You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claed8.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b3 = -1.f;
  487. static integer c__1 = 1;
  488. /* > \brief \b CLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
  489. matrix is dense. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLAED8 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA, */
  508. /* Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR, */
  509. /* GIVCOL, GIVNUM, INFO ) */
  510. /* INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ */
  511. /* REAL RHO */
  512. /* INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ), */
  513. /* $ INDXQ( * ), PERM( * ) */
  514. /* REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ), */
  515. /* $ Z( * ) */
  516. /* COMPLEX Q( LDQ, * ), Q2( LDQ2, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLAED8 merges the two sets of eigenvalues together into a single */
  523. /* > sorted set. Then it tries to deflate the size of the problem. */
  524. /* > There are two ways in which deflation can occur: when two or more */
  525. /* > eigenvalues are close together or if there is a tiny element in the */
  526. /* > Z vector. For each such occurrence the order of the related secular */
  527. /* > equation problem is reduced by one. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[out] K */
  532. /* > \verbatim */
  533. /* > K is INTEGER */
  534. /* > Contains the number of non-deflated eigenvalues. */
  535. /* > This is the order of the related secular equation. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] QSIZ */
  545. /* > \verbatim */
  546. /* > QSIZ is INTEGER */
  547. /* > The dimension of the unitary matrix used to reduce */
  548. /* > the dense or band matrix to tridiagonal form. */
  549. /* > QSIZ >= N if ICOMPQ = 1. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] Q */
  553. /* > \verbatim */
  554. /* > Q is COMPLEX array, dimension (LDQ,N) */
  555. /* > On entry, Q contains the eigenvectors of the partially solved */
  556. /* > system which has been previously updated in matrix */
  557. /* > multiplies with other partially solved eigensystems. */
  558. /* > On exit, Q contains the trailing (N-K) updated eigenvectors */
  559. /* > (those which were deflated) in its last N-K columns. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] LDQ */
  563. /* > \verbatim */
  564. /* > LDQ is INTEGER */
  565. /* > The leading dimension of the array Q. LDQ >= f2cmax( 1, N ). */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] D */
  569. /* > \verbatim */
  570. /* > D is REAL array, dimension (N) */
  571. /* > On entry, D contains the eigenvalues of the two submatrices to */
  572. /* > be combined. On exit, D contains the trailing (N-K) updated */
  573. /* > eigenvalues (those which were deflated) sorted into increasing */
  574. /* > order. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in,out] RHO */
  578. /* > \verbatim */
  579. /* > RHO is REAL */
  580. /* > Contains the off diagonal element associated with the rank-1 */
  581. /* > cut which originally split the two submatrices which are now */
  582. /* > being recombined. RHO is modified during the computation to */
  583. /* > the value required by SLAED3. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] CUTPNT */
  587. /* > \verbatim */
  588. /* > CUTPNT is INTEGER */
  589. /* > Contains the location of the last eigenvalue in the leading */
  590. /* > sub-matrix. MIN(1,N) <= CUTPNT <= N. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] Z */
  594. /* > \verbatim */
  595. /* > Z is REAL array, dimension (N) */
  596. /* > On input this vector contains the updating vector (the last */
  597. /* > row of the first sub-eigenvector matrix and the first row of */
  598. /* > the second sub-eigenvector matrix). The contents of Z are */
  599. /* > destroyed during the updating process. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] DLAMDA */
  603. /* > \verbatim */
