You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stgsen.c 45 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__2 = 2;
  488. static real c_b28 = 1.f;
  489. /* > \brief \b STGSEN */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download STGSEN + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsen.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsen.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsen.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, */
  508. /* ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, */
  509. /* PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO ) */
  510. /* LOGICAL WANTQ, WANTZ */
  511. /* INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, */
  512. /* $ M, N */
  513. /* REAL PL, PR */
  514. /* LOGICAL SELECT( * ) */
  515. /* INTEGER IWORK( * ) */
  516. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  517. /* $ B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ), */
  518. /* $ WORK( * ), Z( LDZ, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > STGSEN reorders the generalized real Schur decomposition of a real */
  525. /* > matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
  526. /* > formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues */
  527. /* > appears in the leading diagonal blocks of the upper quasi-triangular */
  528. /* > matrix A and the upper triangular B. The leading columns of Q and */
  529. /* > Z form orthonormal bases of the corresponding left and right eigen- */
  530. /* > spaces (deflating subspaces). (A, B) must be in generalized real */
  531. /* > Schur canonical form (as returned by SGGES), i.e. A is block upper */
  532. /* > triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
  533. /* > triangular. */
  534. /* > */
  535. /* > STGSEN also computes the generalized eigenvalues */
  536. /* > */
  537. /* > w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */
  538. /* > */
  539. /* > of the reordered matrix pair (A, B). */
  540. /* > */
  541. /* > Optionally, STGSEN computes the estimates of reciprocal condition */
  542. /* > numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
  543. /* > (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
  544. /* > between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
  545. /* > the selected cluster and the eigenvalues outside the cluster, resp., */
  546. /* > and norms of "projections" onto left and right eigenspaces w.r.t. */
  547. /* > the selected cluster in the (1,1)-block. */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] IJOB */
  552. /* > \verbatim */
  553. /* > IJOB is INTEGER */
  554. /* > Specifies whether condition numbers are required for the */
  555. /* > cluster of eigenvalues (PL and PR) or the deflating subspaces */
  556. /* > (Difu and Difl): */
  557. /* > =0: Only reorder w.r.t. SELECT. No extras. */
  558. /* > =1: Reciprocal of norms of "projections" onto left and right */
  559. /* > eigenspaces w.r.t. the selected cluster (PL and PR). */
  560. /* > =2: Upper bounds on Difu and Difl. F-norm-based estimate */
  561. /* > (DIF(1:2)). */
  562. /* > =3: Estimate of Difu and Difl. 1-norm-based estimate */
  563. /* > (DIF(1:2)). */
  564. /* > About 5 times as expensive as IJOB = 2. */
  565. /* > =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
  566. /* > version to get it all. */
  567. /* > =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] WANTQ */
  571. /* > \verbatim */
  572. /* > WANTQ is LOGICAL */
  573. /* > .TRUE. : update the left transformation matrix Q; */
  574. /* > .FALSE.: do not update Q. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] WANTZ */
  578. /* > \verbatim */
  579. /* > WANTZ is LOGICAL */
  580. /* > .TRUE. : update the right transformation matrix Z; */
  581. /* > .FALSE.: do not update Z. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] SELECT */
  585. /* > \verbatim */
  586. /* > SELECT is LOGICAL array, dimension (N) */
  587. /* > SELECT specifies the eigenvalues in the selected cluster. */
