You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqr2.c 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static doublereal c_b12 = 0.;
  489. static doublereal c_b13 = 1.;
  490. static logical c_true = TRUE_;
  491. /* > \brief \b DLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
  492. eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  493. */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download DLAQR2 + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  512. /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
  513. /* LDT, NV, WV, LDWV, WORK, LWORK ) */
  514. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  515. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  516. /* LOGICAL WANTT, WANTZ */
  517. /* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
  518. /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
  519. /* $ Z( LDZ, * ) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* > \verbatim */
  524. /* > */
  525. /* > DLAQR2 is identical to DLAQR3 except that it avoids */
  526. /* > recursion by calling DLAHQR instead of DLAQR4. */
  527. /* > */
  528. /* > Aggressive early deflation: */
  529. /* > */
  530. /* > This subroutine accepts as input an upper Hessenberg matrix */
  531. /* > H and performs an orthogonal similarity transformation */
  532. /* > designed to detect and deflate fully converged eigenvalues from */
  533. /* > a trailing principal submatrix. On output H has been over- */
  534. /* > written by a new Hessenberg matrix that is a perturbation of */
  535. /* > an orthogonal similarity transformation of H. It is to be */
  536. /* > hoped that the final version of H has many zero subdiagonal */
  537. /* > entries. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] WANTT */
  542. /* > \verbatim */
  543. /* > WANTT is LOGICAL */
  544. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  545. /* > so that the quasi-triangular Schur factor may be */
  546. /* > computed (in cooperation with the calling subroutine). */
  547. /* > If .FALSE., then only enough of H is updated to preserve */
  548. /* > the eigenvalues. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] WANTZ */
  552. /* > \verbatim */
  553. /* > WANTZ is LOGICAL */
  554. /* > If .TRUE., then the orthogonal matrix Z is updated so */
  555. /* > so that the orthogonal Schur factor may be computed */
  556. /* > (in cooperation with the calling subroutine). */
  557. /* > If .FALSE., then Z is not referenced. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  564. /* > order of the orthogonal matrix Z. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] KTOP */
  568. /* > \verbatim */
  569. /* > KTOP is INTEGER */
  570. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  571. /* > KBOT and KTOP together determine an isolated block */
  572. /* > along the diagonal of the Hessenberg matrix. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] KBOT */
  576. /* > \verbatim */
  577. /* > KBOT is INTEGER */
  578. /* > It is assumed without a check that either */
  579. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  580. /* > determine an isolated block along the diagonal of the */
  581. /* > Hessenberg matrix. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] NW */
  585. /* > \verbatim */
  586. /* > NW is INTEGER */
  587. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] H */
  591. /* > \verbatim */
  592. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  593. /* > On input the initial N-by-N section of H stores the */
  594. /* > Hessenberg matrix undergoing aggressive early deflation. */
  595. /* > On output H has been transformed by an orthogonal */
  596. /* > similarity transformation, perturbed, and the returned */
  597. /* > to Hessenberg form that (it is to be hoped) has some */
  598. /* > zero subdiagonal entries. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDH */
  602. /* > \verbatim */
  603. /* > LDH is INTEGER */
  604. /* > Leading dimension of H just as declared in the calling */
