /* http://www.netlib.org/lapack/explore-html/ */
  243. /* > \htmlonly */
  244. /* > Download SLABRD + dependencies */
  245. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slabrd.
  246. f"> */
  247. /* > [TGZ]</a> */
  248. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slabrd.
  249. f"> */
  250. /* > [ZIP]</a> */
  251. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slabrd.
  252. f"> */
  253. /* > [TXT]</a> */
  254. /* > \endhtmlonly */
  255. /* Definition: */
  256. /* =========== */
  257. /* SUBROUTINE SLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
  258. /* LDY ) */
  259. /* INTEGER LDA, LDX, LDY, M, N, NB */
  260. /* REAL A( LDA, * ), D( * ), E( * ), TAUP( * ), */
  261. /* $ TAUQ( * ), X( LDX, * ), Y( LDY, * ) */
  262. /* > \par Purpose: */
  263. /* ============= */
  264. /* > */
  265. /* > \verbatim */
  266. /* > */
  267. /* > SLABRD reduces the first NB rows and columns of a real general */
  268. /* > m by n matrix A to upper or lower bidiagonal form by an orthogonal */
  269. /* > transformation Q**T * A * P, and returns the matrices X and Y which */
  270. /* > are needed to apply the transformation to the unreduced part of A. */
  271. /* > */
  272. /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
  273. /* > bidiagonal form. */
  274. /* > */
  275. /* > This is an auxiliary routine called by SGEBRD */
  276. /* > \endverbatim */
  277. /* Arguments: */
  278. /* ========== */
  279. /* > \param[in] M */
  280. /* > \verbatim */
  281. /* > M is INTEGER */
  282. /* > The number of rows in the matrix A. */
  283. /* > \endverbatim */
  284. /* > */
  285. /* > \param[in] N */
  286. /* > \verbatim */
  287. /* > N is INTEGER */
  288. /* > The number of columns in the matrix A. */
  289. /* > \endverbatim */
  290. /* > */
  291. /* > \param[in] NB */
  292. /* > \verbatim */
  293. /* > NB is INTEGER */
  294. /* > The number of leading rows and columns of A to be reduced. */
  295. /* > \endverbatim */
  296. /* > */
  297. /* > \param[in,out] A */
  298. /* > \verbatim */
  299. /* > A is REAL array, dimension (LDA,N) */
  300. /* > On entry, the m by n general matrix to be reduced. */
  301. /* > On exit, the first NB rows and columns of the matrix are */
  302. /* > overwritten; the rest of the array is unchanged. */
  303. /* > If m >= n, elements on and below the diagonal in the first NB */
  304. /* > columns, with the array TAUQ, represent the orthogonal */
  305. /* > matrix Q as a product of elementary reflectors; and */
  306. /* > elements above the diagonal in the first NB rows, with the */
  307. /* > array TAUP, represent the orthogonal matrix P as a product */
  308. /* > of elementary reflectors. */
  309. /* > If m < n, elements below the diagonal in the first NB */
  310. /* > columns, with the array TAUQ, represent the orthogonal */
  311. /* > matrix Q as a product of elementary reflectors, and */
  312. /* > elements on and above the diagonal in the first NB rows, */
  313. /* > with the array TAUP, represent the orthogonal matrix P as */
  314. /* > a product of elementary reflectors. */
  315. /* > See Further Details. */
  316. /* > \endverbatim */
  317. /* > */
  318. /* > \param[in] LDA */
  319. /* > \verbatim */
  320. /* > LDA is INTEGER */
  321. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  322. /* > \endverbatim */
  323. /* > */
  324. /* > \param[out] D */
  325. /* > \verbatim */
  326. /* > D is REAL array, dimension (NB) */
  327. /* > The diagonal elements of the first NB rows and columns of */
  328. /* > the reduced matrix. D(i) = A(i,i). */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[out] E */
  332. /* > \verbatim */
  333. /* > E is REAL array, dimension (NB) */
  334. /* > The off-diagonal elements of the first NB rows and columns of */
  335. /* > the reduced matrix. */
  336. /* > \endverbatim */
  337. /* > */
  338. /* > \param[out] TAUQ */
  339. /* > \verbatim */
  340. /* > TAUQ is REAL array, dimension (NB) */
  341. /* > The scalar factors of the elementary reflectors which */
  342. /* > represent the orthogonal matrix Q. See Further Details. */
  343. /* > \endverbatim */
  344. /* > */
  345. /* > \param[out] TAUP */
  346. /* > \verbatim */
  347. /* > TAUP is REAL array, dimension (NB) */