  588. /* > To select a real eigenvalue w(j), SELECT(j) must be set to */
  589. /* > .TRUE.. To select a complex conjugate pair of eigenvalues */
  590. /* > w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
  591. /* > either SELECT(j) or SELECT(j+1) or both must be set to */
  592. /* > .TRUE.; a complex conjugate pair of eigenvalues must be */
  593. /* > either both included in the cluster or both excluded. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] N */
  597. /* > \verbatim */
  598. /* > N is INTEGER */
  599. /* > The order of the matrices A and B. N >= 0. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] A */
  603. /* > \verbatim */
  604. /* > A is REAL array, dimension(LDA,N) */
  605. /* > On entry, the upper quasi-triangular matrix A, with (A, B) in */
  606. /* > generalized real Schur canonical form. */
  607. /* > On exit, A is overwritten by the reordered matrix A. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDA */
  611. /* > \verbatim */
  612. /* > LDA is INTEGER */
  613. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] B */
  617. /* > \verbatim */
  618. /* > B is REAL array, dimension(LDB,N) */
  619. /* > On entry, the upper triangular matrix B, with (A, B) in */
  620. /* > generalized real Schur canonical form. */
  621. /* > On exit, B is overwritten by the reordered matrix B. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDB */
  625. /* > \verbatim */
  626. /* > LDB is INTEGER */
  627. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] ALPHAR */
  631. /* > \verbatim */
  632. /* > ALPHAR is REAL array, dimension (N) */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] ALPHAI */
  636. /* > \verbatim */
  637. /* > ALPHAI is REAL array, dimension (N) */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] BETA */
  641. /* > \verbatim */
  642. /* > BETA is REAL array, dimension (N) */
  643. /* > */
  644. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  645. /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
  646. /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
  647. /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
  648. /* > the real generalized Schur form of (A,B) were further reduced */
  649. /* > to triangular form using complex unitary transformations. */
  650. /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
  651. /* > positive, then the j-th and (j+1)-st eigenvalues are a */
  652. /* > complex conjugate pair, with ALPHAI(j+1) negative. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in,out] Q */
  656. /* > \verbatim */
  657. /* > Q is REAL array, dimension (LDQ,N) */
  658. /* > On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
  659. /* > On exit, Q has been postmultiplied by the left orthogonal */
  660. /* > transformation matrix which reorder (A, B); The leading M */
  661. /* > columns of Q form orthonormal bases for the specified pair of */
  662. /* > left eigenspaces (deflating subspaces). */
  663. /* > If WANTQ = .FALSE., Q is not referenced. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] LDQ */
  667. /* > \verbatim */
  668. /* > LDQ is INTEGER */
  669. /* > The leading dimension of the array Q. LDQ >= 1; */
  670. /* > and if WANTQ = .TRUE., LDQ >= N. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in,out] Z */
  674. /* > \verbatim */
  675. /* > Z is REAL array, dimension (LDZ,N) */
  676. /* > On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
  677. /* > On exit, Z has been postmultiplied by the left orthogonal */
  678. /* > transformation matrix which reorder (A, B); The leading M */
  679. /* > columns of Z form orthonormal bases for the specified pair of */
  680. /* > left eigenspaces (deflating subspaces). */
  681. /* > If WANTZ = .FALSE., Z is not referenced. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in] LDZ */
  685. /* > \verbatim */
  686. /* > LDZ is INTEGER */
  687. /* > The leading dimension of the array Z. LDZ >= 1; */
  688. /* > If WANTZ = .TRUE., LDZ >= N. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[out] M */