  605. /* > subroutine. N <= LDH */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] ILOZ */
  609. /* > \verbatim */
  610. /* > ILOZ is INTEGER */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] IHIZ */
  614. /* > \verbatim */
  615. /* > IHIZ is INTEGER */
  616. /* > Specify the rows of Z to which transformations must be */
  617. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] Z */
  621. /* > \verbatim */
  622. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  623. /* > IF WANTZ is .TRUE., then on output, the orthogonal */
  624. /* > similarity transformation mentioned above has been */
  625. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  626. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[in] LDZ */
  630. /* > \verbatim */
  631. /* > LDZ is INTEGER */
  632. /* > The leading dimension of Z just as declared in the */
  633. /* > calling subroutine. 1 <= LDZ. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] NS */
  637. /* > \verbatim */
  638. /* > NS is INTEGER */
  639. /* > The number of unconverged (ie approximate) eigenvalues */
  640. /* > returned in SR and SI that may be used as shifts by the */
  641. /* > calling subroutine. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] ND */
  645. /* > \verbatim */
  646. /* > ND is INTEGER */
  647. /* > The number of converged eigenvalues uncovered by this */
  648. /* > subroutine. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] SR */
  652. /* > \verbatim */
  653. /* > SR is DOUBLE PRECISION array, dimension (KBOT) */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] SI */
  657. /* > \verbatim */
  658. /* > SI is DOUBLE PRECISION array, dimension (KBOT) */
  659. /* > On output, the real and imaginary parts of approximate */
  660. /* > eigenvalues that may be used for shifts are stored in */
  661. /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
  662. /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
  663. /* > The real and imaginary parts of converged eigenvalues */
  664. /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
  665. /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] V */
  669. /* > \verbatim */
  670. /* > V is DOUBLE PRECISION array, dimension (LDV,NW) */
  671. /* > An NW-by-NW work array. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[in] LDV */
  675. /* > \verbatim */
  676. /* > LDV is INTEGER */
  677. /* > The leading dimension of V just as declared in the */
  678. /* > calling subroutine. NW <= LDV */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[in] NH */
  682. /* > \verbatim */
  683. /* > NH is INTEGER */
  684. /* > The number of columns of T. NH >= NW. */
  685. /* > \endverbatim */
  686. /* > */
  687. /* > \param[out] T */
  688. /* > \verbatim */
  689. /* > T is DOUBLE PRECISION array, dimension (LDT,NW) */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDT */
  693. /* > \verbatim */
  694. /* > LDT is INTEGER */
  695. /* > The leading dimension of T just as declared in the */
  696. /* > calling subroutine. NW <= LDT */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[in] NV */
  700. /* > \verbatim */
  701. /* > NV is INTEGER */
  702. /* > The number of rows of work array WV available for */
  703. /* > workspace. NV >= NW. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] WV */
  707. /* > \verbatim */
  708. /* > WV is DOUBLE PRECISION array, dimension (LDWV,NW) */
  709. /* > \endverbatim */
  710. /* > */
  711. /* > \param[in] LDWV */
  712. /* > \verbatim */
  713. /* > LDWV is INTEGER */
  714. /* > The leading dimension of W just as declared in the */
  715. /* > calling subroutine. NW <= LDV */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] WORK */
  719. /* > \verbatim */
  720. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  721. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  722. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  723. /* > \endverbatim */
  724. /* > */
  725. /* > \param[in] LWORK */
  726. /* > \verbatim */
  727. /* > LWORK is INTEGER */
  728. /* > The dimension of the work array WORK. LWORK = 2*NW */