  348. /* > The scalar factors of the elementary reflectors which */
  349. /* > represent the orthogonal matrix P. See Further Details. */
  350. /* > \endverbatim */
  351. /* > */
  352. /* > \param[out] X */
  353. /* > \verbatim */
  354. /* > X is REAL array, dimension (LDX,NB) */
  355. /* > The m-by-nb matrix X required to update the unreduced part */
  356. /* > of A. */
  357. /* > \endverbatim */
  358. /* > */
  359. /* > \param[in] LDX */
  360. /* > \verbatim */
  361. /* > LDX is INTEGER */
  362. /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */
  363. /* > \endverbatim */
  364. /* > */
  365. /* > \param[out] Y */
  366. /* > \verbatim */
  367. /* > Y is REAL array, dimension (LDY,NB) */
  368. /* > The n-by-nb matrix Y required to update the unreduced part */
  369. /* > of A. */
  370. /* > \endverbatim */
  371. /* > */
  372. /* > \param[in] LDY */
  373. /* > \verbatim */
  374. /* > LDY is INTEGER */
  375. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  376. /* > \endverbatim */
  377. /* Authors: */
  378. /* ======== */
  379. /* > \author Univ. of Tennessee */
  380. /* > \author Univ. of California Berkeley */
  381. /* > \author Univ. of Colorado Denver */
  382. /* > \author NAG Ltd. */
  383. /* > \date June 2017 */
  384. /* > \ingroup realOTHERauxiliary */
  385. /* > \par Further Details: */
  386. /* ===================== */
  387. /* > */
  388. /* > \verbatim */
  389. /* > */
  390. /* > The matrices Q and P are represented as products of elementary */
  391. /* > reflectors: */
  392. /* > */
  393. /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
  394. /* > */
  395. /* > Each H(i) and G(i) has the form: */
  396. /* > */
  397. /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
  398. /* > */
  399. /* > where tauq and taup are real scalars, and v and u are real vectors. */
  400. /* > */
  401. /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
  402. /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
  403. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  404. /* > */
  405. /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
  406. /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
  407. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  408. /* > */
  409. /* > The elements of the vectors v and u together form the m-by-nb matrix */
  410. /* > V and the nb-by-n matrix U**T which are needed, with X and Y, to apply */
  411. /* > the transformation to the unreduced part of the matrix, using a block */
  412. /* > update of the form: A := A - V*Y**T - X*U**T. */
  413. /* > */
  414. /* > The contents of A on exit are illustrated by the following examples */
  415. /* > with nb = 2: */
  416. /* > */
  417. /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
  418. /* > */
  419. /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
  420. /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
  421. /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
  422. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  423. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  424. /* > ( v1 v2 a a a ) */
  425. /* > */
  426. /* > where a denotes an element of the original matrix which is unchanged, */
  427. /* > vi denotes an element of the vector defining H(i), and ui an element */
  428. /* > of the vector defining G(i). */
  429. /* > \endverbatim */
  430. /* > */
  431. /* ===================================================================== */
  432. /* Subroutine */ void slabrd_(integer *m, integer *n, integer *nb, real *a,
  433. integer *lda, real *d__, real *e, real *tauq, real *taup, real *x,
  434. integer *ldx, real *y, integer *ldy)
  435. {
  436. /* System generated locals */
  437. integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
  438. i__3;
  439. /* Local variables */
  440. integer i__;
  441. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
  442. sgemv_(char *, integer *, integer *, real *, real *, integer *,
  443. real *, integer *, real *, real *, integer *), slarfg_(
  444. integer *, real *, real *, integer *, real *);
  445. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  446. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  447. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  448. /* June 2017 */