  692. /* > \verbatim */
  693. /* > M is INTEGER */
  694. /* > The dimension of the specified pair of left and right eigen- */
  695. /* > spaces (deflating subspaces). 0 <= M <= N. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[out] PL */
  699. /* > \verbatim */
  700. /* > PL is REAL */
  701. /* > \endverbatim */
  702. /* > */
  703. /* > \param[out] PR */
  704. /* > \verbatim */
  705. /* > PR is REAL */
  706. /* > */
  707. /* > If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
  708. /* > reciprocal of the norm of "projections" onto left and right */
  709. /* > eigenspaces with respect to the selected cluster. */
  710. /* > 0 < PL, PR <= 1. */
  711. /* > If M = 0 or M = N, PL = PR = 1. */
  712. /* > If IJOB = 0, 2 or 3, PL and PR are not referenced. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[out] DIF */
  716. /* > \verbatim */
  717. /* > DIF is REAL array, dimension (2). */
  718. /* > If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
  719. /* > If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
  720. /* > Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
  721. /* > estimates of Difu and Difl. */
  722. /* > If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
  723. /* > If IJOB = 0 or 1, DIF is not referenced. */
  724. /* > \endverbatim */
  725. /* > */
  726. /* > \param[out] WORK */
  727. /* > \verbatim */
  728. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  729. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  730. /* > \endverbatim */
  731. /* > */
  732. /* > \param[in] LWORK */
  733. /* > \verbatim */
  734. /* > LWORK is INTEGER */
  735. /* > The dimension of the array WORK. LWORK >= 4*N+16. */
  736. /* > If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
  737. /* > If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */
  738. /* > */
  739. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  740. /* > only calculates the optimal size of the WORK array, returns */
  741. /* > this value as the first entry of the WORK array, and no error */
  742. /* > message related to LWORK is issued by XERBLA. */
  743. /* > \endverbatim */
  744. /* > */
  745. /* > \param[out] IWORK */
  746. /* > \verbatim */
  747. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  748. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  749. /* > \endverbatim */
  750. /* > */
  751. /* > \param[in] LIWORK */
  752. /* > \verbatim */
  753. /* > LIWORK is INTEGER */
  754. /* > The dimension of the array IWORK. LIWORK >= 1. */
  755. /* > If IJOB = 1, 2 or 4, LIWORK >= N+6. */
  756. /* > If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */
  757. /* > */
  758. /* > If LIWORK = -1, then a workspace query is assumed; the */
  759. /* > routine only calculates the optimal size of the IWORK array, */
  760. /* > returns this value as the first entry of the IWORK array, and */
  761. /* > no error message related to LIWORK is issued by XERBLA. */
  762. /* > \endverbatim */
  763. /* > */
  764. /* > \param[out] INFO */
  765. /* > \verbatim */
  766. /* > INFO is INTEGER */
  767. /* > =0: Successful exit. */
  768. /* > <0: If INFO = -i, the i-th argument had an illegal value. */
  769. /* > =1: Reordering of (A, B) failed because the transformed */
  770. /* > matrix pair (A, B) would be too far from generalized */
  771. /* > Schur form; the problem is very ill-conditioned. */
  772. /* > (A, B) may have been partially reordered. */
  773. /* > If requested, 0 is returned in DIF(*), PL and PR. */
  774. /* > \endverbatim */
  775. /* Authors: */
  776. /* ======== */
  777. /* > \author Univ. of Tennessee */
  778. /* > \author Univ. of California Berkeley */
  779. /* > \author Univ. of Colorado Denver */
  780. /* > \author NAG Ltd. */
  781. /* > \date June 2016 */
  782. /* > \ingroup realOTHERcomputational */
  783. /* > \par Further Details: */
  784. /* ===================== */
  785. /* > */
  786. /* > \verbatim */
  787. /* > */
