You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetrf_aa.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b2 = {1.,0.};
  487. static integer c__1 = 1;
  488. static integer c_n1 = -1;
  489. /* > \brief \b ZHETRF_AA */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZHETRF_AA + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_
  496. aa.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_
  499. aa.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_
  502. aa.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER N, LDA, LWORK, INFO */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZHETRF_AA computes the factorization of a complex hermitian matrix A */
  518. /* > using the Aasen's algorithm. The form of the factorization is */
  519. /* > */
  520. /* > A = U**H*T*U or A = L*T*L**H */
  521. /* > */
  522. /* > where U (or L) is a product of permutation and unit upper (lower) */
  523. /* > triangular matrices, and T is a hermitian tridiagonal matrix. */
  524. /* > */
  525. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > = 'U': Upper triangle of A is stored; */
  533. /* > = 'L': Lower triangle of A is stored. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in,out] A */
  543. /* > \verbatim */
  544. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  545. /* > On entry, the hermitian matrix A. If UPLO = 'U', the leading */
  546. /* > N-by-N upper triangular part of A contains the upper */
  547. /* > triangular part of the matrix A, and the strictly lower */
  548. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  549. /* > leading N-by-N lower triangular part of A contains the lower */
  550. /* > triangular part of the matrix A, and the strictly upper */
  551. /* > triangular part of A is not referenced. */
  552. /* > */
  553. /* > On exit, the tridiagonal matrix is stored in the diagonals */
  554. /* > and the subdiagonals of A just below (or above) the diagonals, */
  555. /* > and L is stored below (or above) the subdiaonals, when UPLO */
  556. /* > is 'L' (or 'U'). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] IPIV */
  566. /* > \verbatim */
  567. /* > IPIV is INTEGER array, dimension (N) */
  568. /* > On exit, it contains the details of the interchanges, i.e., */
  569. /* > the row and column k of A were interchanged with the */
  570. /* > row and column IPIV(k). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] WORK */
  574. /* > \verbatim */
  575. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  576. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LWORK */
  580. /* > \verbatim */
  581. /* > LWORK is INTEGER */
  582. /* > The length of WORK. LWORK >= MAX(1,2*N). For optimum performance */
  583. /* > LWORK >= N*(1+NB), where NB is the optimal blocksize. */
  584. /* > */
  585. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  586. /* > only calculates the optimal size of the WORK array, returns */
  587. /* > this value as the first entry of the WORK array, and no error */
  588. /* > message related to LWORK is issued by XERBLA. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] INFO */
  592. /* > \verbatim */
  593. /* > INFO is INTEGER */
  594. /* > = 0: successful exit */
  595. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date November 2017 */
  604. /* > \ingroup complex16HEcomputational */
  605. /* ===================================================================== */
  606. /* Subroutine */ void zhetrf_aa_(char *uplo, integer *n, doublecomplex *a,
  607. integer *lda, integer *ipiv, doublecomplex *work, integer *lwork,
  608. integer *info)
  609. {
  610. /* System generated locals */
  611. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  612. doublereal d__1;