  449. /* ===================================================================== */
  450. /* Quick return if possible */
  451. /* Parameter adjustments */
  452. a_dim1 = *lda;
  453. a_offset = 1 + a_dim1 * 1;
  454. a -= a_offset;
  455. --d__;
  456. --e;
  457. --tauq;
  458. --taup;
  459. x_dim1 = *ldx;
  460. x_offset = 1 + x_dim1 * 1;
  461. x -= x_offset;
  462. y_dim1 = *ldy;
  463. y_offset = 1 + y_dim1 * 1;
  464. y -= y_offset;
  465. /* Function Body */
  466. if (*m <= 0 || *n <= 0) {
  467. return;
  468. }
  469. if (*m >= *n) {
  470. /* Reduce to upper bidiagonal form */
  471. i__1 = *nb;
  472. for (i__ = 1; i__ <= i__1; ++i__) {
  473. /* Update A(i:m,i) */
  474. i__2 = *m - i__ + 1;
  475. i__3 = i__ - 1;
  476. sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda,
  477. &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
  478. c__1);
  479. i__2 = *m - i__ + 1;
  480. i__3 = i__ - 1;
  481. sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx,
  482. &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ *
  483. a_dim1], &c__1);
  484. /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
  485. i__2 = *m - i__ + 1;
  486. /* Computing MIN */
  487. i__3 = i__ + 1;
  488. slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[f2cmin(i__3,*m) + i__ *
  489. a_dim1], &c__1, &tauq[i__]);
  490. d__[i__] = a[i__ + i__ * a_dim1];
  491. if (i__ < *n) {
  492. a[i__ + i__ * a_dim1] = 1.f;
  493. /* Compute Y(i+1:n,i) */
  494. i__2 = *m - i__ + 1;
  495. i__3 = *n - i__;
  496. sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) *
  497. a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
  498. y[i__ + 1 + i__ * y_dim1], &c__1);
  499. i__2 = *m - i__ + 1;
  500. i__3 = i__ - 1;
  501. sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1],
  502. lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
  503. y_dim1 + 1], &c__1);
  504. i__2 = *n - i__;
  505. i__3 = i__ - 1;
  506. sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
  507. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
  508. i__ + 1 + i__ * y_dim1], &c__1);
  509. i__2 = *m - i__ + 1;
  510. i__3 = i__ - 1;
  511. sgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1],
  512. ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
  513. y_dim1 + 1], &c__1);
  514. i__2 = i__ - 1;
  515. i__3 = *n - i__;
  516. sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
  517. a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5,
  518. &y[i__ + 1 + i__ * y_dim1], &c__1);
  519. i__2 = *n - i__;
  520. sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  521. /* Update A(i,i+1:n) */
  522. i__2 = *n - i__;
  523. sgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 +
  524. y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
  525. i__ + 1) * a_dim1], lda);
  526. i__2 = i__ - 1;
  527. i__3 = *n - i__;
  528. sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
  529. a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
  530. i__ + (i__ + 1) * a_dim1], lda);
  531. /* Generate reflection P(i) to annihilate A(i,i+2:n) */
  532. i__2 = *n - i__;
  533. /* Computing MIN */
  534. i__3 = i__ + 2;
  535. slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + f2cmin(
  536. i__3,*n) * a_dim1], lda, &taup[i__]);
  537. e[i__] = a[i__ + (i__ + 1) * a_dim1];
  538. a[i__ + (i__ + 1) * a_dim1] = 1.f;
  539. /* Compute X(i+1:m,i) */
  540. i__2 = *m - i__;
  541. i__3 = *n - i__;
  542. sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__
  543. + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
  544. lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);
  545. i__2 = *n - i__;
  546. sgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1],
  547. ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
  548. i__ * x_dim1 + 1], &c__1);
  549. i__2 = *m - i__;
  550. sgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 +
  551. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
  552. i__ + 1 + i__ * x_dim1], &c__1);
  553. i__2 = i__ - 1;
  554. i__3 = *n - i__;
  555. sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
  556. a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
  557. c_b16, &x[i__ * x_dim1 + 1], &c__1);
  558. i__2 = *m - i__;
  559. i__3 = i__ - 1;
  560. sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