  729. /* > suffices, but greater efficiency may result from larger */
  730. /* > values of LWORK. */
  731. /* > */
  732. /* > If LWORK = -1, then a workspace query is assumed; DLAQR2 */
  733. /* > only estimates the optimal workspace size for the given */
  734. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  735. /* > in WORK(1). No error message related to LWORK is issued */
  736. /* > by XERBLA. Neither H nor Z are accessed. */
  737. /* > \endverbatim */
  738. /* Authors: */
  739. /* ======== */
  740. /* > \author Univ. of Tennessee */
  741. /* > \author Univ. of California Berkeley */
  742. /* > \author Univ. of Colorado Denver */
  743. /* > \author NAG Ltd. */
  744. /* > \date June 2017 */
  745. /* > \ingroup doubleOTHERauxiliary */
  746. /* > \par Contributors: */
  747. /* ================== */
  748. /* > */
  749. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  750. /* > University of Kansas, USA */
  751. /* > */
  752. /* ===================================================================== */
  753. /* Subroutine */ void dlaqr2_(logical *wantt, logical *wantz, integer *n,
  754. integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer *
  755. ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz,
  756. integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal *
  757. v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer *
  758. nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork)
  759. {
  760. /* System generated locals */
  761. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  762. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  763. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  764. /* Local variables */
  765. doublereal beta;
  766. integer kend, kcol, info, ifst, ilst, ltop, krow, i__, j, k;
  767. doublereal s;
  768. extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
  769. doublereal *, integer *, doublereal *, doublereal *, integer *,
  770. doublereal *), dgemm_(char *, char *, integer *, integer *
  771. , integer *, doublereal *, doublereal *, integer *, doublereal *,
  772. integer *, doublereal *, doublereal *, integer *);
  773. logical bulge;
  774. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  775. doublereal *, integer *);
  776. integer infqr, kwtop;
  777. extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
  778. doublereal *, doublereal *, doublereal *, doublereal *,
  779. doublereal *, doublereal *, doublereal *, doublereal *);
  780. doublereal aa, bb, cc;
  781. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  782. doublereal dd, cs;
  783. extern doublereal dlamch_(char *);
  784. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  785. doublereal *, integer *, doublereal *, doublereal *, integer *,
  786. integer *), dlarfg_(integer *, doublereal *, doublereal *,
  787. integer *, doublereal *);
  788. doublereal sn;
  789. integer jw;
  790. extern /* Subroutine */ void dlahqr_(logical *, logical *, integer *,
  791. integer *, integer *, doublereal *, integer *, doublereal *,
  792. doublereal *, integer *, integer *, doublereal *, integer *,
  793. integer *), dlacpy_(char *, integer *, integer *, doublereal *,
  794. integer *, doublereal *, integer *);
  795. doublereal safmin, safmax;
  796. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  797. doublereal *, doublereal *, doublereal *, integer *),
  798. dtrexc_(char *, integer *, doublereal *, integer *, doublereal *,
  799. integer *, integer *, integer *, doublereal *, integer *),
  800. dormhr_(char *, char *, integer *, integer *, integer *, integer
  801. *, doublereal *, integer *, doublereal *, doublereal *, integer *,
  802. doublereal *, integer *, integer *);
  803. logical sorted;
  804. doublereal smlnum;
  805. integer lwkopt;
  806. doublereal evi, evk, foo;
  807. integer kln;
  808. doublereal tau, ulp;
  809. integer lwk1, lwk2;
  810. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  811. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  812. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  813. /* June 2017 */
