You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpbsvx.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief <b> CPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CPBSVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbsvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbsvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbsvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, */
  504. /* EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, */
  505. /* WORK, RWORK, INFO ) */
  506. /* CHARACTER EQUED, FACT, UPLO */
  507. /* INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS */
  508. /* REAL RCOND */
  509. /* REAL BERR( * ), FERR( * ), RWORK( * ), S( * ) */
  510. /* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
  511. /* $ WORK( * ), X( LDX, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to */
  518. /* > compute the solution to a complex system of linear equations */
  519. /* > A * X = B, */
  520. /* > where A is an N-by-N Hermitian positive definite band matrix and X */
  521. /* > and B are N-by-NRHS matrices. */
  522. /* > */
  523. /* > Error bounds on the solution and a condition estimate are also */
  524. /* > provided. */
  525. /* > \endverbatim */
  526. /* > \par Description: */
  527. /* ================= */
  528. /* > */
  529. /* > \verbatim */
  530. /* > */
  531. /* > The following steps are performed: */
  532. /* > */
  533. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  534. /* > the system: */
  535. /* > diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
  536. /* > Whether or not the system will be equilibrated depends on the */
  537. /* > scaling of the matrix A, but if equilibration is used, A is */
  538. /* > overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
  539. /* > */
  540. /* > 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
  541. /* > factor the matrix A (after equilibration if FACT = 'E') as */
  542. /* > A = U**H * U, if UPLO = 'U', or */
  543. /* > A = L * L**H, if UPLO = 'L', */
  544. /* > where U is an upper triangular band matrix, and L is a lower */
  545. /* > triangular band matrix. */
  546. /* > */
  547. /* > 3. If the leading i-by-i principal minor is not positive definite, */
  548. /* > then the routine returns with INFO = i. Otherwise, the factored */
  549. /* > form of A is used to estimate the condition number of the matrix */
  550. /* > A. If the reciprocal of the condition number is less than machine */
  551. /* > precision, INFO = N+1 is returned as a warning, but the routine */
  552. /* > still goes on to solve for X and compute error bounds as */
  553. /* > described below. */
  554. /* > */
  555. /* > 4. The system of equations is solved for X using the factored form */
  556. /* > of A. */
  557. /* > */
  558. /* > 5. Iterative refinement is applied to improve the computed solution */
  559. /* > matrix and calculate error bounds and backward error estimates */
  560. /* > for it. */
  561. /* > */
  562. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  563. /* > diag(S) so that it solves the original system before */
  564. /* > equilibration. */
  565. /* > \endverbatim */
  566. /* Arguments: */
  567. /* ========== */
  568. /* > \param[in] FACT */
  569. /* > \verbatim */
  570. /* > FACT is CHARACTER*1 */
  571. /* > Specifies whether or not the factored form of the matrix A is */
  572. /* > supplied on entry, and if not, whether the matrix A should be */
  573. /* > equilibrated before it is factored. */
  574. /* > = 'F': On entry, AFB contains the factored form of A. */
  575. /* > If EQUED = 'Y', the matrix A has been equilibrated */
  576. /* > with scaling factors given by S. AB and AFB will not */
  577. /* > be modified. */
  578. /* > = 'N': The matrix A will be copied to AFB and factored. */
  579. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  580. /* > copied to AFB and factored. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] UPLO */
  584. /* > \verbatim */
  585. /* > UPLO is CHARACTER*1 */
  586. /* > = 'U': Upper triangle of A is stored; */
  587. /* > = 'L': Lower triangle of A is stored. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] N */
