You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clags2.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b CLAGS2 */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CLAGS2 + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clags2.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clags2.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clags2.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, */
  504. /* SNV, CSQ, SNQ ) */
  505. /* LOGICAL UPPER */
  506. /* REAL A1, A3, B1, B3, CSQ, CSU, CSV */
  507. /* COMPLEX A2, B2, SNQ, SNU, SNV */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such */
  514. /* > that if ( UPPER ) then */
  515. /* > */
  516. /* > U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) */
  517. /* > ( 0 A3 ) ( x x ) */
  518. /* > and */
  519. /* > V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) */
  520. /* > ( 0 B3 ) ( x x ) */
  521. /* > */
  522. /* > or if ( .NOT.UPPER ) then */
  523. /* > */
  524. /* > U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) */
  525. /* > ( A2 A3 ) ( 0 x ) */
  526. /* > and */
  527. /* > V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) */
  528. /* > ( B2 B3 ) ( 0 x ) */
  529. /* > where */
  530. /* > */
  531. /* > U = ( CSU SNU ), V = ( CSV SNV ), */
  532. /* > ( -SNU**H CSU ) ( -SNV**H CSV ) */
  533. /* > */
  534. /* > Q = ( CSQ SNQ ) */
  535. /* > ( -SNQ**H CSQ ) */
  536. /* > */
  537. /* > The rows of the transformed A and B are parallel. Moreover, if the */
  538. /* > input 2-by-2 matrix A is not zero, then the transformed (1,1) entry */
  539. /* > of A is not zero. If the input matrices A and B are both not zero, */
  540. /* > then the transformed (2,2) element of B is not zero, except when the */
  541. /* > first rows of input A and B are parallel and the second rows are */
  542. /* > zero. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] UPPER */
  547. /* > \verbatim */
  548. /* > UPPER is LOGICAL */
  549. /* > = .TRUE.: the input matrices A and B are upper triangular. */
  550. /* > = .FALSE.: the input matrices A and B are lower triangular. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] A1 */
  554. /* > \verbatim */
  555. /* > A1 is REAL */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] A2 */
  559. /* > \verbatim */
  560. /* > A2 is COMPLEX */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] A3 */
  564. /* > \verbatim */
  565. /* > A3 is REAL */
  566. /* > On entry, A1, A2 and A3 are elements of the input 2-by-2 */
  567. /* > upper (lower) triangular matrix A. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] B1 */
  571. /* > \verbatim */
  572. /* > B1 is REAL */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] B2 */
  576. /* > \verbatim */
  577. /* > B2 is COMPLEX */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] B3 */
  581. /* > \verbatim */
  582. /* > B3 is REAL */
  583. /* > On entry, B1, B2 and B3 are elements of the input 2-by-2 */
  584. /* > upper (lower) triangular matrix B. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] CSU */
  588. /* > \verbatim */
  589. /* > CSU is REAL */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] SNU */
  593. /* > \verbatim */
  594. /* > SNU is COMPLEX */
  595. /* > The desired unitary matrix U. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] CSV */
  599. /* > \verbatim */
  600. /* > CSV is REAL */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] SNV */
  604. /* > \verbatim */
  605. /* > SNV is COMPLEX */