  604. /* > DLAMDA is REAL array, dimension (N) */
  605. /* > Contains a copy of the first K eigenvalues which will be used */
  606. /* > by SLAED3 to form the secular equation. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] Q2 */
  610. /* > \verbatim */
  611. /* > Q2 is COMPLEX array, dimension (LDQ2,N) */
  612. /* > If ICOMPQ = 0, Q2 is not referenced. Otherwise, */
  613. /* > Contains a copy of the first K eigenvectors which will be used */
  614. /* > by SLAED7 in a matrix multiply (SGEMM) to update the new */
  615. /* > eigenvectors. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LDQ2 */
  619. /* > \verbatim */
  620. /* > LDQ2 is INTEGER */
  621. /* > The leading dimension of the array Q2. LDQ2 >= f2cmax( 1, N ). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] W */
  625. /* > \verbatim */
  626. /* > W is REAL array, dimension (N) */
  627. /* > This will hold the first k values of the final */
  628. /* > deflation-altered z-vector and will be passed to SLAED3. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] INDXP */
  632. /* > \verbatim */
  633. /* > INDXP is INTEGER array, dimension (N) */
  634. /* > This will contain the permutation used to place deflated */
  635. /* > values of D at the end of the array. On output INDXP(1:K) */
  636. /* > points to the nondeflated D-values and INDXP(K+1:N) */
  637. /* > points to the deflated eigenvalues. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] INDX */
  641. /* > \verbatim */
  642. /* > INDX is INTEGER array, dimension (N) */
  643. /* > This will contain the permutation used to sort the contents of */
  644. /* > D into ascending order. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] INDXQ */
  648. /* > \verbatim */
  649. /* > INDXQ is INTEGER array, dimension (N) */
  650. /* > This contains the permutation which separately sorts the two */
  651. /* > sub-problems in D into ascending order. Note that elements in */
  652. /* > the second half of this permutation must first have CUTPNT */
  653. /* > added to their values in order to be accurate. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] PERM */
  657. /* > \verbatim */
  658. /* > PERM is INTEGER array, dimension (N) */
  659. /* > Contains the permutations (from deflation and sorting) to be */
  660. /* > applied to each eigenblock. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] GIVPTR */
  664. /* > \verbatim */
  665. /* > GIVPTR is INTEGER */
  666. /* > Contains the number of Givens rotations which took place in */
  667. /* > this subproblem. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] GIVCOL */
  671. /* > \verbatim */
  672. /* > GIVCOL is INTEGER array, dimension (2, N) */
  673. /* > Each pair of numbers indicates a pair of columns to take place */
  674. /* > in a Givens rotation. */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[out] GIVNUM */
  678. /* > \verbatim */
  679. /* > GIVNUM is REAL array, dimension (2, N) */
  680. /* > Each number indicates the S value to be used in the */
  681. /* > corresponding Givens rotation. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] INFO */
  685. /* > \verbatim */
  686. /* > INFO is INTEGER */
  687. /* > = 0: successful exit. */
  688. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  689. /* > \endverbatim */
  690. /* Authors: */
  691. /* ======== */
  692. /* > \author Univ. of Tennessee */
  693. /* > \author Univ. of California Berkeley */
  694. /* > \author Univ. of Colorado Denver */
  695. /* > \author NAG Ltd. */
  696. /* > \date December 2016 */
  697. /* > \ingroup complexOTHERcomputational */
  698. /* ===================================================================== */
  699. /* Subroutine */ void claed8_(integer *k, integer *n, integer *qsiz, complex *
  700. q, integer *ldq, real *d__, real *rho, integer *cutpnt, real *z__,
  701. real *dlamda, complex *q2, integer *ldq2, real *w, integer *indxp,
  702. integer *indx, integer *indxq, integer *perm, integer *givptr,