  591. /* > \verbatim */
  592. /* > N is INTEGER */
  593. /* > The number of linear equations, i.e., the order of the */
  594. /* > matrix A. N >= 0. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] KD */
  598. /* > \verbatim */
  599. /* > KD is INTEGER */
  600. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  601. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] NRHS */
  605. /* > \verbatim */
  606. /* > NRHS is INTEGER */
  607. /* > The number of right-hand sides, i.e., the number of columns */
  608. /* > of the matrices B and X. NRHS >= 0. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in,out] AB */
  612. /* > \verbatim */
  613. /* > AB is COMPLEX array, dimension (LDAB,N) */
  614. /* > On entry, the upper or lower triangle of the Hermitian band */
  615. /* > matrix A, stored in the first KD+1 rows of the array, except */
  616. /* > if FACT = 'F' and EQUED = 'Y', then A must contain the */
  617. /* > equilibrated matrix diag(S)*A*diag(S). The j-th column of A */
  618. /* > is stored in the j-th column of the array AB as follows: */
  619. /* > if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for f2cmax(1,j-KD)<=i<=j; */
  620. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(N,j+KD). */
  621. /* > See below for further details. */
  622. /* > */
  623. /* > On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
  624. /* > diag(S)*A*diag(S). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDAB */
  628. /* > \verbatim */
  629. /* > LDAB is INTEGER */
  630. /* > The leading dimension of the array A. LDAB >= KD+1. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] AFB */
  634. /* > \verbatim */
  635. /* > AFB is COMPLEX array, dimension (LDAFB,N) */
  636. /* > If FACT = 'F', then AFB is an input argument and on entry */
  637. /* > contains the triangular factor U or L from the Cholesky */
  638. /* > factorization A = U**H*U or A = L*L**H of the band matrix */
  639. /* > A, in the same storage format as A (see AB). If EQUED = 'Y', */
  640. /* > then AFB is the factored form of the equilibrated matrix A. */
  641. /* > */
  642. /* > If FACT = 'N', then AFB is an output argument and on exit */
  643. /* > returns the triangular factor U or L from the Cholesky */
  644. /* > factorization A = U**H*U or A = L*L**H. */
  645. /* > */
  646. /* > If FACT = 'E', then AFB is an output argument and on exit */
  647. /* > returns the triangular factor U or L from the Cholesky */
  648. /* > factorization A = U**H*U or A = L*L**H of the equilibrated */
  649. /* > matrix A (see the description of A for the form of the */
  650. /* > equilibrated matrix). */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[in] LDAFB */
  654. /* > \verbatim */
  655. /* > LDAFB is INTEGER */
  656. /* > The leading dimension of the array AFB. LDAFB >= KD+1. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in,out] EQUED */
  660. /* > \verbatim */
  661. /* > EQUED is CHARACTER*1 */
  662. /* > Specifies the form of equilibration that was done. */
  663. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  664. /* > = 'Y': Equilibration was done, i.e., A has been replaced by */
  665. /* > diag(S) * A * diag(S). */
  666. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  667. /* > output argument. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[in,out] S */
  671. /* > \verbatim */
  672. /* > S is REAL array, dimension (N) */
  673. /* > The scale factors for A; not accessed if EQUED = 'N'. S is */
  674. /* > an input argument if FACT = 'F'; otherwise, S is an output */
  675. /* > argument. If FACT = 'F' and EQUED = 'Y', each element of S */
  676. /* > must be positive. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in,out] B */
  680. /* > \verbatim */
  681. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  682. /* > On entry, the N-by-NRHS right hand side matrix B. */
  683. /* > On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
  684. /* > B is overwritten by diag(S) * B. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[in] LDB */
  688. /* > \verbatim */
  689. /* > LDB is INTEGER */
  690. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] X */