  606. /* > The desired unitary matrix V. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] CSQ */
  610. /* > \verbatim */
  611. /* > CSQ is REAL */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] SNQ */
  615. /* > \verbatim */
  616. /* > SNQ is COMPLEX */
  617. /* > The desired unitary matrix Q. */
  618. /* > \endverbatim */
  619. /* Authors: */
  620. /* ======== */
  621. /* > \author Univ. of Tennessee */
  622. /* > \author Univ. of California Berkeley */
  623. /* > \author Univ. of Colorado Denver */
  624. /* > \author NAG Ltd. */
  625. /* > \date December 2016 */
  626. /* > \ingroup complexOTHERauxiliary */
  627. /* ===================================================================== */
  628. /* Subroutine */ void clags2_(logical *upper, real *a1, complex *a2, real *a3,
  629. real *b1, complex *b2, real *b3, real *csu, complex *snu, real *csv,
  630. complex *snv, real *csq, complex *snq)
  631. {
  632. /* System generated locals */
  633. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8;
  634. complex q__1, q__2, q__3, q__4, q__5;
  635. /* Local variables */
  636. real aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r,
  637. vb11r, vb22r, a;
  638. complex b, c__;
  639. real d__;
  640. complex r__, d1;
  641. real s1, s2, fb, fc;
  642. extern /* Subroutine */ void slasv2_(real *, real *, real *, real *, real *
  643. , real *, real *, real *, real *), clartg_(complex *, complex *,
  644. real *, complex *, complex *);
  645. complex ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22;
  646. real csl, csr, snl, snr;
  647. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  648. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  649. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  650. /* December 2016 */
  651. /* ===================================================================== */
  652. if (*upper) {
  653. /* Input matrices A and B are upper triangular matrices */
  654. /* Form matrix C = A*adj(B) = ( a b ) */
  655. /* ( 0 d ) */
  656. a = *a1 * *b3;
  657. d__ = *a3 * *b1;
  658. q__2.r = *b1 * a2->r, q__2.i = *b1 * a2->i;
  659. q__3.r = *a1 * b2->r, q__3.i = *a1 * b2->i;
  660. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  661. b.r = q__1.r, b.i = q__1.i;
  662. fb = c_abs(&b);
  663. /* Transform complex 2-by-2 matrix C to real matrix by unitary */
  664. /* diagonal matrix diag(1,D1). */
  665. d1.r = 1.f, d1.i = 0.f;
  666. if (fb != 0.f) {
  667. q__1.r = b.r / fb, q__1.i = b.i / fb;
  668. d1.r = q__1.r, d1.i = q__1.i;
  669. }
  670. /* The SVD of real 2 by 2 triangular C */
  671. /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */
  672. /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */
  673. slasv2_(&a, &fb, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
  674. if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) {
  675. /* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, */
  676. /* and (1,2) element of |U|**H *|A| and |V|**H *|B|. */
  677. ua11r = csl * *a1;
  678. q__2.r = csl * a2->r, q__2.i = csl * a2->i;
  679. q__4.r = snl * d1.r, q__4.i = snl * d1.i;
  680. q__3.r = *a3 * q__4.r, q__3.i = *a3 * q__4.i;
  681. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  682. ua12.r = q__1.r, ua12.i = q__1.i;
  683. vb11r = csr * *b1;
  684. q__2.r = csr * b2->r, q__2.i = csr * b2->i;
  685. q__4.r = snr * d1.r, q__4.i = snr * d1.i;
  686. q__3.r = *b3 * q__4.r, q__3.i = *b3 * q__4.i;
  687. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  688. vb12.r = q__1.r, vb12.i = q__1.i;
