You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_gerfsx_extended.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static complex c_b6 = {-1.f,0.f};
  488. static complex c_b8 = {1.f,0.f};
  489. static real c_b31 = 1.f;
  490. /* > \brief \b CLA_GERFSX_EXTENDED */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CLA_GERFSX_EXTENDED + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_ger
  497. fsx_extended.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_ger
  500. fsx_extended.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_ger
  503. fsx_extended.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A, */
  509. /* LDA, AF, LDAF, IPIV, COLEQU, C, B, */
  510. /* LDB, Y, LDY, BERR_OUT, N_NORMS, */
  511. /* ERRS_N, ERRS_C, RES, AYB, DY, */
  512. /* Y_TAIL, RCOND, ITHRESH, RTHRESH, */
  513. /* DZ_UB, IGNORE_CWISE, INFO ) */
  514. /* INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE, */
  515. /* $ TRANS_TYPE, N_NORMS */
  516. /* LOGICAL COLEQU, IGNORE_CWISE */
  517. /* INTEGER ITHRESH */
  518. /* REAL RTHRESH, DZ_UB */
  519. /* INTEGER IPIV( * ) */
  520. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  521. /* $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * ) */
  522. /* REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ), */
  523. /* $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * ) */
  524. /* > \par Purpose: */
  525. /* ============= */
  526. /* > */
  527. /* > \verbatim */
  528. /* > */
  529. /* > */
  530. /* > CLA_GERFSX_EXTENDED improves the computed solution to a system of */
  531. /* > linear equations by performing extra-precise iterative refinement */
  532. /* > and provides error bounds and backward error estimates for the solution. */
  533. /* > This subroutine is called by CGERFSX to perform iterative refinement. */
  534. /* > In addition to normwise error bound, the code provides maximum */
  535. /* > componentwise error bound if possible. See comments for ERRS_N */
  536. /* > and ERRS_C for details of the error bounds. Note that this */
  537. /* > subroutine is only resonsible for setting the second fields of */
  538. /* > ERRS_N and ERRS_C. */
  539. /* > \endverbatim */
  540. /* Arguments: */
  541. /* ========== */
  542. /* > \param[in] PREC_TYPE */
  543. /* > \verbatim */
  544. /* > PREC_TYPE is INTEGER */
  545. /* > Specifies the intermediate precision to be used in refinement. */
  546. /* > The value is defined by ILAPREC(P) where P is a CHARACTER and P */
  547. /* > = 'S': Single */
  548. /* > = 'D': Double */
  549. /* > = 'I': Indigenous */
  550. /* > = 'X' or 'E': Extra */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] TRANS_TYPE */
  554. /* > \verbatim */
  555. /* > TRANS_TYPE is INTEGER */
  556. /* > Specifies the transposition operation on A. */
  557. /* > The value is defined by ILATRANS(T) where T is a CHARACTER and T */
  558. /* > = 'N': No transpose */
  559. /* > = 'T': Transpose */
  560. /* > = 'C': Conjugate transpose */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] N */
  564. /* > \verbatim */
  565. /* > N is INTEGER */
  566. /* > The number of linear equations, i.e., the order of the */
  567. /* > matrix A. N >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] NRHS */
  571. /* > \verbatim */
  572. /* > NRHS is INTEGER */
  573. /* > The number of right-hand-sides, i.e., the number of columns of the */
  574. /* > matrix B. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] A */
  578. /* > \verbatim */
  579. /* > A is COMPLEX array, dimension (LDA,N) */
  580. /* > On entry, the N-by-N matrix A. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDA */
  584. /* > \verbatim */
  585. /* > LDA is INTEGER */
  586. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] AF */
  590. /* > \verbatim */