  613. doublecomplex z__1;
  614. /* Local variables */
  615. integer j;
  616. doublecomplex alpha;
  617. extern /* Subroutine */ void zlahef_aa_(char *, integer *, integer *,
  618. integer *, doublecomplex *, integer *, integer *, doublecomplex *,
  619. integer *, doublecomplex *);
  620. extern logical lsame_(char *, char *);
  621. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  622. doublecomplex *, integer *), zgemm_(char *, char *, integer *,
  623. integer *, integer *, doublecomplex *, doublecomplex *, integer *,
  624. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  625. integer *);
  626. logical upper;
  627. integer k1, k2, j1, j2, j3;
  628. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  629. doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
  630. integer *, doublecomplex *, integer *);
  631. integer jb, nb, mj, nj;
  632. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  633. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  634. integer *, integer *, ftnlen, ftnlen);
  635. integer lwkopt;
  636. logical lquery;
  637. /* -- LAPACK computational routine (version 3.8.0) -- */
  638. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  639. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  640. /* November 2017 */
  641. /* ===================================================================== */
  642. /* Determine the block size */
  643. /* Parameter adjustments */
  644. a_dim1 = *lda;
  645. a_offset = 1 + a_dim1 * 1;
  646. a -= a_offset;
  647. --ipiv;
  648. --work;
  649. /* Function Body */
  650. nb = ilaenv_(&c__1, "ZHETRF_AA", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)9,
  651. (ftnlen)1);
  652. /* Test the input parameters. */
  653. *info = 0;
  654. upper = lsame_(uplo, "U");
  655. lquery = *lwork == -1;
  656. if (! upper && ! lsame_(uplo, "L")) {
  657. *info = -1;
  658. } else if (*n < 0) {
  659. *info = -2;
  660. } else if (*lda < f2cmax(1,*n)) {
  661. *info = -4;
  662. } else /* if(complicated condition) */ {
  663. /* Computing MAX */
  664. i__1 = 1, i__2 = *n << 1;
  665. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  666. *info = -7;
  667. }
  668. }
  669. if (*info == 0) {
  670. lwkopt = (nb + 1) * *n;
  671. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  672. }
  673. if (*info != 0) {
  674. i__1 = -(*info);
  675. xerbla_("ZHETRF_AA", &i__1, (ftnlen)9);
  676. return;
  677. } else if (lquery) {
  678. return;
  679. }
  680. /* Quick return */
  681. if (*n == 0) {
  682. return;
  683. }
  684. ipiv[1] = 1;
  685. if (*n == 1) {
  686. i__1 = a_dim1 + 1;
  687. i__2 = a_dim1 + 1;
  688. d__1 = a[i__2].r;
  689. a[i__1].r = d__1, a[i__1].i = 0.;
  690. return;
  691. }
  692. /* Adjust block size based on the workspace size */
  693. if (*lwork < (nb + 1) * *n) {
  694. nb = (*lwork - *n) / *n;
  695. }
  696. if (upper) {
  697. /* ..................................................... */
  698. /* Factorize A as U**H*D*U using the upper triangle of A */
  699. /* ..................................................... */
  700. /* copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N)) */
  701. zcopy_(n, &a[a_dim1 + 1], lda, &work[1], &c__1);
  702. /* J is the main loop index, increasing from 1 to N in steps of */
  703. /* JB, where JB is the number of columns factorized by ZLAHEF; */
  704. /* JB is either NB, or N-J+1 for the last block */
  705. j = 0;
  706. L10:
  707. if (j >= *n) {
  708. goto L20;
  709. }
  710. /* each step of the main loop */
  711. /* J is the last column of the previous panel */
  712. /* J1 is the first column of the current panel */
  713. /* K1 identifies if the previous column of the panel has been */