  694. /* > \verbatim */
  695. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  696. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
  697. /* > the original system of equations. Note that if EQUED = 'Y', */
  698. /* > A and B are modified on exit, and the solution to the */
  699. /* > equilibrated system is inv(diag(S))*X. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[in] LDX */
  703. /* > \verbatim */
  704. /* > LDX is INTEGER */
  705. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] RCOND */
  709. /* > \verbatim */
  710. /* > RCOND is REAL */
  711. /* > The estimate of the reciprocal condition number of the matrix */
  712. /* > A after equilibration (if done). If RCOND is less than the */
  713. /* > machine precision (in particular, if RCOND = 0), the matrix */
  714. /* > is singular to working precision. This condition is */
  715. /* > indicated by a return code of INFO > 0. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] FERR */
  719. /* > \verbatim */
  720. /* > FERR is REAL array, dimension (NRHS) */
  721. /* > The estimated forward error bound for each solution vector */
  722. /* > X(j) (the j-th column of the solution matrix X). */
  723. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  724. /* > is an estimated upper bound for the magnitude of the largest */
  725. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  726. /* > largest element in X(j). The estimate is as reliable as */
  727. /* > the estimate for RCOND, and is almost always a slight */
  728. /* > overestimate of the true error. */
  729. /* > \endverbatim */
  730. /* > */
  731. /* > \param[out] BERR */
  732. /* > \verbatim */
  733. /* > BERR is REAL array, dimension (NRHS) */
  734. /* > The componentwise relative backward error of each solution */
  735. /* > vector X(j) (i.e., the smallest relative change in */
  736. /* > any element of A or B that makes X(j) an exact solution). */
  737. /* > \endverbatim */
  738. /* > */
  739. /* > \param[out] WORK */
  740. /* > \verbatim */
  741. /* > WORK is COMPLEX array, dimension (2*N) */
  742. /* > \endverbatim */
  743. /* > */
  744. /* > \param[out] RWORK */
  745. /* > \verbatim */
  746. /* > RWORK is REAL array, dimension (N) */
  747. /* > \endverbatim */
  748. /* > */
  749. /* > \param[out] INFO */
  750. /* > \verbatim */
  751. /* > INFO is INTEGER */
  752. /* > = 0: successful exit */
  753. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  754. /* > > 0: if INFO = i, and i is */
  755. /* > <= N: the leading minor of order i of A is */
  756. /* > not positive definite, so the factorization */
  757. /* > could not be completed, and the solution has not */
  758. /* > been computed. RCOND = 0 is returned. */
  759. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  760. /* > precision, meaning that the matrix is singular */
  761. /* > to working precision. Nevertheless, the */
  762. /* > solution and error bounds are computed because */
  763. /* > there are a number of situations where the */
  764. /* > computed solution can be more accurate than the */
  765. /* > value of RCOND would suggest. */
  766. /* > \endverbatim */
  767. /* Authors: */
  768. /* ======== */
  769. /* > \author Univ. of Tennessee */
  770. /* > \author Univ. of California Berkeley */
  771. /* > \author Univ. of Colorado Denver */
  772. /* > \author NAG Ltd. */
  773. /* > \date April 2012 */
  774. /* > \ingroup complexOTHERsolve */
  775. /* > \par Further Details: */
  776. /* ===================== */
  777. /* > */
  778. /* > \verbatim */
  779. /* > */
  780. /* > The band storage scheme is illustrated by the following example, when */
  781. /* > N = 6, KD = 2, and UPLO = 'U': */
  782. /* > */
  783. /* > Two-dimensional storage of the Hermitian matrix A: */
  784. /* > */
  785. /* > a11 a12 a13 */
  786. /* > a22 a23 a24 */
  787. /* > a33 a34 a35 */
  788. /* > a44 a45 a46 */
  789. /* > a55 a56 */
  790. /* > (aij=conjg(aji)) a66 */
  791. /* > */
  792. /* > Band storage of the upper triangle of A: */
  793. /* > */
  794. /* > * * a13 a24 a35 a46 */
  795. /* > * a12 a23 a34 a45 a56 */