  788. /* > STGSEN first collects the selected eigenvalues by computing */
  789. /* > orthogonal U and W that move them to the top left corner of (A, B). */
  790. /* > In other words, the selected eigenvalues are the eigenvalues of */
  791. /* > (A11, B11) in: */
  792. /* > */
  793. /* > U**T*(A, B)*W = (A11 A12) (B11 B12) n1 */
  794. /* > ( 0 A22),( 0 B22) n2 */
  795. /* > n1 n2 n1 n2 */
  796. /* > */
  797. /* > where N = n1+n2 and U**T means the transpose of U. The first n1 columns */
  798. /* > of U and W span the specified pair of left and right eigenspaces */
  799. /* > (deflating subspaces) of (A, B). */
  800. /* > */
  801. /* > If (A, B) has been obtained from the generalized real Schur */
  802. /* > decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the */
  803. /* > reordered generalized real Schur form of (C, D) is given by */
  804. /* > */
  805. /* > (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T, */
  806. /* > */
  807. /* > and the first n1 columns of Q*U and Z*W span the corresponding */
  808. /* > deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
  809. /* > */
  810. /* > Note that if the selected eigenvalue is sufficiently ill-conditioned, */
  811. /* > then its value may differ significantly from its value before */
  812. /* > reordering. */
  813. /* > */
  814. /* > The reciprocal condition numbers of the left and right eigenspaces */
  815. /* > spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
  816. /* > be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
  817. /* > */
  818. /* > The Difu and Difl are defined as: */
  819. /* > */
  820. /* > Difu[(A11, B11), (A22, B22)] = sigma-f2cmin( Zu ) */
  821. /* > and */
  822. /* > Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
  823. /* > */
  824. /* > where sigma-f2cmin(Zu) is the smallest singular value of the */
  825. /* > (2*n1*n2)-by-(2*n1*n2) matrix */
  826. /* > */
  827. /* > Zu = [ kron(In2, A11) -kron(A22**T, In1) ] */
  828. /* > [ kron(In2, B11) -kron(B22**T, In1) ]. */
  829. /* > */
  830. /* > Here, Inx is the identity matrix of size nx and A22**T is the */
  831. /* > transpose of A22. kron(X, Y) is the Kronecker product between */
  832. /* > the matrices X and Y. */
  833. /* > */
  834. /* > When DIF(2) is small, small changes in (A, B) can cause large changes */
  835. /* > in the deflating subspace. An approximate (asymptotic) bound on the */
  836. /* > maximum angular error in the computed deflating subspaces is */
  837. /* > */
  838. /* > EPS * norm((A, B)) / DIF(2), */
  839. /* > */
  840. /* > where EPS is the machine precision. */
  841. /* > */
  842. /* > The reciprocal norm of the projectors on the left and right */
  843. /* > eigenspaces associated with (A11, B11) may be returned in PL and PR. */
  844. /* > They are computed as follows. First we compute L and R so that */
  845. /* > P*(A, B)*Q is block diagonal, where */
  846. /* > */
  847. /* > P = ( I -L ) n1 Q = ( I R ) n1 */
  848. /* > ( 0 I ) n2 and ( 0 I ) n2 */
  849. /* > n1 n2 n1 n2 */
  850. /* > */
  851. /* > and (L, R) is the solution to the generalized Sylvester equation */
  852. /* > */
  853. /* > A11*R - L*A22 = -A12 */
  854. /* > B11*R - L*B22 = -B12 */
  855. /* > */
  856. /* > Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
  857. /* > An approximate (asymptotic) bound on the average absolute error of */
  858. /* > the selected eigenvalues is */
  859. /* > */
  860. /* > EPS * norm((A, B)) / PL. */
  861. /* > */
  862. /* > There are also global error bounds which valid for perturbations up */
  863. /* > to a certain restriction: A lower bound (x) on the smallest */
  864. /* > F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
  865. /* > coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
  866. /* > (i.e. (A + E, B + F), is */
  867. /* > */
  868. /* > x = f2cmin(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*f2cmax(1/PL,1/PR)). */
  869. /* > */
  870. /* > An approximate bound on x can be computed from DIF(1:2), PL and PR. */
  871. /* > */