  703. integer *givcol, real *givnum, integer *info)
  704. {
  705. /* System generated locals */
  706. integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
  707. real r__1;
  708. /* Local variables */
  709. integer jlam, imax, jmax;
  710. real c__;
  711. integer i__, j;
  712. real s, t;
  713. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
  714. ccopy_(integer *, complex *, integer *, complex *, integer *),
  715. csrot_(integer *, complex *, integer *, complex *, integer *,
  716. real *, real *);
  717. integer k2;
  718. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  719. integer *);
  720. integer n1, n2;
  721. extern real slapy2_(real *, real *);
  722. integer jp;
  723. extern real slamch_(char *);
  724. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  725. *, integer *, complex *, integer *);
  726. extern int xerbla_(char *, integer *, ftnlen);
  727. extern integer isamax_(integer *, real *, integer *);
  728. extern /* Subroutine */ void slamrg_(integer *, integer *, real *, integer
  729. *, integer *, integer *);
  730. integer n1p1;
  731. real eps, tau, tol;
  732. /* -- LAPACK computational routine (version 3.7.0) -- */
  733. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  734. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  735. /* December 2016 */
  736. /* ===================================================================== */
  737. /* Test the input parameters. */
  738. /* Parameter adjustments */
  739. q_dim1 = *ldq;
  740. q_offset = 1 + q_dim1 * 1;
  741. q -= q_offset;
  742. --d__;
  743. --z__;
  744. --dlamda;
  745. q2_dim1 = *ldq2;
  746. q2_offset = 1 + q2_dim1 * 1;
  747. q2 -= q2_offset;
  748. --w;
  749. --indxp;
  750. --indx;
  751. --indxq;
  752. --perm;
  753. givcol -= 3;
  754. givnum -= 3;
  755. /* Function Body */
  756. *info = 0;
  757. if (*n < 0) {
  758. *info = -2;
  759. } else if (*qsiz < *n) {
  760. *info = -3;
  761. } else if (*ldq < f2cmax(1,*n)) {
  762. *info = -5;
  763. } else if (*cutpnt < f2cmin(1,*n) || *cutpnt > *n) {
  764. *info = -8;
  765. } else if (*ldq2 < f2cmax(1,*n)) {
  766. *info = -12;
  767. }
  768. if (*info != 0) {
  769. i__1 = -(*info);
  770. xerbla_("CLAED8", &i__1, (ftnlen)6);
  771. return;
  772. }
  773. /* Need to initialize GIVPTR to O here in case of quick exit */
  774. /* to prevent an unspecified code behavior (usually sigfault) */
  775. /* when IWORK array on entry to *stedc is not zeroed */
  776. /* (or at least some IWORK entries which used in *laed7 for GIVPTR). */
  777. *givptr = 0;
  778. /* Quick return if possible */
  779. if (*n == 0) {
  780. return;
  781. }
  782. n1 = *cutpnt;
  783. n2 = *n - n1;
  784. n1p1 = n1 + 1;
  785. if (*rho < 0.f) {
  786. sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
  787. }
  788. /* Normalize z so that norm(z) = 1 */
  789. t = 1.f / sqrt(2.f);
  790. i__1 = *n;
  791. for (j = 1; j <= i__1; ++j) {
  792. indx[j] = j;
  793. /* L10: */
  794. }
  795. sscal_(n, &t, &z__[1], &c__1);
  796. *rho = (r__1 = *rho * 2.f, abs(r__1));
  797. /* Sort the eigenvalues into increasing order */
  798. i__1 = *n;
  799. for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
  800. indxq[i__] += *cutpnt;
  801. /* L20: */
  802. }
  803. i__1 = *n;
  804. for (i__ = 1; i__ <= i__1; ++i__) {
  805. dlamda[i__] = d__[indxq[i__]];
  806. w[i__] = z__[indxq[i__]];
  807. /* L30: */
  808. }
  809. i__ = 1;
  810. j = *cutpnt + 1;
  811. slamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
  812. i__1 = *n;
  813. for (i__ = 1; i__ <= i__1; ++i__) {
  814. d__[i__] = dlamda[indx[i__]];
  815. z__[i__] = w[indx[i__]];
  816. /* L40: */
  817. }
  818. /* Calculate the allowable deflation tolerance */
  819. imax = isamax_(n, &z__[1], &c__1);
  820. jmax = isamax_(n, &d__[1], &c__1);
  821. eps = slamch_("Epsilon");
  822. tol = eps * 8.f * (r__1 = d__[jmax], abs(r__1));
  823. /* If the rank-1 modifier is small enough, no more needs to be done */