  814. /* ================================================================ */
  815. /* ==== Estimate optimal workspace. ==== */
  816. /* Parameter adjustments */
  817. h_dim1 = *ldh;
  818. h_offset = 1 + h_dim1 * 1;
  819. h__ -= h_offset;
  820. z_dim1 = *ldz;
  821. z_offset = 1 + z_dim1 * 1;
  822. z__ -= z_offset;
  823. --sr;
  824. --si;
  825. v_dim1 = *ldv;
  826. v_offset = 1 + v_dim1 * 1;
  827. v -= v_offset;
  828. t_dim1 = *ldt;
  829. t_offset = 1 + t_dim1 * 1;
  830. t -= t_offset;
  831. wv_dim1 = *ldwv;
  832. wv_offset = 1 + wv_dim1 * 1;
  833. wv -= wv_offset;
  834. --work;
  835. /* Function Body */
  836. /* Computing MIN */
  837. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  838. jw = f2cmin(i__1,i__2);
  839. if (jw <= 2) {
  840. lwkopt = 1;
  841. } else {
  842. /* ==== Workspace query call to DGEHRD ==== */
  843. i__1 = jw - 1;
  844. dgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  845. c_n1, &info);
  846. lwk1 = (integer) work[1];
  847. /* ==== Workspace query call to DORMHR ==== */
  848. i__1 = jw - 1;
  849. dormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  850. &v[v_offset], ldv, &work[1], &c_n1, &info);
  851. lwk2 = (integer) work[1];
  852. /* ==== Optimal workspace ==== */
  853. lwkopt = jw + f2cmax(lwk1,lwk2);
  854. }
  855. /* ==== Quick return in case of workspace query. ==== */
  856. if (*lwork == -1) {
  857. work[1] = (doublereal) lwkopt;
  858. return;
  859. }
  860. /* ==== Nothing to do ... */
  861. /* ... for an empty active block ... ==== */
  862. *ns = 0;
  863. *nd = 0;
  864. work[1] = 1.;
  865. if (*ktop > *kbot) {
  866. return;
  867. }
  868. /* ... nor for an empty deflation window. ==== */
  869. if (*nw < 1) {
  870. return;
  871. }
  872. /* ==== Machine constants ==== */
  873. safmin = dlamch_("SAFE MINIMUM");
  874. safmax = 1. / safmin;
  875. dlabad_(&safmin, &safmax);
  876. ulp = dlamch_("PRECISION");
  877. smlnum = safmin * ((doublereal) (*n) / ulp);
  878. /* ==== Setup deflation window ==== */
  879. /* Computing MIN */
  880. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  881. jw = f2cmin(i__1,i__2);
  882. kwtop = *kbot - jw + 1;
  883. if (kwtop == *ktop) {
  884. s = 0.;
  885. } else {
  886. s = h__[kwtop + (kwtop - 1) * h_dim1];
  887. }
  888. if (*kbot == kwtop) {
  889. /* ==== 1-by-1 deflation window: not much to do ==== */
  890. sr[kwtop] = h__[kwtop + kwtop * h_dim1];
  891. si[kwtop] = 0.;
  892. *ns = 1;
  893. *nd = 0;
  894. /* Computing MAX */
  895. d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs(
  896. d__1));
  897. if (abs(s) <= f2cmax(d__2,d__3)) {
  898. *ns = 0;
  899. *nd = 1;
  900. if (kwtop > *ktop) {
  901. h__[kwtop + (kwtop - 1) * h_dim1] = 0.;
  902. }
  903. }
  904. work[1] = 1.;
  905. return;
  906. }
  907. /* ==== Convert to spike-triangular form. (In case of a */
  908. /* . rare QR failure, this routine continues to do */
  909. /* . aggressive early deflation using that part of */
  910. /* . the deflation window that converged using INFQR */
  911. /* . here and there to keep track.) ==== */
  912. dlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  913. ldt);
  914. i__1 = jw - 1;
  915. i__2 = *ldh + 1;
  916. i__3 = *ldt + 1;
  917. dcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  918. i__3);
  919. dlaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
  920. dlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop],
  921. &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  922. /* ==== DTREXC needs a clean margin near the diagonal ==== */
  923. i__1 = jw - 3;
  924. for (j = 1; j <= i__1; ++j) {
  925. t[j + 2 + j * t_dim1] = 0.;
  926. t[j + 3 + j * t_dim1] = 0.;
  927. /* L10: */
  928. }
  929. if (jw > 2) {
  930. t[jw + (jw - 2) * t_dim1] = 0.;
  931. }
  932. /* ==== Deflation detection loop ==== */
  933. *ns = jw;
  934. ilst = infqr + 1;
  935. L20:
  936. if (ilst <= *ns) {
  937. if (*ns == 1) {
  938. bulge = FALSE_;
  939. } else {
  940. bulge = t[*ns + (*ns - 1) * t_dim1] != 0.;
  941. }
  942. /* ==== Small spike tip test for deflation ==== */