  872. /* > If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
  873. /* > (L', R') and unperturbed (L, R) left and right deflating subspaces */
  874. /* > associated with the selected cluster in the (1,1)-blocks can be */
  875. /* > bounded as */
  876. /* > */
  877. /* > f2cmax-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
  878. /* > f2cmax-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
  879. /* > */
  880. /* > See LAPACK User's Guide section 4.11 or the following references */
  881. /* > for more information. */
  882. /* > */
  883. /* > Note that if the default method for computing the Frobenius-norm- */
  884. /* > based estimate DIF is not wanted (see SLATDF), then the parameter */
  885. /* > IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF */
  886. /* > (IJOB = 2 will be used)). See STGSYL for more details. */
  887. /* > \endverbatim */
  888. /* > \par Contributors: */
  889. /* ================== */
  890. /* > */
  891. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  892. /* > Umea University, S-901 87 Umea, Sweden. */
  893. /* > \par References: */
  894. /* ================ */
  895. /* > */
  896. /* > \verbatim */
  897. /* > */
  898. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  899. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  900. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  901. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  902. /* > */
  903. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  904. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  905. /* > Estimation: Theory, Algorithms and Software, */
  906. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  907. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  908. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  909. /* > */
  910. /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
  911. /* > for Solving the Generalized Sylvester Equation and Estimating the */
  912. /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
  913. /* > Department of Computing Science, Umea University, S-901 87 Umea, */
  914. /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
  915. /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
  916. /* > 1996. */
  917. /* > \endverbatim */
  918. /* > */
  919. /* ===================================================================== */
  920. /* Subroutine */ void stgsen_(integer *ijob, logical *wantq, logical *wantz,
  921. logical *select, integer *n, real *a, integer *lda, real *b, integer *
  922. ldb, real *alphar, real *alphai, real *beta, real *q, integer *ldq,
  923. real *z__, integer *ldz, integer *m, real *pl, real *pr, real *dif,
  924. real *work, integer *lwork, integer *iwork, integer *liwork, integer *
  925. info)
  926. {
  927. /* System generated locals */
  928. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  929. z_offset, i__1, i__2;
  930. real r__1;
  931. /* Local variables */
  932. integer kase;
  933. logical pair;
  934. integer ierr;
  935. real dsum;
  936. logical swap;
  937. extern /* Subroutine */ void slag2_(real *, integer *, real *, integer *,
  938. real *, real *, real *, real *, real *, real *);
  939. integer i__, k, isave[3];
  940. logical wantd;
  941. integer lwmin;
  942. logical wantp;
  943. integer n1, n2;
  944. extern /* Subroutine */ void slacn2_(integer *, real *, real *, integer *,
  945. real *, integer *, integer *);
  946. logical wantd1, wantd2;
  947. integer kk;
  948. real dscale;
  949. integer ks;
  950. real rdscal;
  951. extern real slamch_(char *);
  952. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  953. extern void slacpy_(
  954. char *, integer *, integer *, real *, integer *, real *, integer *
  955. ), stgexc_(logical *, logical *, integer *, real *,
  956. integer *, real *, integer *, real *, integer *, real *, integer *
  957. , integer *, integer *, real *, integer *, integer *);
  958. integer liwmin;
  959. extern /* Subroutine */ void slassq_(integer *, real *, integer *, real *,
  960. real *);