  591. /* > AF is COMPLEX array, dimension (LDAF,N) */
  592. /* > The factors L and U from the factorization */
  593. /* > A = P*L*U as computed by CGETRF. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDAF */
  597. /* > \verbatim */
  598. /* > LDAF is INTEGER */
  599. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] IPIV */
  603. /* > \verbatim */
  604. /* > IPIV is INTEGER array, dimension (N) */
  605. /* > The pivot indices from the factorization A = P*L*U */
  606. /* > as computed by CGETRF; row i of the matrix was interchanged */
  607. /* > with row IPIV(i). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] COLEQU */
  611. /* > \verbatim */
  612. /* > COLEQU is LOGICAL */
  613. /* > If .TRUE. then column equilibration was done to A before calling */
  614. /* > this routine. This is needed to compute the solution and error */
  615. /* > bounds correctly. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] C */
  619. /* > \verbatim */
  620. /* > C is REAL array, dimension (N) */
  621. /* > The column scale factors for A. If COLEQU = .FALSE., C */
  622. /* > is not accessed. If C is input, each element of C should be a power */
  623. /* > of the radix to ensure a reliable solution and error estimates. */
  624. /* > Scaling by powers of the radix does not cause rounding errors unless */
  625. /* > the result underflows or overflows. Rounding errors during scaling */
  626. /* > lead to refining with a matrix that is not equivalent to the */
  627. /* > input matrix, producing error estimates that may not be */
  628. /* > reliable. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] B */
  632. /* > \verbatim */
  633. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  634. /* > The right-hand-side matrix B. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LDB */
  638. /* > \verbatim */
  639. /* > LDB is INTEGER */
  640. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in,out] Y */
  644. /* > \verbatim */
  645. /* > Y is COMPLEX array, dimension (LDY,NRHS) */
  646. /* > On entry, the solution matrix X, as computed by CGETRS. */
  647. /* > On exit, the improved solution matrix Y. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in] LDY */
  651. /* > \verbatim */
  652. /* > LDY is INTEGER */
  653. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] BERR_OUT */
  657. /* > \verbatim */
  658. /* > BERR_OUT is REAL array, dimension (NRHS) */
  659. /* > On exit, BERR_OUT(j) contains the componentwise relative backward */
  660. /* > error for right-hand-side j from the formula */
  661. /* > f2cmax(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  662. /* > where abs(Z) is the componentwise absolute value of the matrix */
  663. /* > or vector Z. This is computed by CLA_LIN_BERR. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in] N_NORMS */
  667. /* > \verbatim */
  668. /* > N_NORMS is INTEGER */
  669. /* > Determines which error bounds to return (see ERRS_N */
  670. /* > and ERRS_C). */
  671. /* > If N_NORMS >= 1 return normwise error bounds. */
  672. /* > If N_NORMS >= 2 return componentwise error bounds. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[in,out] ERRS_N */
  676. /* > \verbatim */
  677. /* > ERRS_N is REAL array, dimension (NRHS, N_ERR_BNDS) */
  678. /* > For each right-hand side, this array contains information about */
  679. /* > various error bounds and condition numbers corresponding to the */
  680. /* > normwise relative error, which is defined as follows: */
  681. /* > */
  682. /* > Normwise relative error in the ith solution vector: */
  683. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  684. /* > ------------------------------ */
  685. /* > max_j abs(X(j,i)) */
  686. /* > */
  687. /* > The array is indexed by the type of error information as described */