  943. if (! bulge) {
  944. /* ==== Real eigenvalue ==== */
  945. foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1));
  946. if (foo == 0.) {
  947. foo = abs(s);
  948. }
  949. /* Computing MAX */
  950. d__2 = smlnum, d__3 = ulp * foo;
  951. if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= f2cmax(d__2,d__3))
  952. {
  953. /* ==== Deflatable ==== */
  954. --(*ns);
  955. } else {
  956. /* ==== Undeflatable. Move it up out of the way. */
  957. /* . (DTREXC can not fail in this case.) ==== */
  958. ifst = *ns;
  959. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  960. &ilst, &work[1], &info);
  961. ++ilst;
  962. }
  963. } else {
  964. /* ==== Complex conjugate pair ==== */
  965. foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[*
  966. ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[*
  967. ns - 1 + *ns * t_dim1], abs(d__2)));
  968. if (foo == 0.) {
  969. foo = abs(s);
  970. }
  971. /* Computing MAX */
  972. d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 =
  973. s * v[(*ns - 1) * v_dim1 + 1], abs(d__2));
  974. /* Computing MAX */
  975. d__5 = smlnum, d__6 = ulp * foo;
  976. if (f2cmax(d__3,d__4) <= f2cmax(d__5,d__6)) {
  977. /* ==== Deflatable ==== */
  978. *ns += -2;
  979. } else {
  980. /* ==== Undeflatable. Move them up out of the way. */
  981. /* . Fortunately, DTREXC does the right thing with */
  982. /* . ILST in case of a rare exchange failure. ==== */
  983. ifst = *ns;
  984. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  985. &ilst, &work[1], &info);
  986. ilst += 2;
  987. }
  988. }
  989. /* ==== End deflation detection loop ==== */
  990. goto L20;
  991. }
  992. /* ==== Return to Hessenberg form ==== */
  993. if (*ns == 0) {
  994. s = 0.;
  995. }
  996. if (*ns < jw) {
  997. /* ==== sorting diagonal blocks of T improves accuracy for */
  998. /* . graded matrices. Bubble sort deals well with */
  999. /* . exchange failures. ==== */
  1000. sorted = FALSE_;
  1001. i__ = *ns + 1;
  1002. L30:
  1003. if (sorted) {
  1004. goto L50;
  1005. }
  1006. sorted = TRUE_;
  1007. kend = i__ - 1;
  1008. i__ = infqr + 1;
  1009. if (i__ == *ns) {
  1010. k = i__ + 1;
  1011. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1012. k = i__ + 1;
  1013. } else {
  1014. k = i__ + 2;
  1015. }
  1016. L40:
  1017. if (k <= kend) {
  1018. if (k == i__ + 1) {
  1019. evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1));
  1020. } else {
  1021. evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 =
  1022. t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 =
  1023. t[i__ + (i__ + 1) * t_dim1], abs(d__2)));
  1024. }
  1025. if (k == kend) {
  1026. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1027. } else if (t[k + 1 + k * t_dim1] == 0.) {
  1028. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1029. } else {
  1030. evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[
  1031. k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k +
  1032. (k + 1) * t_dim1], abs(d__2)));
  1033. }
  1034. if (evi >= evk) {
  1035. i__ = k;
  1036. } else {
  1037. sorted = FALSE_;
  1038. ifst = i__;
  1039. ilst = k;
  1040. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1041. &ilst, &work[1], &info);
  1042. if (info == 0) {
  1043. i__ = ilst;
  1044. } else {
  1045. i__ = k;
  1046. }
  1047. }
  1048. if (i__ == kend) {
  1049. k = i__ + 1;
  1050. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1051. k = i__ + 1;
  1052. } else {
  1053. k = i__ + 2;
  1054. }
  1055. goto L40;
  1056. }
  1057. goto L30;
  1058. L50:
  1059. ;
  1060. }
  1061. /* ==== Restore shift/eigenvalue array from T ==== */
  1062. i__ = jw;
  1063. L60:
  1064. if (i__ >= infqr + 1) {
  1065. if (i__ == infqr + 1) {
  1066. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1067. si[kwtop + i__ - 1] = 0.;
  1068. --i__;
  1069. } else if (t[i__ + (i__ - 1) * t_dim1] == 0.) {
  1070. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1071. si[kwtop + i__ - 1] = 0.;
  1072. --i__;
  1073. } else {
  1074. aa = t[i__ - 1 + (i__ - 1) * t_dim1];
