You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgtsvx.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief <b> DGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DGTSVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, */
  504. /* DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, */
  505. /* WORK, IWORK, INFO ) */
  506. /* CHARACTER FACT, TRANS */
  507. /* INTEGER INFO, LDB, LDX, N, NRHS */
  508. /* DOUBLE PRECISION RCOND */
  509. /* INTEGER IPIV( * ), IWORK( * ) */
  510. /* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), */
  511. /* $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), */
  512. /* $ FERR( * ), WORK( * ), X( LDX, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DGTSVX uses the LU factorization to compute the solution to a real */
  519. /* > system of linear equations A * X = B or A**T * X = B, */
  520. /* > where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
  521. /* > matrices. */
  522. /* > */
  523. /* > Error bounds on the solution and a condition estimate are also */
  524. /* > provided. */
  525. /* > \endverbatim */
  526. /* > \par Description: */
  527. /* ================= */
  528. /* > */
  529. /* > \verbatim */
  530. /* > */
  531. /* > The following steps are performed: */
  532. /* > */
  533. /* > 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
  534. /* > as A = L * U, where L is a product of permutation and unit lower */
  535. /* > bidiagonal matrices and U is upper triangular with nonzeros in */
  536. /* > only the main diagonal and first two superdiagonals. */
  537. /* > */
  538. /* > 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
  539. /* > returns with INFO = i. Otherwise, the factored form of A is used */
  540. /* > to estimate the condition number of the matrix A. If the */
  541. /* > reciprocal of the condition number is less than machine precision, */
  542. /* > INFO = N+1 is returned as a warning, but the routine still goes on */
  543. /* > to solve for X and compute error bounds as described below. */
  544. /* > */
  545. /* > 3. The system of equations is solved for X using the factored form */
  546. /* > of A. */
  547. /* > */
  548. /* > 4. Iterative refinement is applied to improve the computed solution */
  549. /* > matrix and calculate error bounds and backward error estimates */
  550. /* > for it. */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] FACT */
  555. /* > \verbatim */
  556. /* > FACT is CHARACTER*1 */
  557. /* > Specifies whether or not the factored form of A has been */
  558. /* > supplied on entry. */
  559. /* > = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored */
  560. /* > form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV */
  561. /* > will not be modified. */
  562. /* > = 'N': The matrix will be copied to DLF, DF, and DUF */
  563. /* > and factored. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] TRANS */
  567. /* > \verbatim */
  568. /* > TRANS is CHARACTER*1 */
  569. /* > Specifies the form of the system of equations: */
  570. /* > = 'N': A * X = B (No transpose) */
  571. /* > = 'T': A**T * X = B (Transpose) */
  572. /* > = 'C': A**H * X = B (Conjugate transpose = Transpose) */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] N */
  576. /* > \verbatim */
  577. /* > N is INTEGER */
  578. /* > The order of the matrix A. N >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] NRHS */
  582. /* > \verbatim */
  583. /* > NRHS is INTEGER */
  584. /* > The number of right hand sides, i.e., the number of columns */
  585. /* > of the matrix B. NRHS >= 0. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] DL */
  589. /* > \verbatim */
  590. /* > DL is DOUBLE PRECISION array, dimension (N-1) */
  591. /* > The (n-1) subdiagonal elements of A. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] D */
  595. /* > \verbatim */
  596. /* > D is DOUBLE PRECISION array, dimension (N) */
  597. /* > The n diagonal elements of A. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] DU */
  601. /* > \verbatim */
  602. /* > DU is DOUBLE PRECISION array, dimension (N-1) */
  603. /* > The (n-1) superdiagonal elements of A. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] DLF */
  607. /* > \verbatim */
  608. /* > DLF is DOUBLE PRECISION array, dimension (N-1) */
  609. /* > If FACT = 'F', then DLF is an input argument and on entry */
  610. /* > contains the (n-1) multipliers that define the matrix L from */
  611. /* > the LU factorization of A as computed by DGTTRF. */
  612. /* > */
  613. /* > If FACT = 'N', then DLF is an output argument and on exit */
  614. /* > contains the (n-1) multipliers that define the matrix L from */
  615. /* > the LU factorization of A. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in,out] DF */
  619. /* > \verbatim */
  620. /* > DF is DOUBLE PRECISION array, dimension (N) */
  621. /* > If FACT = 'F', then DF is an input argument and on entry */
  622. /* > contains the n diagonal elements of the upper triangular */
  623. /* > matrix U from the LU factorization of A. */