  688. /* > below. There currently are up to three pieces of information */
  689. /* > returned. */
  690. /* > */
  691. /* > The first index in ERRS_N(i,:) corresponds to the ith */
  692. /* > right-hand side. */
  693. /* > */
  694. /* > The second index in ERRS_N(:,err) contains the following */
  695. /* > three fields: */
  696. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  697. /* > reciprocal condition number is less than the threshold */
  698. /* > sqrt(n) * slamch('Epsilon'). */
  699. /* > */
  700. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  701. /* > almost certainly within a factor of 10 of the true error */
  702. /* > so long as the next entry is greater than the threshold */
  703. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  704. /* > be trusted if the previous boolean is true. */
  705. /* > */
  706. /* > err = 3 Reciprocal condition number: Estimated normwise */
  707. /* > reciprocal condition number. Compared with the threshold */
  708. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  709. /* > estimate is "guaranteed". These reciprocal condition */
  710. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  711. /* > appropriately scaled matrix Z. */
  712. /* > Let Z = S*A, where S scales each row by a power of the */
  713. /* > radix so all absolute row sums of Z are approximately 1. */
  714. /* > */
  715. /* > This subroutine is only responsible for setting the second field */
  716. /* > above. */
  717. /* > See Lapack Working Note 165 for further details and extra */
  718. /* > cautions. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[in,out] ERRS_C */
  722. /* > \verbatim */
  723. /* > ERRS_C is REAL array, dimension (NRHS, N_ERR_BNDS) */
  724. /* > For each right-hand side, this array contains information about */
  725. /* > various error bounds and condition numbers corresponding to the */
  726. /* > componentwise relative error, which is defined as follows: */
  727. /* > */
  728. /* > Componentwise relative error in the ith solution vector: */
  729. /* > abs(XTRUE(j,i) - X(j,i)) */
  730. /* > max_j ---------------------- */
  731. /* > abs(X(j,i)) */
  732. /* > */
  733. /* > The array is indexed by the right-hand side i (on which the */
  734. /* > componentwise relative error depends), and the type of error */
  735. /* > information as described below. There currently are up to three */
  736. /* > pieces of information returned for each right-hand side. If */
  737. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  738. /* > ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most */
  739. /* > the first (:,N_ERR_BNDS) entries are returned. */
  740. /* > */
  741. /* > The first index in ERRS_C(i,:) corresponds to the ith */
  742. /* > right-hand side. */
  743. /* > */
  744. /* > The second index in ERRS_C(:,err) contains the following */
  745. /* > three fields: */
  746. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  747. /* > reciprocal condition number is less than the threshold */
  748. /* > sqrt(n) * slamch('Epsilon'). */
  749. /* > */
  750. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  751. /* > almost certainly within a factor of 10 of the true error */
  752. /* > so long as the next entry is greater than the threshold */
  753. /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
  754. /* > be trusted if the previous boolean is true. */
  755. /* > */
  756. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  757. /* > reciprocal condition number. Compared with the threshold */
  758. /* > sqrt(n) * slamch('Epsilon') to determine if the error */
  759. /* > estimate is "guaranteed". These reciprocal condition */
  760. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  761. /* > appropriately scaled matrix Z. */
  762. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  763. /* > current right-hand side and S scales each row of */