  689. aua12 = abs(csl) * ((r__1 = a2->r, abs(r__1)) + (r__2 = r_imag(a2)
  690. , abs(r__2))) + abs(snl) * abs(*a3);
  691. avb12 = abs(csr) * ((r__1 = b2->r, abs(r__1)) + (r__2 = r_imag(b2)
  692. , abs(r__2))) + abs(snr) * abs(*b3);
  693. /* zero (1,2) elements of U**H *A and V**H *B */
  694. if (abs(ua11r) + ((r__1 = ua12.r, abs(r__1)) + (r__2 = r_imag(&
  695. ua12), abs(r__2))) == 0.f) {
  696. q__2.r = vb11r, q__2.i = 0.f;
  697. q__1.r = -q__2.r, q__1.i = -q__2.i;
  698. r_cnjg(&q__3, &vb12);
  699. clartg_(&q__1, &q__3, csq, snq, &r__);
  700. } else if (abs(vb11r) + ((r__1 = vb12.r, abs(r__1)) + (r__2 =
  701. r_imag(&vb12), abs(r__2))) == 0.f) {
  702. q__2.r = ua11r, q__2.i = 0.f;
  703. q__1.r = -q__2.r, q__1.i = -q__2.i;
  704. r_cnjg(&q__3, &ua12);
  705. clartg_(&q__1, &q__3, csq, snq, &r__);
  706. } else if (aua12 / (abs(ua11r) + ((r__1 = ua12.r, abs(r__1)) + (
  707. r__2 = r_imag(&ua12), abs(r__2)))) <= avb12 / (abs(vb11r)
  708. + ((r__3 = vb12.r, abs(r__3)) + (r__4 = r_imag(&vb12),
  709. abs(r__4))))) {
  710. q__2.r = ua11r, q__2.i = 0.f;
  711. q__1.r = -q__2.r, q__1.i = -q__2.i;
  712. r_cnjg(&q__3, &ua12);
  713. clartg_(&q__1, &q__3, csq, snq, &r__);
  714. } else {
  715. q__2.r = vb11r, q__2.i = 0.f;
  716. q__1.r = -q__2.r, q__1.i = -q__2.i;
  717. r_cnjg(&q__3, &vb12);
  718. clartg_(&q__1, &q__3, csq, snq, &r__);
  719. }
  720. *csu = csl;
  721. q__2.r = -d1.r, q__2.i = -d1.i;
  722. q__1.r = snl * q__2.r, q__1.i = snl * q__2.i;
  723. snu->r = q__1.r, snu->i = q__1.i;
  724. *csv = csr;
  725. q__2.r = -d1.r, q__2.i = -d1.i;
  726. q__1.r = snr * q__2.r, q__1.i = snr * q__2.i;
  727. snv->r = q__1.r, snv->i = q__1.i;
  728. } else {
  729. /* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, */
  730. /* and (2,2) element of |U|**H *|A| and |V|**H *|B|. */
  731. r_cnjg(&q__4, &d1);
  732. q__3.r = -q__4.r, q__3.i = -q__4.i;
  733. q__2.r = snl * q__3.r, q__2.i = snl * q__3.i;
  734. q__1.r = *a1 * q__2.r, q__1.i = *a1 * q__2.i;
  735. ua21.r = q__1.r, ua21.i = q__1.i;
  736. r_cnjg(&q__5, &d1);
  737. q__4.r = -q__5.r, q__4.i = -q__5.i;
  738. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  739. q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i
  740. + q__3.i * a2->r;
  741. r__1 = csl * *a3;
  742. q__1.r = q__2.r + r__1, q__1.i = q__2.i;
  743. ua22.r = q__1.r, ua22.i = q__1.i;
  744. r_cnjg(&q__4, &d1);
  745. q__3.r = -q__4.r, q__3.i = -q__4.i;
  746. q__2.r = snr * q__3.r, q__2.i = snr * q__3.i;
  747. q__1.r = *b1 * q__2.r, q__1.i = *b1 * q__2.i;
  748. vb21.r = q__1.r, vb21.i = q__1.i;
  749. r_cnjg(&q__5, &d1);
  750. q__4.r = -q__5.r, q__4.i = -q__5.i;
  751. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  752. q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i
  753. + q__3.i * b2->r;
  754. r__1 = csr * *b3;
  755. q__1.r = q__2.r + r__1, q__1.i = q__2.i;
  756. vb22.r = q__1.r, vb22.i = q__1.i;
  757. aua22 = abs(snl) * ((r__1 = a2->r, abs(r__1)) + (r__2 = r_imag(a2)
  758. , abs(r__2))) + abs(csl) * abs(*a3);
  759. avb22 = abs(snr) * ((r__1 = b2->r, abs(r__1)) + (r__2 = r_imag(b2)
  760. , abs(r__2))) + abs(csr) * abs(*b3);
  761. /* zero (2,2) elements of U**H *A and V**H *B, and then swap. */
  762. if ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&ua21), abs(r__2))
  763. + ((r__3 = ua22.r, abs(r__3)) + (r__4 = r_imag(&ua22),
  764. abs(r__4))) == 0.f) {
  765. r_cnjg(&q__2, &vb21);
  766. q__1.r = -q__2.r, q__1.i = -q__2.i;
  767. r_cnjg(&q__3, &vb22);