  714. /* explicitly stored, e.g., K1=1 for the first panel, and */
  715. /* K1=0 for the rest */
  716. j1 = j + 1;
  717. /* Computing MIN */
  718. i__1 = *n - j1 + 1;
  719. jb = f2cmin(i__1,nb);
  720. k1 = f2cmax(1,j) - j;
  721. /* Panel factorization */
  722. i__1 = 2 - k1;
  723. i__2 = *n - j;
  724. zlahef_aa_(uplo, &i__1, &i__2, &jb, &a[f2cmax(1,j) + (j + 1) * a_dim1],
  725. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  726. ;
  727. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  728. /* Computing MIN */
  729. i__2 = *n, i__3 = j + jb + 1;
  730. i__1 = f2cmin(i__2,i__3);
  731. for (j2 = j + 2; j2 <= i__1; ++j2) {
  732. ipiv[j2] += j;
  733. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  734. i__2 = j1 - k1 - 2;
  735. zswap_(&i__2, &a[j2 * a_dim1 + 1], &c__1, &a[ipiv[j2] *
  736. a_dim1 + 1], &c__1);
  737. }
  738. }
  739. j += jb;
  740. /* Trailing submatrix update, where */
  741. /* the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and */
  742. /* WORK stores the current block of the auxiriarly matrix H */
  743. if (j < *n) {
  744. /* if the first panel and JB=1 (NB=1), then nothing to do */
  745. if (j1 > 1 || jb > 1) {
  746. /* Merge rank-1 update with BLAS-3 update */
  747. d_cnjg(&z__1, &a[j + (j + 1) * a_dim1]);
  748. alpha.r = z__1.r, alpha.i = z__1.i;
  749. i__1 = j + (j + 1) * a_dim1;
  750. a[i__1].r = 1., a[i__1].i = 0.;
  751. i__1 = *n - j;
  752. zcopy_(&i__1, &a[j - 1 + (j + 1) * a_dim1], lda, &work[j + 1
  753. - j1 + 1 + jb * *n], &c__1);
  754. i__1 = *n - j;
  755. zscal_(&i__1, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  756. /* K1 identifies if the previous column of the panel has been */
  757. /* explicitly stored, e.g., K1=0 and K2=1 for the first panel, */
  758. /* and K1=1 and K2=0 for the rest */
  759. if (j1 > 1) {
  760. /* Not first panel */
  761. k2 = 1;
  762. } else {
  763. /* First panel */
  764. k2 = 0;
  765. /* First update skips the first column */
  766. --jb;
  767. }
  768. i__1 = *n;
  769. i__2 = nb;
  770. for (j2 = j + 1; i__2 < 0 ? j2 >= i__1 : j2 <= i__1; j2 +=
  771. i__2) {
  772. /* Computing MIN */
  773. i__3 = nb, i__4 = *n - j2 + 1;
  774. nj = f2cmin(i__3,i__4);
  775. /* Update (J2, J2) diagonal block with ZGEMV */
  776. j3 = j2;
  777. for (mj = nj - 1; mj >= 1; --mj) {
  778. i__3 = jb + 1;
  779. z__1.r = -1., z__1.i = 0.;
  780. zgemm_("Conjugate transpose", "Transpose", &c__1, &mj,
  781. &i__3, &z__1, &a[j1 - k2 + j3 * a_dim1], lda,
  782. &work[j3 - j1 + 1 + k1 * *n], n, &c_b2, &a[
  783. j3 + j3 * a_dim1], lda)
  784. ;
  785. ++j3;
  786. }
  787. /* Update off-diagonal block of J2-th block row with ZGEMM */
  788. i__3 = *n - j3 + 1;
  789. i__4 = jb + 1;
  790. z__1.r = -1., z__1.i = 0.;
  791. zgemm_("Conjugate transpose", "Transpose", &nj, &i__3, &
  792. i__4, &z__1, &a[j1 - k2 + j2 * a_dim1], lda, &
  793. work[j3 - j1 + 1 + k1 * *n], n, &c_b2, &a[j2 + j3
  794. * a_dim1], lda);
  795. }
  796. /* Recover T( J, J+1 ) */
  797. i__2 = j + (j + 1) * a_dim1;
  798. d_cnjg(&z__1, &alpha);
  799. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  800. }
  801. /* WORK(J+1, 1) stores H(J+1, 1) */
  802. i__2 = *n - j;
  803. zcopy_(&i__2, &a[j + 1 + (j + 1) * a_dim1], lda, &work[1], &c__1);
  804. }
  805. goto L10;
  806. } else {
  807. /* ..................................................... */
  808. /* Factorize A as L*D*L**H using the lower triangle of A */
  809. /* ..................................................... */
  810. /* copy first column A(1:N, 1) into H(1:N, 1) */
  811. /* (stored in WORK(1:N)) */
  812. zcopy_(n, &a[a_dim1 + 1], &c__1, &work[1], &c__1);
  813. /* J is the main loop index, increasing from 1 to N in steps of */