  624. /* > */
  625. /* > If FACT = 'N', then DF is an output argument and on exit */
  626. /* > contains the n diagonal elements of the upper triangular */
  627. /* > matrix U from the LU factorization of A. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in,out] DUF */
  631. /* > \verbatim */
  632. /* > DUF is DOUBLE PRECISION array, dimension (N-1) */
  633. /* > If FACT = 'F', then DUF is an input argument and on entry */
  634. /* > contains the (n-1) elements of the first superdiagonal of U. */
  635. /* > */
  636. /* > If FACT = 'N', then DUF is an output argument and on exit */
  637. /* > contains the (n-1) elements of the first superdiagonal of U. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in,out] DU2 */
  641. /* > \verbatim */
  642. /* > DU2 is DOUBLE PRECISION array, dimension (N-2) */
  643. /* > If FACT = 'F', then DU2 is an input argument and on entry */
  644. /* > contains the (n-2) elements of the second superdiagonal of */
  645. /* > U. */
  646. /* > */
  647. /* > If FACT = 'N', then DU2 is an output argument and on exit */
  648. /* > contains the (n-2) elements of the second superdiagonal of */
  649. /* > U. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in,out] IPIV */
  653. /* > \verbatim */
  654. /* > IPIV is INTEGER array, dimension (N) */
  655. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  656. /* > contains the pivot indices from the LU factorization of A as */
  657. /* > computed by DGTTRF. */
  658. /* > */
  659. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  660. /* > contains the pivot indices from the LU factorization of A; */
  661. /* > row i of the matrix was interchanged with row IPIV(i). */
  662. /* > IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
  663. /* > a row interchange was not required. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] B */
  667. /* > \verbatim */
  668. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  669. /* > The N-by-NRHS right hand side matrix B. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in] LDB */
  673. /* > \verbatim */
  674. /* > LDB is INTEGER */
  675. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] X */
  679. /* > \verbatim */
  680. /* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
  681. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in] LDX */
  685. /* > \verbatim */
  686. /* > LDX is INTEGER */
  687. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[out] RCOND */
  691. /* > \verbatim */
  692. /* > RCOND is DOUBLE PRECISION */
  693. /* > The estimate of the reciprocal condition number of the matrix */
  694. /* > A. If RCOND is less than the machine precision (in */
  695. /* > particular, if RCOND = 0), the matrix is singular to working */
  696. /* > precision. This condition is indicated by a return code of */
  697. /* > INFO > 0. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[out] FERR */
  701. /* > \verbatim */
  702. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  703. /* > The estimated forward error bound for each solution vector */
  704. /* > X(j) (the j-th column of the solution matrix X). */
  705. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  706. /* > is an estimated upper bound for the magnitude of the largest */
  707. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  708. /* > largest element in X(j). The estimate is as reliable as */
  709. /* > the estimate for RCOND, and is almost always a slight */
  710. /* > overestimate of the true error. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] BERR */
  714. /* > \verbatim */
  715. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  716. /* > The componentwise relative backward error of each solution */
  717. /* > vector X(j) (i.e., the smallest relative change in */
  718. /* > any element of A or B that makes X(j) an exact solution). */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] WORK */
  722. /* > \verbatim */
  723. /* > WORK is DOUBLE PRECISION array, dimension (3*N) */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[out] IWORK */
  727. /* > \verbatim */
  728. /* > IWORK is INTEGER array, dimension (N) */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[out] INFO */
  732. /* > \verbatim */
  733. /* > INFO is INTEGER */
  734. /* > = 0: successful exit */
  735. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  736. /* > > 0: if INFO = i, and i is */
  737. /* > <= N: U(i,i) is exactly zero. The factorization */
  738. /* > has not been completed unless i = N, but the */
  739. /* > factor U is exactly singular, so the solution */
  740. /* > and error bounds could not be computed. */
  741. /* > RCOND = 0 is returned. */
  742. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  743. /* > precision, meaning that the matrix is singular */
  744. /* > to working precision. Nevertheless, the */
  745. /* > solution and error bounds are computed because */
  746. /* > there are a number of situations where the */
  747. /* > computed solution can be more accurate than the */