  796. /* > a11 a22 a33 a44 a55 a66 */
  797. /* > */
  798. /* > Similarly, if UPLO = 'L' the format of A is as follows: */
  799. /* > */
  800. /* > a11 a22 a33 a44 a55 a66 */
  801. /* > a21 a32 a43 a54 a65 * */
  802. /* > a31 a42 a53 a64 * * */
  803. /* > */
  804. /* > Array elements marked * are not used by the routine. */
  805. /* > \endverbatim */
  806. /* > */
  807. /* ===================================================================== */
  808. /* Subroutine */ void cpbsvx_(char *fact, char *uplo, integer *n, integer *kd,
  809. integer *nrhs, complex *ab, integer *ldab, complex *afb, integer *
  810. ldafb, char *equed, real *s, complex *b, integer *ldb, complex *x,
  811. integer *ldx, real *rcond, real *ferr, real *berr, complex *work,
  812. real *rwork, integer *info)
  813. {
  814. /* System generated locals */
  815. integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
  816. x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  817. real r__1, r__2;
  818. complex q__1;
  819. /* Local variables */
  820. real amax, smin, smax;
  821. integer i__, j;
  822. extern logical lsame_(char *, char *);
  823. real scond, anorm;
  824. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  825. complex *, integer *);
  826. logical equil, rcequ, upper;
  827. integer j1, j2;
  828. extern real clanhb_(char *, char *, integer *, integer *, complex *,
  829. integer *, real *);
  830. extern /* Subroutine */ void claqhb_(char *, integer *, integer *, complex
  831. *, integer *, real *, real *, real *, char *),
  832. cpbcon_(char *, integer *, integer *, complex *, integer *, real *
  833. , real *, complex *, real *, integer *);
  834. extern real slamch_(char *);
  835. logical nofact;
  836. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  837. *, integer *, complex *, integer *);
  838. extern int xerbla_(char *, integer *, ftnlen);
  839. extern void cpbequ_(char *, integer *, integer *, complex
  840. *, integer *, real *, real *, real *, integer *), cpbrfs_(
  841. char *, integer *, integer *, integer *, complex *, integer *,
  842. complex *, integer *, complex *, integer *, complex *, integer *,
  843. real *, real *, complex *, real *, integer *);
  844. real bignum;
  845. extern /* Subroutine */ void cpbtrf_(char *, integer *, integer *, complex
  846. *, integer *, integer *);
  847. integer infequ;
  848. extern /* Subroutine */ void cpbtrs_(char *, integer *, integer *, integer
  849. *, complex *, integer *, complex *, integer *, integer *);
  850. real smlnum;
  851. /* -- LAPACK driver routine (version 3.7.0) -- */
  852. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  853. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  854. /* April 2012 */
  855. /* ===================================================================== */
  856. /* Parameter adjustments */
  857. ab_dim1 = *ldab;
  858. ab_offset = 1 + ab_dim1 * 1;
  859. ab -= ab_offset;
  860. afb_dim1 = *ldafb;
  861. afb_offset = 1 + afb_dim1 * 1;
  862. afb -= afb_offset;
  863. --s;
  864. b_dim1 = *ldb;
  865. b_offset = 1 + b_dim1 * 1;
  866. b -= b_offset;
  867. x_dim1 = *ldx;
  868. x_offset = 1 + x_dim1 * 1;
  869. x -= x_offset;
  870. --ferr;
  871. --berr;
  872. --work;
  873. --rwork;
  874. /* Function Body */
  875. *info = 0;
  876. nofact = lsame_(fact, "N");
  877. equil = lsame_(fact, "E");
  878. upper = lsame_(uplo, "U");
  879. if (nofact || equil) {
  880. *(unsigned char *)equed = 'N';
  881. rcequ = FALSE_;
  882. } else {
  883. rcequ = lsame_(equed, "Y");
  884. smlnum = slamch_("Safe minimum");
  885. bignum = 1.f / smlnum;
  886. }
  887. /* Test the input parameters. */
  888. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  889. *info = -1;
  890. } else if (! upper && ! lsame_(uplo, "L")) {
  891. *info = -2;
  892. } else if (*n < 0) {
  893. *info = -3;
  894. } else if (*kd < 0) {
  895. *info = -4;
  896. } else if (*nrhs < 0) {
  897. *info = -5;
  898. } else if (*ldab < *kd + 1) {
  899. *info = -7;
  900. } else if (*ldafb < *kd + 1) {
  901. *info = -9;
  902. } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
  903. equed, "N"))) {
  904. *info = -10;
  905. } else {