  961. real smlnum;
  962. integer mn2;
  963. logical lquery;
  964. extern /* Subroutine */ void stgsyl_(char *, integer *, integer *, integer
  965. *, real *, integer *, real *, integer *, real *, integer *, real *
  966. , integer *, real *, integer *, real *, integer *, real *, real *,
  967. real *, integer *, integer *, integer *);
  968. integer ijb;
  969. real eps;
  970. /* -- LAPACK computational routine (version 3.7.0) -- */
  971. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  972. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  973. /* June 2016 */
  974. /* ===================================================================== */
  975. /* Decode and test the input parameters */
  976. /* Parameter adjustments */
  977. --select;
  978. a_dim1 = *lda;
  979. a_offset = 1 + a_dim1 * 1;
  980. a -= a_offset;
  981. b_dim1 = *ldb;
  982. b_offset = 1 + b_dim1 * 1;
  983. b -= b_offset;
  984. --alphar;
  985. --alphai;
  986. --beta;
  987. q_dim1 = *ldq;
  988. q_offset = 1 + q_dim1 * 1;
  989. q -= q_offset;
  990. z_dim1 = *ldz;
  991. z_offset = 1 + z_dim1 * 1;
  992. z__ -= z_offset;
  993. --dif;
  994. --work;
  995. --iwork;
  996. /* Function Body */
  997. *info = 0;
  998. lquery = *lwork == -1 || *liwork == -1;
  999. if (*ijob < 0 || *ijob > 5) {
  1000. *info = -1;
  1001. } else if (*n < 0) {
  1002. *info = -5;
  1003. } else if (*lda < f2cmax(1,*n)) {
  1004. *info = -7;
  1005. } else if (*ldb < f2cmax(1,*n)) {
  1006. *info = -9;
  1007. } else if (*ldq < 1 || *wantq && *ldq < *n) {
  1008. *info = -14;
  1009. } else if (*ldz < 1 || *wantz && *ldz < *n) {
  1010. *info = -16;
  1011. }
  1012. if (*info != 0) {
  1013. i__1 = -(*info);
  1014. xerbla_("STGSEN", &i__1, (ftnlen)6);
  1015. return;
  1016. }
  1017. /* Get machine constants */
  1018. eps = slamch_("P");
  1019. smlnum = slamch_("S") / eps;
  1020. ierr = 0;
  1021. wantp = *ijob == 1 || *ijob >= 4;
  1022. wantd1 = *ijob == 2 || *ijob == 4;
  1023. wantd2 = *ijob == 3 || *ijob == 5;
  1024. wantd = wantd1 || wantd2;
  1025. /* Set M to the dimension of the specified pair of deflating */
  1026. /* subspaces. */
  1027. *m = 0;
  1028. pair = FALSE_;
  1029. if (! lquery || *ijob != 0) {
  1030. i__1 = *n;
  1031. for (k = 1; k <= i__1; ++k) {
  1032. if (pair) {
  1033. pair = FALSE_;
  1034. } else {
  1035. if (k < *n) {
  1036. if (a[k + 1 + k * a_dim1] == 0.f) {
  1037. if (select[k]) {
  1038. ++(*m);
  1039. }
  1040. } else {
  1041. pair = TRUE_;
  1042. if (select[k] || select[k + 1]) {
  1043. *m += 2;
  1044. }
  1045. }
  1046. } else {
  1047. if (select[*n]) {
  1048. ++(*m);
  1049. }
  1050. }
  1051. }
  1052. /* L10: */
  1053. }
  1054. }
  1055. if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
  1056. /* Computing MAX */
  1057. i__1 = 1, i__2 = (*n << 2) + 16, i__1 = f2cmax(i__1,i__2), i__2 = (*m <<
  1058. 1) * (*n - *m);
  1059. lwmin = f2cmax(i__1,i__2);
  1060. /* Computing MAX */
  1061. i__1 = 1, i__2 = *n + 6;
  1062. liwmin = f2cmax(i__1,i__2);
  1063. } else if (*ijob == 3 || *ijob == 5) {
  1064. /* Computing MAX */
  1065. i__1 = 1, i__2 = (*n << 2) + 16, i__1 = f2cmax(i__1,i__2), i__2 = (*m <<
  1066. 2) * (*n - *m);
  1067. lwmin = f2cmax(i__1,i__2);
  1068. /* Computing MAX */
  1069. i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = f2cmax(i__1,i__2), i__2 =
  1070. *n + 6;
  1071. liwmin = f2cmax(i__1,i__2);
  1072. } else {
  1073. /* Computing MAX */
  1074. i__1 = 1, i__2 = (*n << 2) + 16;
  1075. lwmin = f2cmax(i__1,i__2);
  1076. liwmin = 1;
  1077. }
  1078. work[1] = (real) lwmin;
  1079. iwork[1] = liwmin;
  1080. if (*lwork < lwmin && ! lquery) {
  1081. *info = -22;
  1082. } else if (*liwork < liwmin && ! lquery) {
  1083. *info = -24;
  1084. }
  1085. if (*info != 0) {
  1086. i__1 = -(*info);
  1087. xerbla_("STGSEN", &i__1, (ftnlen)6);
  1088. return;
  1089. } else if (lquery) {
  1090. return;
  1091. }
  1092. /* Quick return if possible. */
  1093. if (*m == *n || *m == 0) {
  1094. if (wantp) {
  1095. *pl = 1.f;