  561. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
  562. i__ + 1 + i__ * x_dim1], &c__1);
  563. i__2 = *m - i__;
  564. sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  565. }
  566. /* L10: */
  567. }
  568. } else {
  569. /* Reduce to lower bidiagonal form */
  570. i__1 = *nb;
  571. for (i__ = 1; i__ <= i__1; ++i__) {
  572. /* Update A(i,i:n) */
  573. i__2 = *n - i__ + 1;
  574. i__3 = i__ - 1;
  575. sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy,
  576. &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1],
  577. lda);
  578. i__2 = i__ - 1;
  579. i__3 = *n - i__ + 1;
  580. sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1],
  581. lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1],
  582. lda);
  583. /* Generate reflection P(i) to annihilate A(i,i+1:n) */
  584. i__2 = *n - i__ + 1;
  585. /* Computing MIN */
  586. i__3 = i__ + 1;
  587. slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + f2cmin(i__3,*n) *
  588. a_dim1], lda, &taup[i__]);
  589. d__[i__] = a[i__ + i__ * a_dim1];
  590. if (i__ < *m) {
  591. a[i__ + i__ * a_dim1] = 1.f;
  592. /* Compute X(i+1:m,i) */
  593. i__2 = *m - i__;
  594. i__3 = *n - i__ + 1;
  595. sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
  596. a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
  597. x[i__ + 1 + i__ * x_dim1], &c__1);
  598. i__2 = *n - i__ + 1;
  599. i__3 = i__ - 1;
  600. sgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1],
  601. ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
  602. x_dim1 + 1], &c__1);
  603. i__2 = *m - i__;
  604. i__3 = i__ - 1;
  605. sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
  606. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
  607. i__ + 1 + i__ * x_dim1], &c__1);
  608. i__2 = i__ - 1;
  609. i__3 = *n - i__ + 1;
  610. sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 +
  611. 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
  612. x_dim1 + 1], &c__1);
  613. i__2 = *m - i__;
  614. i__3 = i__ - 1;
  615. sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
  616. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
  617. i__ + 1 + i__ * x_dim1], &c__1);
  618. i__2 = *m - i__;
  619. sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  620. /* Update A(i+1:m,i) */
  621. i__2 = *m - i__;
  622. i__3 = i__ - 1;
  623. sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
  624. a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ +
  625. 1 + i__ * a_dim1], &c__1);
  626. i__2 = *m - i__;
  627. sgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 +
  628. x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
  629. i__ + 1 + i__ * a_dim1], &c__1);
  630. /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
  631. i__2 = *m - i__;
  632. /* Computing MIN */
  633. i__3 = i__ + 2;
  634. slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[f2cmin(i__3,*m) +
  635. i__ * a_dim1], &c__1, &tauq[i__]);
  636. e[i__] = a[i__ + 1 + i__ * a_dim1];
  637. a[i__ + 1 + i__ * a_dim1] = 1.f;
  638. /* Compute Y(i+1:n,i) */
  639. i__2 = *m - i__;
  640. i__3 = *n - i__;
  641. sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ +
  642. 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
  643. &c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);
  644. i__2 = *m - i__;
  645. i__3 = i__ - 1;
  646. sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1],
  647. lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
  648. i__ * y_dim1 + 1], &c__1);
  649. i__2 = *n - i__;
  650. i__3 = i__ - 1;
  651. sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
  652. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
  653. i__ + 1 + i__ * y_dim1], &c__1);
  654. i__2 = *m - i__;
  655. sgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1],
  656. ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
  657. i__ * y_dim1 + 1], &c__1);
  658. i__2 = *n - i__;
  659. sgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1
  660. + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__
  661. + 1 + i__ * y_dim1], &c__1);
  662. i__2 = *n - i__;
  663. sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  664. }
  665. /* L20: */
  666. }
  667. }
  668. return;
  669. /* End of SLABRD */
  670. } /* slabrd_ */