  748. /* > value of RCOND would suggest. */
  749. /* > \endverbatim */
  750. /* Authors: */
  751. /* ======== */
  752. /* > \author Univ. of Tennessee */
  753. /* > \author Univ. of California Berkeley */
  754. /* > \author Univ. of Colorado Denver */
  755. /* > \author NAG Ltd. */
  756. /* > \date December 2016 */
  757. /* > \ingroup doubleGTsolve */
  758. /* ===================================================================== */
  759. /* Subroutine */ void dgtsvx_(char *fact, char *trans, integer *n, integer *
  760. nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *
  761. dlf, doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv,
  762. doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
  763. rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
  764. iwork, integer *info)
  765. {
  766. /* System generated locals */
  767. integer b_dim1, b_offset, x_dim1, x_offset, i__1;
  768. /* Local variables */
  769. char norm[1];
  770. extern logical lsame_(char *, char *);
  771. doublereal anorm;
  772. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  773. doublereal *, integer *);
  774. extern doublereal dlamch_(char *), dlangt_(char *, integer *,
  775. doublereal *, doublereal *, doublereal *);
  776. logical nofact;
  777. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  778. doublereal *, integer *, doublereal *, integer *);
  779. extern int xerbla_(char *, integer *, ftnlen);
  780. extern void dgtcon_(char *, integer *,
  781. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  782. doublereal *, doublereal *, doublereal *, integer *, integer *), dgtrfs_(char *, integer *, integer *, doublereal *,
  783. doublereal *, doublereal *, doublereal *, doublereal *,
  784. doublereal *, doublereal *, integer *, doublereal *, integer *,
  785. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  786. integer *, integer *), dgttrf_(integer *, doublereal *,
  787. doublereal *, doublereal *, doublereal *, integer *, integer *);
  788. logical notran;
  789. extern /* Subroutine */ void dgttrs_(char *, integer *, integer *,
  790. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  791. doublereal *, integer *, integer *);
  792. /* -- LAPACK driver routine (version 3.7.0) -- */
  793. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  794. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  795. /* December 2016 */
  796. /* ===================================================================== */
  797. /* Parameter adjustments */
  798. --dl;
  799. --d__;
  800. --du;
  801. --dlf;
  802. --df;
  803. --duf;
  804. --du2;
  805. --ipiv;
  806. b_dim1 = *ldb;
  807. b_offset = 1 + b_dim1 * 1;
  808. b -= b_offset;
  809. x_dim1 = *ldx;
  810. x_offset = 1 + x_dim1 * 1;
  811. x -= x_offset;
  812. --ferr;
  813. --berr;
  814. --work;
  815. --iwork;
  816. /* Function Body */
  817. *info = 0;
  818. nofact = lsame_(fact, "N");
  819. notran = lsame_(trans, "N");
  820. if (! nofact && ! lsame_(fact, "F")) {
  821. *info = -1;
  822. } else if (! notran && ! lsame_(trans, "T") && !
  823. lsame_(trans, "C")) {
  824. *info = -2;
  825. } else if (*n < 0) {
  826. *info = -3;
  827. } else if (*nrhs < 0) {
  828. *info = -4;
  829. } else if (*ldb < f2cmax(1,*n)) {
  830. *info = -14;
  831. } else if (*ldx < f2cmax(1,*n)) {
  832. *info = -16;
  833. }
  834. if (*info != 0) {
  835. i__1 = -(*info);
  836. xerbla_("DGTSVX", &i__1, (ftnlen)6);
  837. return;
  838. }
  839. if (nofact) {
  840. /* Compute the LU factorization of A. */
  841. dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
  842. if (*n > 1) {
  843. i__1 = *n - 1;
  844. dcopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
  845. i__1 = *n - 1;
  846. dcopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
  847. }
  848. dgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
  849. /* Return if INFO is non-zero. */
  850. if (*info > 0) {
  851. *rcond = 0.;
  852. return;
  853. }
  854. }
  855. /* Compute the norm of the matrix A. */
  856. if (notran) {
  857. *(unsigned char *)norm = '1';
  858. } else {
  859. *(unsigned char *)norm = 'I';
  860. }
  861. anorm = dlangt_(norm, n, &dl[1], &d__[1], &du[1]);
  862. /* Compute the reciprocal of the condition number of A. */
  863. dgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm,
  864. rcond, &work[1], &iwork[1], info);
  865. /* Compute the solution vectors X. */
  866. dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  867. dgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
  868. x_offset], ldx, info);
  869. /* Use iterative refinement to improve the computed solutions and */
  870. /* compute error bounds and backward error estimates for them. */
  871. dgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
  872. &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
  873. , &berr[1], &work[1], &iwork[1], info);
  874. /* Set INFO = N+1 if the matrix is singular to working precision. */
  875. if (*rcond < dlamch_("Epsilon")) {
  876. *info = *n + 1;
  877. }
  878. return;
  879. /* End of DGTSVX */
  880. } /* dgtsvx_ */