  824. /* -- except to reorganize Q so that its columns correspond with the */
  825. /* elements in D. */
  826. if (*rho * (r__1 = z__[imax], abs(r__1)) <= tol) {
  827. *k = 0;
  828. i__1 = *n;
  829. for (j = 1; j <= i__1; ++j) {
  830. perm[j] = indxq[indx[j]];
  831. ccopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
  832. , &c__1);
  833. /* L50: */
  834. }
  835. clacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
  836. return;
  837. }
  838. /* If there are multiple eigenvalues then the problem deflates. Here */
  839. /* the number of equal eigenvalues are found. As each equal */
  840. /* eigenvalue is found, an elementary reflector is computed to rotate */
  841. /* the corresponding eigensubspace so that the corresponding */
  842. /* components of Z are zero in this new basis. */
  843. *k = 0;
  844. k2 = *n + 1;
  845. i__1 = *n;
  846. for (j = 1; j <= i__1; ++j) {
  847. if (*rho * (r__1 = z__[j], abs(r__1)) <= tol) {
  848. /* Deflate due to small z component. */
  849. --k2;
  850. indxp[k2] = j;
  851. if (j == *n) {
  852. goto L100;
  853. }
  854. } else {
  855. jlam = j;
  856. goto L70;
  857. }
  858. /* L60: */
  859. }
  860. L70:
  861. ++j;
  862. if (j > *n) {
  863. goto L90;
  864. }
  865. if (*rho * (r__1 = z__[j], abs(r__1)) <= tol) {
  866. /* Deflate due to small z component. */
  867. --k2;
  868. indxp[k2] = j;
  869. } else {
  870. /* Check if eigenvalues are close enough to allow deflation. */
  871. s = z__[jlam];
  872. c__ = z__[j];
  873. /* Find sqrt(a**2+b**2) without overflow or */
  874. /* destructive underflow. */
  875. tau = slapy2_(&c__, &s);
  876. t = d__[j] - d__[jlam];
  877. c__ /= tau;
  878. s = -s / tau;
  879. if ((r__1 = t * c__ * s, abs(r__1)) <= tol) {
  880. /* Deflation is possible. */
  881. z__[j] = tau;
  882. z__[jlam] = 0.f;
  883. /* Record the appropriate Givens rotation */
  884. ++(*givptr);
  885. givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
  886. givcol[(*givptr << 1) + 2] = indxq[indx[j]];
  887. givnum[(*givptr << 1) + 1] = c__;
  888. givnum[(*givptr << 1) + 2] = s;
  889. csrot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[indxq[
  890. indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
  891. t = d__[jlam] * c__ * c__ + d__[j] * s * s;
  892. d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
  893. d__[jlam] = t;
  894. --k2;
  895. i__ = 1;
  896. L80:
  897. if (k2 + i__ <= *n) {
  898. if (d__[jlam] < d__[indxp[k2 + i__]]) {
  899. indxp[k2 + i__ - 1] = indxp[k2 + i__];
  900. indxp[k2 + i__] = jlam;
  901. ++i__;
  902. goto L80;
  903. } else {
  904. indxp[k2 + i__ - 1] = jlam;
  905. }
  906. } else {
  907. indxp[k2 + i__ - 1] = jlam;
  908. }
  909. jlam = j;
  910. } else {
  911. ++(*k);
  912. w[*k] = z__[jlam];
  913. dlamda[*k] = d__[jlam];
  914. indxp[*k] = jlam;
  915. jlam = j;
  916. }
  917. }
  918. goto L70;
  919. L90:
  920. /* Record the last eigenvalue. */
  921. ++(*k);
  922. w[*k] = z__[jlam];
  923. dlamda[*k] = d__[jlam];
  924. indxp[*k] = jlam;
  925. L100:
  926. /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
  927. /* and Q2 respectively. The eigenvalues/vectors which were not */
  928. /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
  929. /* while those which were deflated go into the last N - K slots. */
  930. i__1 = *n;
  931. for (j = 1; j <= i__1; ++j) {
  932. jp = indxp[j];
  933. dlamda[j] = d__[jp];
  934. perm[j] = indxq[indx[jp]];
  935. ccopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1], &
  936. c__1);
  937. /* L110: */
  938. }
  939. /* The deflated eigenvalues and their corresponding vectors go back */
  940. /* into the last N - K slots of D and Q respectively. */
  941. if (*k < *n) {
  942. i__1 = *n - *k;
  943. scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
  944. i__1 = *n - *k;
  945. clacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*k +
  946. 1) * q_dim1 + 1], ldq);
  947. }
  948. return;
  949. /* End of CLAED8 */
  950. } /* claed8_ */