  768. clartg_(&q__1, &q__3, csq, snq, &r__);
  769. } else if ((r__1 = vb21.r, abs(r__1)) + (r__2 = r_imag(&vb21),
  770. abs(r__2)) + c_abs(&vb22) == 0.f) {
  771. r_cnjg(&q__2, &ua21);
  772. q__1.r = -q__2.r, q__1.i = -q__2.i;
  773. r_cnjg(&q__3, &ua22);
  774. clartg_(&q__1, &q__3, csq, snq, &r__);
  775. } else if (aua22 / ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&
  776. ua21), abs(r__2)) + ((r__3 = ua22.r, abs(r__3)) + (r__4 =
  777. r_imag(&ua22), abs(r__4)))) <= avb22 / ((r__5 = vb21.r,
  778. abs(r__5)) + (r__6 = r_imag(&vb21), abs(r__6)) + ((r__7 =
  779. vb22.r, abs(r__7)) + (r__8 = r_imag(&vb22), abs(r__8)))))
  780. {
  781. r_cnjg(&q__2, &ua21);
  782. q__1.r = -q__2.r, q__1.i = -q__2.i;
  783. r_cnjg(&q__3, &ua22);
  784. clartg_(&q__1, &q__3, csq, snq, &r__);
  785. } else {
  786. r_cnjg(&q__2, &vb21);
  787. q__1.r = -q__2.r, q__1.i = -q__2.i;
  788. r_cnjg(&q__3, &vb22);
  789. clartg_(&q__1, &q__3, csq, snq, &r__);
  790. }
  791. *csu = snl;
  792. q__1.r = csl * d1.r, q__1.i = csl * d1.i;
  793. snu->r = q__1.r, snu->i = q__1.i;
  794. *csv = snr;
  795. q__1.r = csr * d1.r, q__1.i = csr * d1.i;
  796. snv->r = q__1.r, snv->i = q__1.i;
  797. }
  798. } else {
  799. /* Input matrices A and B are lower triangular matrices */
  800. /* Form matrix C = A*adj(B) = ( a 0 ) */
  801. /* ( c d ) */
  802. a = *a1 * *b3;
  803. d__ = *a3 * *b1;
  804. q__2.r = *b3 * a2->r, q__2.i = *b3 * a2->i;
  805. q__3.r = *a3 * b2->r, q__3.i = *a3 * b2->i;
  806. q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i;
  807. c__.r = q__1.r, c__.i = q__1.i;
  808. fc = c_abs(&c__);
  809. /* Transform complex 2-by-2 matrix C to real matrix by unitary */
  810. /* diagonal matrix diag(d1,1). */
  811. d1.r = 1.f, d1.i = 0.f;
  812. if (fc != 0.f) {
  813. q__1.r = c__.r / fc, q__1.i = c__.i / fc;
  814. d1.r = q__1.r, d1.i = q__1.i;
  815. }
  816. /* The SVD of real 2 by 2 triangular C */
  817. /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */
  818. /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */
  819. slasv2_(&a, &fc, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
  820. if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) {
  821. /* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, */
  822. /* and (2,1) element of |U|**H *|A| and |V|**H *|B|. */
  823. q__4.r = -d1.r, q__4.i = -d1.i;
  824. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  825. q__2.r = *a1 * q__3.r, q__2.i = *a1 * q__3.i;
  826. q__5.r = csr * a2->r, q__5.i = csr * a2->i;
  827. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  828. ua21.r = q__1.r, ua21.i = q__1.i;
  829. ua22r = csr * *a3;
  830. q__4.r = -d1.r, q__4.i = -d1.i;
  831. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  832. q__2.r = *b1 * q__3.r, q__2.i = *b1 * q__3.i;
  833. q__5.r = csl * b2->r, q__5.i = csl * b2->i;
  834. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  835. vb21.r = q__1.r, vb21.i = q__1.i;
  836. vb22r = csl * *b3;
  837. aua21 = abs(snr) * abs(*a1) + abs(csr) * ((r__1 = a2->r, abs(r__1)
  838. ) + (r__2 = r_imag(a2), abs(r__2)));
  839. avb21 = abs(snl) * abs(*b1) + abs(csl) * ((r__1 = b2->r, abs(r__1)
  840. ) + (r__2 = r_imag(b2), abs(r__2)));
  841. /* zero (2,1) elements of U**H *A and V**H *B. */
  842. if ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&ua21), abs(r__2))
  843. + abs(ua22r) == 0.f) {
  844. q__1.r = vb22r, q__1.i = 0.f;
  845. clartg_(&q__1, &vb21, csq, snq, &r__);
  846. } else if ((r__1 = vb21.r, abs(r__1)) + (r__2 = r_imag(&vb21),