  1096. *pr = 1.f;
  1097. }
  1098. if (wantd) {
  1099. dscale = 0.f;
  1100. dsum = 1.f;
  1101. i__1 = *n;
  1102. for (i__ = 1; i__ <= i__1; ++i__) {
  1103. slassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
  1104. slassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
  1105. /* L20: */
  1106. }
  1107. dif[1] = dscale * sqrt(dsum);
  1108. dif[2] = dif[1];
  1109. }
  1110. goto L60;
  1111. }
  1112. /* Collect the selected blocks at the top-left corner of (A, B). */
  1113. ks = 0;
  1114. pair = FALSE_;
  1115. i__1 = *n;
  1116. for (k = 1; k <= i__1; ++k) {
  1117. if (pair) {
  1118. pair = FALSE_;
  1119. } else {
  1120. swap = select[k];
  1121. if (k < *n) {
  1122. if (a[k + 1 + k * a_dim1] != 0.f) {
  1123. pair = TRUE_;
  1124. swap = swap || select[k + 1];
  1125. }
  1126. }
  1127. if (swap) {
  1128. ++ks;
  1129. /* Swap the K-th block to position KS. */
  1130. /* Perform the reordering of diagonal blocks in (A, B) */
  1131. /* by orthogonal transformation matrices and update */
  1132. /* Q and Z accordingly (if requested): */
  1133. kk = k;
  1134. if (k != ks) {
  1135. stgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
  1136. ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk,
  1137. &ks, &work[1], lwork, &ierr);
  1138. }
  1139. if (ierr > 0) {
  1140. /* Swap is rejected: exit. */
  1141. *info = 1;
  1142. if (wantp) {
  1143. *pl = 0.f;
  1144. *pr = 0.f;
  1145. }
  1146. if (wantd) {
  1147. dif[1] = 0.f;
  1148. dif[2] = 0.f;
  1149. }
  1150. goto L60;
  1151. }
  1152. if (pair) {
  1153. ++ks;
  1154. }
  1155. }
  1156. }
  1157. /* L30: */
  1158. }
  1159. if (wantp) {
  1160. /* Solve generalized Sylvester equation for R and L */
  1161. /* and compute PL and PR. */
  1162. n1 = *m;
  1163. n2 = *n - *m;
  1164. i__ = n1 + 1;
  1165. ijb = 0;
  1166. slacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
  1167. slacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 +
  1168. 1], &n1);
  1169. i__1 = *lwork - (n1 << 1) * n2;
  1170. stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
  1171. , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ *
  1172. b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
  1173. work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
  1174. /* Estimate the reciprocal of norms of "projections" onto left */
  1175. /* and right eigenspaces. */
  1176. rdscal = 0.f;
  1177. dsum = 1.f;
  1178. i__1 = n1 * n2;
  1179. slassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
  1180. *pl = rdscal * sqrt(dsum);
  1181. if (*pl == 0.f) {
  1182. *pl = 1.f;
  1183. } else {
  1184. *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
  1185. }
  1186. rdscal = 0.f;
  1187. dsum = 1.f;
  1188. i__1 = n1 * n2;
  1189. slassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
  1190. *pr = rdscal * sqrt(dsum);
  1191. if (*pr == 0.f) {
  1192. *pr = 1.f;
  1193. } else {
  1194. *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
  1195. }
  1196. }
  1197. if (wantd) {
  1198. /* Compute estimates of Difu and Difl. */
  1199. if (wantd1) {
  1200. n1 = *m;
  1201. n2 = *n - *m;
  1202. i__ = n1 + 1;
  1203. ijb = 3;
  1204. /* Frobenius norm-based Difu-estimate. */
  1205. i__1 = *lwork - (n1 << 1) * n2;
  1206. stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ *
  1207. a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ +
  1208. i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
  1209. dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
  1210. ierr);
  1211. /* Frobenius norm-based Difl-estimate. */
  1212. i__1 = *lwork - (n1 << 1) * n2;
  1213. stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
  1214. a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1],
  1215. ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale,
  1216. &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
  1217. ierr);
  1218. } else {
  1219. /* Compute 1-norm-based estimates of Difu and Difl using */
  1220. /* reversed communication with SLACN2. In each step a */