  764. /* > A*diag(x) by a power of the radix so all absolute row */
  765. /* > sums of Z are approximately 1. */
  766. /* > */
  767. /* > This subroutine is only responsible for setting the second field */
  768. /* > above. */
  769. /* > See Lapack Working Note 165 for further details and extra */
  770. /* > cautions. */
  771. /* > \endverbatim */
  772. /* > */
  773. /* > \param[in] RES */
  774. /* > \verbatim */
  775. /* > RES is COMPLEX array, dimension (N) */
  776. /* > Workspace to hold the intermediate residual. */
  777. /* > \endverbatim */
  778. /* > */
  779. /* > \param[in] AYB */
  780. /* > \verbatim */
  781. /* > AYB is REAL array, dimension (N) */
  782. /* > Workspace. */
  783. /* > \endverbatim */
  784. /* > */
  785. /* > \param[in] DY */
  786. /* > \verbatim */
  787. /* > DY is COMPLEX array, dimension (N) */
  788. /* > Workspace to hold the intermediate solution. */
  789. /* > \endverbatim */
  790. /* > */
  791. /* > \param[in] Y_TAIL */
  792. /* > \verbatim */
  793. /* > Y_TAIL is COMPLEX array, dimension (N) */
  794. /* > Workspace to hold the trailing bits of the intermediate solution. */
  795. /* > \endverbatim */
  796. /* > */
  797. /* > \param[in] RCOND */
  798. /* > \verbatim */
  799. /* > RCOND is REAL */
  800. /* > Reciprocal scaled condition number. This is an estimate of the */
  801. /* > reciprocal Skeel condition number of the matrix A after */
  802. /* > equilibration (if done). If this is less than the machine */
  803. /* > precision (in particular, if it is zero), the matrix is singular */
  804. /* > to working precision. Note that the error may still be small even */
  805. /* > if this number is very small and the matrix appears ill- */
  806. /* > conditioned. */
  807. /* > \endverbatim */
  808. /* > */
  809. /* > \param[in] ITHRESH */
  810. /* > \verbatim */
  811. /* > ITHRESH is INTEGER */
  812. /* > The maximum number of residual computations allowed for */
  813. /* > refinement. The default is 10. For 'aggressive' set to 100 to */
  814. /* > permit convergence using approximate factorizations or */
  815. /* > factorizations other than LU. If the factorization uses a */
  816. /* > technique other than Gaussian elimination, the guarantees in */
  817. /* > ERRS_N and ERRS_C may no longer be trustworthy. */
  818. /* > \endverbatim */
  819. /* > */
  820. /* > \param[in] RTHRESH */
  821. /* > \verbatim */
  822. /* > RTHRESH is REAL */
  823. /* > Determines when to stop refinement if the error estimate stops */
  824. /* > decreasing. Refinement will stop when the next solution no longer */
  825. /* > satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
  826. /* > the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
  827. /* > default value is 0.5. For 'aggressive' set to 0.9 to permit */
  828. /* > convergence on extremely ill-conditioned matrices. See LAWN 165 */
  829. /* > for more details. */
  830. /* > \endverbatim */
  831. /* > */
  832. /* > \param[in] DZ_UB */
  833. /* > \verbatim */
  834. /* > DZ_UB is REAL */
  835. /* > Determines when to start considering componentwise convergence. */
  836. /* > Componentwise convergence is only considered after each component */
  837. /* > of the solution Y is stable, which we definte as the relative */
  838. /* > change in each component being less than DZ_UB. The default value */
  839. /* > is 0.25, requiring the first bit to be stable. See LAWN 165 for */
  840. /* > more details. */
  841. /* > \endverbatim */
  842. /* > */
  843. /* > \param[in] IGNORE_CWISE */
  844. /* > \verbatim */
  845. /* > IGNORE_CWISE is LOGICAL */
  846. /* > If .TRUE. then ignore componentwise convergence. Default value */
  847. /* > is .FALSE.. */
  848. /* > \endverbatim */
  849. /* > */