  1075. cc = t[i__ + (i__ - 1) * t_dim1];
  1076. bb = t[i__ - 1 + i__ * t_dim1];
  1077. dd = t[i__ + i__ * t_dim1];
  1078. dlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
  1079. - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
  1080. sn);
  1081. i__ += -2;
  1082. }
  1083. goto L60;
  1084. }
  1085. if (*ns < jw || s == 0.) {
  1086. if (*ns > 1 && s != 0.) {
  1087. /* ==== Reflect spike back into lower triangle ==== */
  1088. dcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1089. beta = work[1];
  1090. dlarfg_(ns, &beta, &work[2], &c__1, &tau);
  1091. work[1] = 1.;
  1092. i__1 = jw - 2;
  1093. i__2 = jw - 2;
  1094. dlaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
  1095. dlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1096. work[jw + 1]);
  1097. dlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1098. work[jw + 1]);
  1099. dlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1100. work[jw + 1]);
  1101. i__1 = *lwork - jw;
  1102. dgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1103. , &i__1, &info);
  1104. }
  1105. /* ==== Copy updated reduced window into place ==== */
  1106. if (kwtop > 1) {
  1107. h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
  1108. }
  1109. dlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1110. , ldh);
  1111. i__1 = jw - 1;
  1112. i__2 = *ldt + 1;
  1113. i__3 = *ldh + 1;
  1114. dcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1115. &i__3);
  1116. /* ==== Accumulate orthogonal matrix in order update */
  1117. /* . H and Z, if requested. ==== */
  1118. if (*ns > 1 && s != 0.) {
  1119. i__1 = *lwork - jw;
  1120. dormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1121. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1122. }
  1123. /* ==== Update vertical slab in H ==== */
  1124. if (*wantt) {
  1125. ltop = 1;
  1126. } else {
  1127. ltop = *ktop;
  1128. }
  1129. i__1 = kwtop - 1;
  1130. i__2 = *nv;
  1131. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1132. i__2) {
  1133. /* Computing MIN */
  1134. i__3 = *nv, i__4 = kwtop - krow;
  1135. kln = f2cmin(i__3,i__4);
  1136. dgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop *
  1137. h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset],
  1138. ldwv);
  1139. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1140. h_dim1], ldh);
  1141. /* L70: */
  1142. }
  1143. /* ==== Update horizontal slab in H ==== */
  1144. if (*wantt) {
  1145. i__2 = *n;
  1146. i__1 = *nh;
  1147. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1148. kcol += i__1) {
  1149. /* Computing MIN */
  1150. i__3 = *nh, i__4 = *n - kcol + 1;
  1151. kln = f2cmin(i__3,i__4);
  1152. dgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
  1153. h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset],
  1154. ldt);
  1155. dlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1156. h_dim1], ldh);
  1157. /* L80: */
  1158. }
  1159. }
  1160. /* ==== Update vertical slab in Z ==== */
  1161. if (*wantz) {
  1162. i__1 = *ihiz;
  1163. i__2 = *nv;
  1164. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1165. i__2) {
  1166. /* Computing MIN */
  1167. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1168. kln = f2cmin(i__3,i__4);
  1169. dgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop *
  1170. z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
  1171. wv_offset], ldwv);
  1172. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1173. kwtop * z_dim1], ldz);
  1174. /* L90: */
  1175. }
  1176. }
  1177. }
  1178. /* ==== Return the number of deflations ... ==== */
  1179. *nd = jw - *ns;
  1180. /* ==== ... and the number of shifts. (Subtracting */
  1181. /* . INFQR from the spike length takes care */
  1182. /* . of the case of a rare QR failure while */
  1183. /* . calculating eigenvalues of the deflation */
  1184. /* . window.) ==== */
  1185. *ns -= infqr;
  1186. /* ==== Return optimal workspace. ==== */
  1187. work[1] = (doublereal) lwkopt;
  1188. /* ==== End of DLAQR2 ==== */
  1189. return;
  1190. } /* dlaqr2_ */