  1221. /* generalized Sylvester equation or a transposed variant */
  1222. /* is solved. */
  1223. kase = 0;
  1224. n1 = *m;
  1225. n2 = *n - *m;
  1226. i__ = n1 + 1;
  1227. ijb = 0;
  1228. mn2 = (n1 << 1) * n2;
  1229. /* 1-norm-based estimate of Difu. */
  1230. L40:
  1231. slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase,
  1232. isave);
  1233. if (kase != 0) {
  1234. if (kase == 1) {
  1235. /* Solve generalized Sylvester equation. */
  1236. i__1 = *lwork - (n1 << 1) * n2;
  1237. stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
  1238. i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
  1239. ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
  1240. 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
  1241. 1], &i__1, &iwork[1], &ierr);
  1242. } else {
  1243. /* Solve the transposed variant. */
  1244. i__1 = *lwork - (n1 << 1) * n2;
  1245. stgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
  1246. i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
  1247. ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
  1248. 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
  1249. 1], &i__1, &iwork[1], &ierr);
  1250. }
  1251. goto L40;
  1252. }
  1253. dif[1] = dscale / dif[1];
  1254. /* 1-norm-based estimate of Difl. */
  1255. L50:
  1256. slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase,
  1257. isave);
  1258. if (kase != 0) {
  1259. if (kase == 1) {
  1260. /* Solve generalized Sylvester equation. */
  1261. i__1 = *lwork - (n1 << 1) * n2;
  1262. stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
  1263. &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
  1264. b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
  1265. 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
  1266. 1], &i__1, &iwork[1], &ierr);
  1267. } else {
  1268. /* Solve the transposed variant. */
  1269. i__1 = *lwork - (n1 << 1) * n2;
  1270. stgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
  1271. &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
  1272. b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
  1273. 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
  1274. 1], &i__1, &iwork[1], &ierr);
  1275. }
  1276. goto L50;
  1277. }
  1278. dif[2] = dscale / dif[2];
  1279. }
  1280. }
  1281. L60:
  1282. /* Compute generalized eigenvalues of reordered pair (A, B) and */
  1283. /* normalize the generalized Schur form. */
  1284. pair = FALSE_;
  1285. i__1 = *n;
  1286. for (k = 1; k <= i__1; ++k) {
  1287. if (pair) {
  1288. pair = FALSE_;
  1289. } else {
  1290. if (k < *n) {
  1291. if (a[k + 1 + k * a_dim1] != 0.f) {
  1292. pair = TRUE_;
  1293. }
  1294. }
  1295. if (pair) {
  1296. /* Compute the eigenvalue(s) at position K. */
  1297. work[1] = a[k + k * a_dim1];
  1298. work[2] = a[k + 1 + k * a_dim1];
  1299. work[3] = a[k + (k + 1) * a_dim1];
  1300. work[4] = a[k + 1 + (k + 1) * a_dim1];
  1301. work[5] = b[k + k * b_dim1];
  1302. work[6] = b[k + 1 + k * b_dim1];
  1303. work[7] = b[k + (k + 1) * b_dim1];
  1304. work[8] = b[k + 1 + (k + 1) * b_dim1];
  1305. r__1 = smlnum * eps;
  1306. slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta[k], &
  1307. beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);
  1308. alphai[k + 1] = -alphai[k];
  1309. } else {
  1310. if (r_sign(&c_b28, &b[k + k * b_dim1]) < 0.f) {
  1311. /* If B(K,K) is negative, make it positive */
  1312. i__2 = *n;
  1313. for (i__ = 1; i__ <= i__2; ++i__) {
  1314. a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];
  1315. b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];
  1316. if (*wantq) {
  1317. q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];
  1318. }
  1319. /* L80: */
  1320. }
  1321. }
  1322. alphar[k] = a[k + k * a_dim1];
  1323. alphai[k] = 0.f;
  1324. beta[k] = b[k + k * b_dim1];
  1325. }
  1326. }
  1327. /* L70: */
  1328. }
  1329. work[1] = (real) lwmin;
  1330. iwork[1] = liwmin;
  1331. return;
  1332. /* End of STGSEN */
  1333. } /* stgsen_ */