  906. if (rcequ) {
  907. smin = bignum;
  908. smax = 0.f;
  909. i__1 = *n;
  910. for (j = 1; j <= i__1; ++j) {
  911. /* Computing MIN */
  912. r__1 = smin, r__2 = s[j];
  913. smin = f2cmin(r__1,r__2);
  914. /* Computing MAX */
  915. r__1 = smax, r__2 = s[j];
  916. smax = f2cmax(r__1,r__2);
  917. /* L10: */
  918. }
  919. if (smin <= 0.f) {
  920. *info = -11;
  921. } else if (*n > 0) {
  922. scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
  923. } else {
  924. scond = 1.f;
  925. }
  926. }
  927. if (*info == 0) {
  928. if (*ldb < f2cmax(1,*n)) {
  929. *info = -13;
  930. } else if (*ldx < f2cmax(1,*n)) {
  931. *info = -15;
  932. }
  933. }
  934. }
  935. if (*info != 0) {
  936. i__1 = -(*info);
  937. xerbla_("CPBSVX", &i__1, (ftnlen)6);
  938. return;
  939. }
  940. if (equil) {
  941. /* Compute row and column scalings to equilibrate the matrix A. */
  942. cpbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
  943. infequ);
  944. if (infequ == 0) {
  945. /* Equilibrate the matrix. */
  946. claqhb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax,
  947. equed);
  948. rcequ = lsame_(equed, "Y");
  949. }
  950. }
  951. /* Scale the right-hand side. */
  952. if (rcequ) {
  953. i__1 = *nrhs;
  954. for (j = 1; j <= i__1; ++j) {
  955. i__2 = *n;
  956. for (i__ = 1; i__ <= i__2; ++i__) {
  957. i__3 = i__ + j * b_dim1;
  958. i__4 = i__;
  959. i__5 = i__ + j * b_dim1;
  960. q__1.r = s[i__4] * b[i__5].r, q__1.i = s[i__4] * b[i__5].i;
  961. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  962. /* L20: */
  963. }
  964. /* L30: */
  965. }
  966. }
  967. if (nofact || equil) {
  968. /* Compute the Cholesky factorization A = U**H *U or A = L*L**H. */
  969. if (upper) {
  970. i__1 = *n;
  971. for (j = 1; j <= i__1; ++j) {
  972. /* Computing MAX */
  973. i__2 = j - *kd;
  974. j1 = f2cmax(i__2,1);
  975. i__2 = j - j1 + 1;
  976. ccopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
  977. afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
  978. /* L40: */
  979. }
  980. } else {
  981. i__1 = *n;
  982. for (j = 1; j <= i__1; ++j) {
  983. /* Computing MIN */
  984. i__2 = j + *kd;
  985. j2 = f2cmin(i__2,*n);
  986. i__2 = j2 - j + 1;
  987. ccopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1
  988. + 1], &c__1);
  989. /* L50: */
  990. }
  991. }
  992. cpbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);
  993. /* Return if INFO is non-zero. */
  994. if (*info > 0) {
  995. *rcond = 0.f;
  996. return;
  997. }
  998. }
  999. /* Compute the norm of the matrix A. */
  1000. anorm = clanhb_("1", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
  1001. /* Compute the reciprocal of the condition number of A. */
  1002. cpbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
  1003. rwork[1], info);
  1004. /* Compute the solution matrix X. */
  1005. clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1006. cpbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx,
  1007. info);
  1008. /* Use iterative refinement to improve the computed solution and */
  1009. /* compute error bounds and backward error estimates for it. */
  1010. cpbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb,
  1011. &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
  1012. , &rwork[1], info);
  1013. /* Transform the solution matrix X to a solution of the original */
  1014. /* system. */
  1015. if (rcequ) {
  1016. i__1 = *nrhs;
  1017. for (j = 1; j <= i__1; ++j) {
  1018. i__2 = *n;
  1019. for (i__ = 1; i__ <= i__2; ++i__) {
  1020. i__3 = i__ + j * x_dim1;
  1021. i__4 = i__;
  1022. i__5 = i__ + j * x_dim1;
  1023. q__1.r = s[i__4] * x[i__5].r, q__1.i = s[i__4] * x[i__5].i;
  1024. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1025. /* L60: */
  1026. }
  1027. /* L70: */
  1028. }
  1029. i__1 = *nrhs;
  1030. for (j = 1; j <= i__1; ++j) {
  1031. ferr[j] /= scond;
  1032. /* L80: */
  1033. }
  1034. }
  1035. /* Set INFO = N+1 if the matrix is singular to working precision. */
  1036. if (*rcond < slamch_("Epsilon")) {
  1037. *info = *n + 1;
  1038. }
  1039. return;
  1040. /* End of CPBSVX */
  1041. } /* cpbsvx_ */