  850. /* > \param[out] INFO */
  851. /* > \verbatim */
  852. /* > INFO is INTEGER */
  853. /* > = 0: Successful exit. */
  854. /* > < 0: if INFO = -i, the ith argument to CGETRS had an illegal */
  855. /* > value */
  856. /* > \endverbatim */
  857. /* Authors: */
  858. /* ======== */
  859. /* > \author Univ. of Tennessee */
  860. /* > \author Univ. of California Berkeley */
  861. /* > \author Univ. of Colorado Denver */
  862. /* > \author NAG Ltd. */
  863. /* > \date December 2016 */
  864. /* > \ingroup complexGEcomputational */
  865. /* ===================================================================== */
  866. /* Subroutine */ void cla_gerfsx_extended_(integer *prec_type__, integer *
  867. trans_type__, integer *n, integer *nrhs, complex *a, integer *lda,
  868. complex *af, integer *ldaf, integer *ipiv, logical *colequ, real *c__,
  869. complex *b, integer *ldb, complex *y, integer *ldy, real *berr_out__,
  870. integer *n_norms__, real *errs_n__, real *errs_c__, complex *res,
  871. real *ayb, complex *dy, complex *y_tail__, real *rcond, integer *
  872. ithresh, real *rthresh, real *dz_ub__, logical *ignore_cwise__,
  873. integer *info)
  874. {
  875. /* System generated locals */
  876. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
  877. y_offset, errs_n_dim1, errs_n_offset, errs_c_dim1, errs_c_offset,
  878. i__1, i__2, i__3, i__4;
  879. real r__1, r__2;
  880. char ch__1[1];
  881. /* Local variables */
  882. real dx_x__, dz_z__;
  883. extern /* Subroutine */ void cla_lin_berr_(integer *, integer *, integer *
  884. , complex *, real *, real *);
  885. real ymin;
  886. extern /* Subroutine */ void blas_cgemv_x_(integer *, integer *, integer *
  887. , complex *, complex *, integer *, complex *, integer *, complex *
  888. , complex *, integer *, integer *);
  889. real dxratmax, dzratmax;
  890. integer y_prec_state__, i__, j;
  891. extern /* Subroutine */ void blas_cgemv2_x_(integer *, integer *, integer
  892. *, complex *, complex *, integer *, complex *, complex *, integer
  893. *, complex *, complex *, integer *, integer *), cla_geamv_(
  894. integer *, integer *, integer *, real *, complex *, integer *,
  895. complex *, integer *, real *, real *, integer *), cgemv_(char *,
  896. integer *, integer *, complex *, complex *, integer *, complex *,
  897. integer *, complex *, complex *, integer *), ccopy_(
  898. integer *, complex *, integer *, complex *, integer *);
  899. real dxrat;
  900. logical incr_prec__;
  901. real dzrat;
  902. extern /* Subroutine */ void caxpy_(integer *, complex *, complex *,
  903. integer *, complex *, integer *);
  904. char trans[1];
  905. real normx, normy, myhugeval, prev_dz_z__, yk;
  906. extern real slamch_(char *);
  907. extern /* Subroutine */ void cgetrs_(char *, integer *, integer *, complex
  908. *, integer *, integer *, complex *, integer *, integer *);
  909. real final_dx_x__;
  910. extern /* Subroutine */ void cla_wwaddw_(integer *, complex *, complex *,
  911. complex *);
  912. real final_dz_z__, normdx;
  913. extern /* Character */ VOID chla_transtype_(char *, integer *);
  914. real prevnormdx;
  915. integer cnt;
  916. real dyk, eps;
  917. integer x_state__, z_state__;
  918. real incr_thresh__;
  919. /* -- LAPACK computational routine (version 3.7.0) -- */
  920. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  921. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  922. /* December 2016 */
  923. /* ===================================================================== */
  924. /* Parameter adjustments */
  925. errs_c_dim1 = *nrhs;
  926. errs_c_offset = 1 + errs_c_dim1 * 1;
  927. errs_c__ -= errs_c_offset;
  928. errs_n_dim1 = *nrhs;
  929. errs_n_offset = 1 + errs_n_dim1 * 1;
  930. errs_n__ -= errs_n_offset;
  931. a_dim1 = *lda;
  932. a_offset = 1 + a_dim1 * 1;