  847. abs(r__2)) + abs(vb22r) == 0.f) {
  848. q__1.r = ua22r, q__1.i = 0.f;
  849. clartg_(&q__1, &ua21, csq, snq, &r__);
  850. } else if (aua21 / ((r__1 = ua21.r, abs(r__1)) + (r__2 = r_imag(&
  851. ua21), abs(r__2)) + abs(ua22r)) <= avb21 / ((r__3 =
  852. vb21.r, abs(r__3)) + (r__4 = r_imag(&vb21), abs(r__4)) +
  853. abs(vb22r))) {
  854. q__1.r = ua22r, q__1.i = 0.f;
  855. clartg_(&q__1, &ua21, csq, snq, &r__);
  856. } else {
  857. q__1.r = vb22r, q__1.i = 0.f;
  858. clartg_(&q__1, &vb21, csq, snq, &r__);
  859. }
  860. *csu = csr;
  861. r_cnjg(&q__3, &d1);
  862. q__2.r = -q__3.r, q__2.i = -q__3.i;
  863. q__1.r = snr * q__2.r, q__1.i = snr * q__2.i;
  864. snu->r = q__1.r, snu->i = q__1.i;
  865. *csv = csl;
  866. r_cnjg(&q__3, &d1);
  867. q__2.r = -q__3.r, q__2.i = -q__3.i;
  868. q__1.r = snl * q__2.r, q__1.i = snl * q__2.i;
  869. snv->r = q__1.r, snv->i = q__1.i;
  870. } else {
  871. /* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, */
  872. /* and (1,1) element of |U|**H *|A| and |V|**H *|B|. */
  873. r__1 = csr * *a1;
  874. r_cnjg(&q__4, &d1);
  875. q__3.r = snr * q__4.r, q__3.i = snr * q__4.i;
  876. q__2.r = q__3.r * a2->r - q__3.i * a2->i, q__2.i = q__3.r * a2->i
  877. + q__3.i * a2->r;
  878. q__1.r = r__1 + q__2.r, q__1.i = q__2.i;
  879. ua11.r = q__1.r, ua11.i = q__1.i;
  880. r_cnjg(&q__3, &d1);
  881. q__2.r = snr * q__3.r, q__2.i = snr * q__3.i;
  882. q__1.r = *a3 * q__2.r, q__1.i = *a3 * q__2.i;
  883. ua12.r = q__1.r, ua12.i = q__1.i;
  884. r__1 = csl * *b1;
  885. r_cnjg(&q__4, &d1);
  886. q__3.r = snl * q__4.r, q__3.i = snl * q__4.i;
  887. q__2.r = q__3.r * b2->r - q__3.i * b2->i, q__2.i = q__3.r * b2->i
  888. + q__3.i * b2->r;
  889. q__1.r = r__1 + q__2.r, q__1.i = q__2.i;
  890. vb11.r = q__1.r, vb11.i = q__1.i;
  891. r_cnjg(&q__3, &d1);
  892. q__2.r = snl * q__3.r, q__2.i = snl * q__3.i;
  893. q__1.r = *b3 * q__2.r, q__1.i = *b3 * q__2.i;
  894. vb12.r = q__1.r, vb12.i = q__1.i;
  895. aua11 = abs(csr) * abs(*a1) + abs(snr) * ((r__1 = a2->r, abs(r__1)
  896. ) + (r__2 = r_imag(a2), abs(r__2)));
  897. avb11 = abs(csl) * abs(*b1) + abs(snl) * ((r__1 = b2->r, abs(r__1)
  898. ) + (r__2 = r_imag(b2), abs(r__2)));
  899. /* zero (1,1) elements of U**H *A and V**H *B, and then swap. */
  900. if ((r__1 = ua11.r, abs(r__1)) + (r__2 = r_imag(&ua11), abs(r__2))
  901. + ((r__3 = ua12.r, abs(r__3)) + (r__4 = r_imag(&ua12),
  902. abs(r__4))) == 0.f) {
  903. clartg_(&vb12, &vb11, csq, snq, &r__);
  904. } else if ((r__1 = vb11.r, abs(r__1)) + (r__2 = r_imag(&vb11),
  905. abs(r__2)) + ((r__3 = vb12.r, abs(r__3)) + (r__4 = r_imag(
  906. &vb12), abs(r__4))) == 0.f) {
  907. clartg_(&ua12, &ua11, csq, snq, &r__);
  908. } else if (aua11 / ((r__1 = ua11.r, abs(r__1)) + (r__2 = r_imag(&
  909. ua11), abs(r__2)) + ((r__3 = ua12.r, abs(r__3)) + (r__4 =
  910. r_imag(&ua12), abs(r__4)))) <= avb11 / ((r__5 = vb11.r,
  911. abs(r__5)) + (r__6 = r_imag(&vb11), abs(r__6)) + ((r__7 =
  912. vb12.r, abs(r__7)) + (r__8 = r_imag(&vb12), abs(r__8)))))
  913. {
  914. clartg_(&ua12, &ua11, csq, snq, &r__);
  915. } else {
  916. clartg_(&vb12, &vb11, csq, snq, &r__);
  917. }
  918. *csu = snr;
  919. r_cnjg(&q__2, &d1);
  920. q__1.r = csr * q__2.r, q__1.i = csr * q__2.i;
  921. snu->r = q__1.r, snu->i = q__1.i;
  922. *csv = snl;
  923. r_cnjg(&q__2, &d1);
  924. q__1.r = csl * q__2.r, q__1.i = csl * q__2.i;
  925. snv->r = q__1.r, snv->i = q__1.i;
  926. }
  927. }
  928. return;
  929. /* End of CLAGS2 */
  930. } /* clags2_ */