  814. /* JB, where JB is the number of columns factorized by ZLAHEF; */
  815. /* JB is either NB, or N-J+1 for the last block */
  816. j = 0;
  817. L11:
  818. if (j >= *n) {
  819. goto L20;
  820. }
  821. /* each step of the main loop */
  822. /* J is the last column of the previous panel */
  823. /* J1 is the first column of the current panel */
  824. /* K1 identifies if the previous column of the panel has been */
  825. /* explicitly stored, e.g., K1=1 for the first panel, and */
  826. /* K1=0 for the rest */
  827. j1 = j + 1;
  828. /* Computing MIN */
  829. i__2 = *n - j1 + 1;
  830. jb = f2cmin(i__2,nb);
  831. k1 = f2cmax(1,j) - j;
  832. /* Panel factorization */
  833. i__2 = 2 - k1;
  834. i__1 = *n - j;
  835. zlahef_aa_(uplo, &i__2, &i__1, &jb, &a[j + 1 + f2cmax(1,j) * a_dim1],
  836. lda, &ipiv[j + 1], &work[1], n, &work[*n * nb + 1])
  837. ;
  838. /* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot) */
  839. /* Computing MIN */
  840. i__1 = *n, i__3 = j + jb + 1;
  841. i__2 = f2cmin(i__1,i__3);
  842. for (j2 = j + 2; j2 <= i__2; ++j2) {
  843. ipiv[j2] += j;
  844. if (j2 != ipiv[j2] && j1 - k1 > 2) {
  845. i__1 = j1 - k1 - 2;
  846. zswap_(&i__1, &a[j2 + a_dim1], lda, &a[ipiv[j2] + a_dim1],
  847. lda);
  848. }
  849. }
  850. j += jb;
  851. /* Trailing submatrix update, where */
  852. /* A(J2+1, J1-1) stores L(J2+1, J1) and */
  853. /* WORK(J2+1, 1) stores H(J2+1, 1) */
  854. if (j < *n) {
  855. /* if the first panel and JB=1 (NB=1), then nothing to do */
  856. if (j1 > 1 || jb > 1) {
  857. /* Merge rank-1 update with BLAS-3 update */
  858. d_cnjg(&z__1, &a[j + 1 + j * a_dim1]);
  859. alpha.r = z__1.r, alpha.i = z__1.i;
  860. i__2 = j + 1 + j * a_dim1;
  861. a[i__2].r = 1., a[i__2].i = 0.;
  862. i__2 = *n - j;
  863. zcopy_(&i__2, &a[j + 1 + (j - 1) * a_dim1], &c__1, &work[j +
  864. 1 - j1 + 1 + jb * *n], &c__1);
  865. i__2 = *n - j;
  866. zscal_(&i__2, &alpha, &work[j + 1 - j1 + 1 + jb * *n], &c__1);
  867. /* K1 identifies if the previous column of the panel has been */
  868. /* explicitly stored, e.g., K1=0 and K2=1 for the first panel, */
  869. /* and K1=1 and K2=0 for the rest */
  870. if (j1 > 1) {
  871. /* Not first panel */
  872. k2 = 1;
  873. } else {
  874. /* First panel */
  875. k2 = 0;
  876. /* First update skips the first column */
  877. --jb;
  878. }
  879. i__2 = *n;
  880. i__1 = nb;
  881. for (j2 = j + 1; i__1 < 0 ? j2 >= i__2 : j2 <= i__2; j2 +=
  882. i__1) {
  883. /* Computing MIN */
  884. i__3 = nb, i__4 = *n - j2 + 1;
  885. nj = f2cmin(i__3,i__4);
  886. /* Update (J2, J2) diagonal block with ZGEMV */
  887. j3 = j2;
  888. for (mj = nj - 1; mj >= 1; --mj) {
  889. i__3 = jb + 1;
  890. z__1.r = -1., z__1.i = 0.;
  891. zgemm_("No transpose", "Conjugate transpose", &mj, &
  892. c__1, &i__3, &z__1, &work[j3 - j1 + 1 + k1 * *
  893. n], n, &a[j3 + (j1 - k2) * a_dim1], lda, &
  894. c_b2, &a[j3 + j3 * a_dim1], lda);
  895. ++j3;
  896. }
  897. /* Update off-diagonal block of J2-th block column with ZGEMM */
  898. i__3 = *n - j3 + 1;
  899. i__4 = jb + 1;
  900. z__1.r = -1., z__1.i = 0.;
  901. zgemm_("No transpose", "Conjugate transpose", &i__3, &nj,
  902. &i__4, &z__1, &work[j3 - j1 + 1 + k1 * *n], n, &a[
  903. j2 + (j1 - k2) * a_dim1], lda, &c_b2, &a[j3 + j2 *
  904. a_dim1], lda);
  905. }
  906. /* Recover T( J+1, J ) */
  907. i__1 = j + 1 + j * a_dim1;
  908. d_cnjg(&z__1, &alpha);
  909. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  910. }
  911. /* WORK(J+1, 1) stores H(J+1, 1) */
  912. i__1 = *n - j;
  913. zcopy_(&i__1, &a[j + 1 + (j + 1) * a_dim1], &c__1, &work[1], &
  914. c__1);
  915. }
  916. goto L11;
  917. }
  918. L20:
  919. return;
  920. /* End of ZHETRF_AA */
  921. } /* zhetrf_aa__ */