  933. a -= a_offset;
  934. af_dim1 = *ldaf;
  935. af_offset = 1 + af_dim1 * 1;
  936. af -= af_offset;
  937. --ipiv;
  938. --c__;
  939. b_dim1 = *ldb;
  940. b_offset = 1 + b_dim1 * 1;
  941. b -= b_offset;
  942. y_dim1 = *ldy;
  943. y_offset = 1 + y_dim1 * 1;
  944. y -= y_offset;
  945. --berr_out__;
  946. --res;
  947. --ayb;
  948. --dy;
  949. --y_tail__;
  950. /* Function Body */
  951. if (*info != 0) {
  952. return;
  953. }
  954. chla_transtype_(ch__1, trans_type__);
  955. *(unsigned char *)trans = *(unsigned char *)&ch__1[0];
  956. eps = slamch_("Epsilon");
  957. myhugeval = slamch_("Overflow");
  958. /* Force MYHUGEVAL to Inf */
  959. myhugeval *= myhugeval;
  960. /* Using MYHUGEVAL may lead to spurious underflows. */
  961. incr_thresh__ = (real) (*n) * eps;
  962. i__1 = *nrhs;
  963. for (j = 1; j <= i__1; ++j) {
  964. y_prec_state__ = 1;
  965. if (y_prec_state__ == 2) {
  966. i__2 = *n;
  967. for (i__ = 1; i__ <= i__2; ++i__) {
  968. i__3 = i__;
  969. y_tail__[i__3].r = 0.f, y_tail__[i__3].i = 0.f;
  970. }
  971. }
  972. dxrat = 0.f;
  973. dxratmax = 0.f;
  974. dzrat = 0.f;
  975. dzratmax = 0.f;
  976. final_dx_x__ = myhugeval;
  977. final_dz_z__ = myhugeval;
  978. prevnormdx = myhugeval;
  979. prev_dz_z__ = myhugeval;
  980. dz_z__ = myhugeval;
  981. dx_x__ = myhugeval;
  982. x_state__ = 1;
  983. z_state__ = 0;
  984. incr_prec__ = FALSE_;
  985. i__2 = *ithresh;
  986. for (cnt = 1; cnt <= i__2; ++cnt) {
  987. /* Compute residual RES = B_s - op(A_s) * Y, */
  988. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  989. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  990. if (y_prec_state__ == 0) {
  991. cgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 +
  992. 1], &c__1, &c_b8, &res[1], &c__1);
  993. } else if (y_prec_state__ == 1) {
  994. blas_cgemv_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda, &
  995. y[j * y_dim1 + 1], &c__1, &c_b8, &res[1], &c__1,
  996. prec_type__);
  997. } else {
  998. blas_cgemv2_x__(trans_type__, n, n, &c_b6, &a[a_offset], lda,
  999. &y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b8, &res[
  1000. 1], &c__1, prec_type__);
  1001. }
  1002. /* XXX: RES is no longer needed. */
  1003. ccopy_(n, &res[1], &c__1, &dy[1], &c__1);
  1004. cgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1],
  1005. n, info);
  1006. /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
  1007. normx = 0.f;
  1008. normy = 0.f;
  1009. normdx = 0.f;
  1010. dz_z__ = 0.f;
  1011. ymin = myhugeval;
  1012. i__3 = *n;
  1013. for (i__ = 1; i__ <= i__3; ++i__) {
  1014. i__4 = i__ + j * y_dim1;
  1015. yk = (r__1 = y[i__4].r, abs(r__1)) + (r__2 = r_imag(&y[i__ +
  1016. j * y_dim1]), abs(r__2));
  1017. i__4 = i__;
  1018. dyk = (r__1 = dy[i__4].r, abs(r__1)) + (r__2 = r_imag(&dy[i__]
  1019. ), abs(r__2));
  1020. if (yk != 0.f) {
  1021. /* Computing MAX */
  1022. r__1 = dz_z__, r__2 = dyk / yk;
  1023. dz_z__ = f2cmax(r__1,r__2);
  1024. } else if (dyk != 0.f) {
  1025. dz_z__ = myhugeval;
  1026. }
  1027. ymin = f2cmin(ymin,yk);
  1028. normy = f2cmax(normy,yk);
  1029. if (*colequ) {
  1030. /* Computing MAX */
  1031. r__1 = normx, r__2 = yk * c__[i__];
  1032. normx = f2cmax(r__1,r__2);
  1033. /* Computing MAX */
  1034. r__1 = normdx, r__2 = dyk * c__[i__];
  1035. normdx = f2cmax(r__1,r__2);
  1036. } else {
  1037. normx = normy;
  1038. normdx = f2cmax(normdx,dyk);
  1039. }
  1040. }
  1041. if (normx != 0.f) {
  1042. dx_x__ = normdx / normx;
  1043. } else if (normdx == 0.f) {
  1044. dx_x__ = 0.f;
  1045. } else {
  1046. dx_x__ = myhugeval;
  1047. }
  1048. dxrat = normdx / prevnormdx;
  1049. dzrat = dz_z__ / prev_dz_z__;
  1050. /* Check termination criteria */
  1051. if (! (*ignore_cwise__) && ymin * *rcond < incr_thresh__ * normy
  1052. && y_prec_state__ < 2) {
  1053. incr_prec__ = TRUE_;
  1054. }
  1055. if (x_state__ == 3 && dxrat <= *rthresh) {
  1056. x_state__ = 1;
  1057. }
  1058. if (x_state__ == 1) {
  1059. if (dx_x__ <= eps) {
  1060. x_state__ = 2;
  1061. } else if (dxrat > *rthresh) {
  1062. if (y_prec_state__ != 2) {
  1063. incr_prec__ = TRUE_;
  1064. } else {
  1065. x_state__ = 3;
  1066. }
  1067. } else {
  1068. if (dxrat > dxratmax) {
  1069. dxratmax = dxrat;
  1070. }
  1071. }
  1072. if (x_state__ > 1) {
  1073. final_dx_x__ = dx_x__;
  1074. }
  1075. }
  1076. if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
  1077. z_state__ = 1;
  1078. }
  1079. if (z_state__ == 3 && dzrat <= *rthresh) {
  1080. z_state__ = 1;
  1081. }
  1082. if (z_state__ == 1) {
  1083. if (dz_z__ <= eps) {
  1084. z_state__ = 2;
  1085. } else if (dz_z__ > *dz_ub__) {
  1086. z_state__ = 0;
  1087. dzratmax = 0.f;
  1088. final_dz_z__ = myhugeval;
  1089. } else if (dzrat > *rthresh) {
  1090. if (y_prec_state__ != 2) {
  1091. incr_prec__ = TRUE_;
  1092. } else {
  1093. z_state__ = 3;
  1094. }
  1095. } else {
  1096. if (dzrat > dzratmax) {
  1097. dzratmax = dzrat;
  1098. }
  1099. }
  1100. if (z_state__ > 1) {
  1101. final_dz_z__ = dz_z__;
  1102. }
  1103. }
  1104. /* Exit if both normwise and componentwise stopped working, */
  1105. /* but if componentwise is unstable, let it go at least two */
  1106. /* iterations. */
  1107. if (x_state__ != 1) {
  1108. if (*ignore_cwise__) {
  1109. goto L666;
  1110. }
  1111. if (z_state__ == 3 || z_state__ == 2) {
  1112. goto L666;
  1113. }
  1114. if (z_state__ == 0 && cnt > 1) {
  1115. goto L666;
  1116. }
  1117. }
  1118. if (incr_prec__) {
  1119. incr_prec__ = FALSE_;
  1120. ++y_prec_state__;
  1121. i__3 = *n;
  1122. for (i__ = 1; i__ <= i__3; ++i__) {
  1123. i__4 = i__;
  1124. y_tail__[i__4].r = 0.f, y_tail__[i__4].i = 0.f;
  1125. }
  1126. }
  1127. prevnormdx = normdx;
  1128. prev_dz_z__ = dz_z__;
  1129. /* Update soluton. */
  1130. if (y_prec_state__ < 2) {
  1131. caxpy_(n, &c_b8, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
  1132. } else {
  1133. cla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
  1134. }
  1135. }
  1136. /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't CALL MYEXIT. */
  1137. L666:
  1138. /* Set final_* when cnt hits ithresh */
  1139. if (x_state__ == 1) {
  1140. final_dx_x__ = dx_x__;
  1141. }
  1142. if (z_state__ == 1) {
  1143. final_dz_z__ = dz_z__;
  1144. }
  1145. /* Compute error bounds */
  1146. if (*n_norms__ >= 1) {
  1147. errs_n__[j + (errs_n_dim1 << 1)] = final_dx_x__ / (1 - dxratmax);
  1148. }
  1149. if (*n_norms__ >= 2) {
  1150. errs_c__[j + (errs_c_dim1 << 1)] = final_dz_z__ / (1 - dzratmax);
  1151. }
  1152. /* Compute componentwise relative backward error from formula */
  1153. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
  1154. /* where abs(Z) is the componentwise absolute value of the matrix */
  1155. /* or vector Z. */
  1156. /* Compute residual RES = B_s - op(A_s) * Y, */
  1157. /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
  1158. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
  1159. cgemv_(trans, n, n, &c_b6, &a[a_offset], lda, &y[j * y_dim1 + 1], &
  1160. c__1, &c_b8, &res[1], &c__1);
  1161. i__2 = *n;
  1162. for (i__ = 1; i__ <= i__2; ++i__) {
  1163. i__3 = i__ + j * b_dim1;
  1164. ayb[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[i__
  1165. + j * b_dim1]), abs(r__2));
  1166. }
  1167. /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
  1168. cla_geamv_(trans_type__, n, n, &c_b31, &a[a_offset], lda, &y[j *
  1169. y_dim1 + 1], &c__1, &c_b31, &ayb[1], &c__1);
  1170. cla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
  1171. /* End of loop for each RHS. */
  1172. }
  1173. return;
  1174. } /* cla_gerfsx_extended__ */